
Modelling and Implementing a Knowledge Base for
Checking Medical Invoices with DLV

Christoph Beierle1, Oliver Dusso1, Gabriele Kern-Isberner2

1Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
2Dept. of Computer Science, University of Dortmund, 44221 Dortmund, Germany

beierle@fernuni-hagen.de, oliver.dusso@fernuni-hagen.de,
gabriele.kern-isberner@cs.uni-dortmund.de

Abstract. Checking medical invoices, done by every health insurance company,
is a labor-intensive task. Both speed and quality of executing this task may be
increased by the knowledge-based decision support system ACMI which we
present in this paper. As the relevant regulations also contain various default
rules, ACMI’s knowledge core is modelled using the answer set programming
paradigm. It turned out that all relevant rules could be expressed directly in
this framework, providing for a declarative and easily extendable and modifiable
knowledge base. ACMI is implemented using the DLV system.

1 Introduction

In contrast to Germany’s compulsory health insurance, in the private health insurance
system, a physician or a physiotherapist does not have a contractual relationship with
the patient’s insurance company, but only with the patient himself. He issues an invoice
to the patient which the patient has to pay. Having a private health insurance, the patient
will hand the doctor’s bill to his insurance company for reimbursement. Typically, the
insurance company will check whether the invoice obeys various legal and other regu-
lations, in particular, whether it conforms to e.g. theGeb̈uhrenordnung f̈ur Ärzte(GOÄ,
scale of fees for physicians) [4].

The checking of the invoices requires detailed knowledge of many regulations and
is a labor-intensive task. When investigating the official regulations concerning medical
invoices (e.g. [4], [5]) and the corresponding business rules of one of Germany’s large
insurance companies, it turned out that also various default rules are used. Thus, a high-
level modelling of a knowledge base reflecting the regulations and rules should also
allow for the formulation of defaults.

On the other hand, default reasoning requires a powerful inferences system. In
recent years, the paradigm of answer set programming (ASP) [6] turned out to pro-
vide such a powerful inference system while supporting for logic rules, negation and
defaults. Nowadays, there are various systems implementing the ASP paradigm (e.g.
Smodels [7] or DLV [3]).

The purpose of this paper is twofold: to model and implement a knowledge based
decision support system for checking medical invoices, and to investigate whether the
language of ASP is suitable for this modelling. As a result of this investigation, we

Dagstuhl Seminar Proceedings 05171
Nonmonotonic Reasoning, Answer Set Programming and Constraints
http://drops.dagstuhl.de/opus/volltexte/2005/261

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

developed the ACMI system (Automatic Checking of Medical Invoices) providing an
automated decision support system for the checking of such invoices [2]. We will give
an overview of the system, illustrate its knowledge base formulated in the formal logic
language of ASP, and present a detailed example as a walk through the system imple-
mented in DLV. Additionally, we develop three more abstract rule schemas using sets
(which are not supported by DLV) and demonstrate that these are sufficient for mod-
elling ACMI’s knowledge base and that they can be translated automatically to DLV.

Fig. 1.An invoice handed in by the patient Max Musterkrank

2 Overview of the system

ACMI is embedded in an environment processing the workflow from the incoming
patients invoices to the refunding decision done by the insurance company’s person
in charge. Figure 1 shows a typical invoice. The first column specifies the date when
the treatment was carried out. The second column specifies a number from the re-
spectiveGeb̈uhrenordnung(scale of fees). In this case, the invoice is from an al-
ternative practitioner (Heilpraktiker) so the relevantGeb̈uhrenordnungis the Geb̈uH
(Geb̈uhrenordnung f̈ur Heilpraktiker, scale of fees for alternative practitioners) [5]. The
third column gives a verbal description of the treatment corresponding to the fee num-
ber, and the fourth column contains the invoiced fee (ine) for that treatment (which is
not fixed, but must be in a certain range specified by the GebüH).

The invoices are scanned in and processed by optical character recognition soft-
ware. The fee numbers, the descriptions and the charged amounts are extracted and –

2

together with an assigned invoice number, the patient’s name, his insurance identifica-
tion number and his tariff identification extracted from the corresponding database – are
presented in a graphical user interface to the person in charge (Fig. 3). For every item
with a fee number, ACMI then automatically performs checks based on its knowledge
base and reports the results. In Fig. 2, ACMI’s knowledge sources are summarized.

GOÄ

GebüH

Invoices

database
Customer

ACMI

 Rules DLV | Rule Schemas
 Business

Fig. 2. ACMI’s knowledge sources

3 ACMI ’s Knowledge Base

In the following, we restrict ourselves to ACMI’s knowledge base with respect to the
Geb̈uH [5]. The Geb̈uH contains 148 different fee numbers (as a matter of fact, the GOÄ
[4] contains many more). Each combination of fee numbers occurring in an invoice for
a particular day of treatment must satisfy various constraints given in the GebüH, e.g.:

C1 Number 4 may not occur more than once, and it may occur simultaneously only
with 1 or with 17.1.

C2 Number 20.8 may not occur more than once.
C3 If number 28.1 occurs more than once, replace all its occurrences with one occur-

rence of 28.2.
C4 Number 12.9 may not occur simultaneously with 12.10 and 12.11.
C5 Number 5.0 may not occur simultaneously with 6.0, 7.0 or 8.0.

Note that there are constraints about the frequency of certain numbers, different re-
strictions about the simultaneous occurrences of combinations of numbers, and even
prescriptions where numbers have to be replaced by another one.

In addition, there are internal business rules (cf. [1]) of the insurance company at-
tached to a fee number, e.g:

3

T1 Number 21.1 is only refundable in insurance contracts with full coverage of the
Geb̈uH.

H1 For number 12.2 a notification text is to be displayed to the person in charge.

When considering all these regulations for the GebüH, 78 rules were identified. In
addition, medical invoice checking in the insurance company is based on the following
general rule for each fee numberN :

R1 If a numberN occurs in an invoice andN is not found to be invalid, thenN is
valid.

Note that this rule is a typical default rule as it is being investigated in formal default
logic (e.g. [8]) and as it can be expressed neatly in the paradigm of answer set program-
ming (ASP) [6]:

valid(N) :− in invoice(N), not ¬valid(N).

This ASP rule can be read as R1 above:¬ is the classical logic negation operator (here
yieldingN invalid), andnot is the default negation (here yieldingN is not found to be
invalid). Since also many other rules need negation and can be expressed quite straight-
forwardly in ASP, we decided to implement ACMI’s knowledge representation and
processing part in an ASP system like Smodels [7] or DLV [3].

Fig. 3.Graphical user interface with a preprocessed invoice

4

4 Answer Set Programming and DLV

Answer sets can be regarded as solutions to problems described by logic programs. A
logic program consists of rules of the form

H ← A1, . . . , An,not B1, . . . ,not Bm (1)

whereH,A1, . . . , An, B1, . . . , Bm are literals, i.e. logical atoms in positive or negated
form. Each such rule may be read as

If A1, . . . , An all hold, and it can be assumed that none ofB1, . . . , Bm holds,
then concludeH

Answer sets provide precise answers to any query by returning the truth values of logical
atoms. The presence of default negation makes answer set programming quite compli-
cated, as in general, several possible solutions have to be taken into account in an effi-
cient way. However, it is just default rules like (1) that make logic programs concise and
readable representations of knowledge. Default rules specify general knowledge while
leaving room for exceptions. This requires a nonclassical logical framework which is
provided by answer set programming in a convenient way. Answer set programming
generalizes classical logic programming, so strict rules (without exceptions) may be
used as well.

We will not go further into the details of answer set programming but refer the
interested reader to other works on this topic (e.g. [6]).

DLV [3] is a system implementing answer set programming which has been devel-
oped at the universities of Vienna, Austria, and Calabria, Italy. As a special feature, it
also allows for disjunctive information in the heads of logic program rules.

5 Design and Implementation ofACMI

Here, we describe some details of ACMI’s implementation in DLV. Internally, each fee
number is represented by a four digit number, e.g., 4 by 0400, 10 by 1000, and 20.8 by
2008. The occurrence of a numberN at theI ’th position in the invoice is given by the
literal p(I ,N). Thus, the invoice depicted in Figure 1 is internally represented by

p(1,0100). p(2,0200). p(3,0400).
p(4,1202). p(5,2008). p(6,2101).
p(7,2801). tariff(vc).

where the literaltariff(vc) reflects the patient’s insurance tariff, being extracted from the
corresponding data base.

5.1 Direct Realization by DLV rules

Each of ACMI’s knowledge base rules can be expressed directly by DLV rules. For
instance, the rules C1, C2, C3, C4, C5, T1, and H1 given above can be implemented

5

by:

%------- rule C1: --------------------
-z(0400) :- 1 < #count {I : p(I,0400) }.

-z(0400) :- 1 = #count {I : p(I,0400) },
1 <= #count {I : p(I,Z),
Z != 0001, Z != 1701 }.

%------- rule C2: --------------------
-z(2008) :- 1 < #count {I : p(I,2008) }.

%------- rule C3: --------------------
-z(2801) :- 1 < #count {I : p(I,2801) }.
r(2802) :- 1 < #count {I : p(I,2801) }.

%------- rule C4: --------------------
-z(1209) :- p(I,1209), p(I,1210),

p(I,1211).

%------- rule C5: --------------------
-z(0500) :- p(I,0500), p(I,0600).
-z(0500) :- p(I,0500), p(I,0700).
-z(0500) :- p(I,0500), p(I,0800).

%------- rule T1: --------------------
t(2101) :- p(I,2101), not fullGebuH.

%------- rule H1: --------------------
h(1202) :- p(I,1202).

A literal of the formz (N) (resp.−z (N)) indicates thatN occurs in the invoice and
should be refunded (resp. should not be refunded). A literalr(N) says thatN serves
as a replacement for (one or more) other number occurrences. A literalh(N) indicates
that a notification text should be presented to the person in charge, andt(N) says
that the patient’s tariff does not cover fee numberN . Note that these rules use DLV’s
aggregate facility. For instance,#count{I : p(I , 2801)} evaluates to the number of
literals of the formp(I , 2801), i.e. the number of occurrences of fee number 2801 in
the invoice. Rules like

fullGebuh :- tariff(an).
fullGebuh :- tariff(ebc).

specify the tariffs providing full coverage of the GebüH. Incidentally, Max
Musterkrank’s tariff VC is not among them. The rule for T1 uses DLV’s default
negation facility: As long asfullGebuh is not known, fee number 2101 is not to be
refunded. Also rule R1 (cf. Sec. 3) can be expressed easily using the DLV default rule:

6

Fig. 4.Result of checking an invoice

%------- rule R1: -------------------
z(N) :- p(I,N), not -z(N).

Using this DLV implementation, the following answer set is generated:

z(0100), z(0200), -z(0400), z(1202),
h(1202), z(2008), z(2101), t(2101), z(2801)

Thus, numbers 0100, 0200, 2008, and 2801 are valid and no further action has to take
place. 1202 is also valid, but a notification text (indicated by h(1202)) has to be pre-
sented to the person in charge. However, 0400 falsifies a constraint (the second part
of C1) and is not valid. 2101 is valid, but since tariff VC does not cover it (indicated
by t(2101)), the fee will not be reimbursed. The answer set is processed by ACMI’s
backend and presented to the person in charge as illustrated in Fig. 4.

5.2 Realization with Rule Schemas

Whereas the previous subsection realizes a direct implementation of each of ACMI’s
78 rules, we also developed a representation on a more abstract level. By investigating
all individual rules, the following three general types of rule schemas could be identified
when checking a fee numberN:

7

Frequency constraint: N may occur at mostk times.
Forbidden combination: N maynotoccur simultaneously with certain other fee num-

bers.
Restricted combination: If N occurs simultaneously with other fee numbers, it may

occuronlywith certain other fee numbers.

Likewise, four different types of consequences of a rule violation arising when checking
N can be observed:

Reject: N violates a hard constraint and is rejected.
Replace: N - and possibly some other fee numbers - must be replaced by another num-

ber.
Tariff: N might not be refunded depending on the customer’s insurance tariff.
Note: A notification text regardingN is delivered to the person in charge who will

decide on any further action.

Using these observations, each of ACMI’s rule information can be expressed us-
ing the following three predicates, whereN is the number to be checked,k ≥ 0
is a number indicating a maximal frequency,M is a set of fee numbers,Cons ∈
{reject , replace, tariff ,note} indicates the type of consequence of a violation, andR
is a fee number being used in the output part of the rule (e.g. the number to be rejected
or the number be used in a replacement):

frequency(N, k,Cons, R): If N occurs more thank times, executeCons for N with
numberR.

forbidden(N, k,M,Cons, R): If N occurs and more thank fee numbers fromM
occur, executeCons for N with numberR.

restricted(N,M,Cons, R): If N occurs and another fee number occurs that is not in
M, executeCons for N with numberR.

In all three predicates, “executeCons for N with numberR” is defined by:

– If Cons = reject , markN to be rejected.
– If Cons = replace, markN to be rejected and markR to be refunded instead.
– If Cons = tariff , mark N to be not covered by the insurance tariff unless the

current insurance tariff covers the full GebüH.
– If Cons = note, markN to be displayed with a notification to the person in charge.

Now we want to illustrate how the relevant knowledge for checking fee numbers
can be represented with the three predicatesfrequency, forbiddenandrestricted. E.g.,
using these predicates, the information of the rules C1, C2, C3, C4, C5, T1, and H1
given in Sec. 3 can be expressed by:

8

C1: frequency(0400, 1, reject, 0400)
restricted(0400,{0100, 1701}, reject, 0400)

C2: frequency(2008, 1, reject, 2008)

C3: frequency(2801, 1, replace, 2802)

C4: forbidden(1209, 1,{1210,1211}, reject, 1209)

C5: forbidden(0500, 0,{0600,0700,0800}, reject, 0500)

T1: frequency(2101, 0, tariff, 2101)

H1: frequency(1202, 0, note, 1202)

For instance,frequency(0400, 1, reject, 0400)says that if number 0400 occurs more
than once, 0400 should be rejected, andfrequency(2801, 1, correct, 2802)requires that
if 2801 occurs more than once, it should be replaced by 2802. In the schema for T1,
frequency(2101, 0, tariff, 2101)states that 2101 might not be covered, depending on the
current tariff.

Note the difference between the schemas for C4 and C5: 1209 may occur with (not
more than) one of{1210, 1211}, but 0500 may not occur simultaneously with any of
{0600, 0700, 0800}.

Since these rule schemas represent a higher level of abstraction compared to the
modelling by DLV rules, they can not be expressed directly within the paradigm of ASP
due to their usage of set-valued arguments. Thus, they can not be coded immediately
in e.g. DLV (which does not provide data structures like lists or sets). Therefore, we
developed a transformation from the general rule schemas to DLV code where each
schema instance corresponds to a set of DLV facts and rules. Additionally to the DLV
code generated from the schemas, there are rules ensuring that the constraints expressed
by them are not violated. In the following, we will illustrate this transformation process
from the general rule schemas to DLV code.

For each of the three rule schemas introduced above, one or more facts are gener-
ated. For each rule schema of the formfrequency(N, k,Cons, R), the DLV fact

frequency_fact(N, k, Cons, R).

is generated. For eachforbidden(N, k,M,Cons, R) with M = {M1, . . . ,Mn}, n
facts of the form

forbidden_fact(N, k, Mi, Cons, R).

are generated, and similarly for allrestricted rule schemas.1 For instance, for the rule
schemas for C1, the following facts are generated:

1 If there is more than one rule schema of the formforbidden(N, , , ,) for a fee numberN , a
more complicated generation of facts along with a correspondingly extended form of checking
the constraints expressed by these facts must be used [2].

9

frequency_fact(0400, 1, replace, 0400). %
restricted_fact(0400, 0100, reject, 0400). % C1
restricted_fact(0400, 1701, reject, 0400). %

Checking the constraints expressed by the rule schemas is done by exploiting DLV’s
count facility. Violation of rules are indicated by making theexecutepredicate true. We
illustrate this for therestrictedschema:

execute(N,Cons,R) :-
restricted_fact(N,_,Cons,R),
countRestrictedPartners(N,I),
countPartners(N,All),
All > I.

countRestrictedPartners(N,I) :-
p(_,N),
#count{P: restrictedPartner(N,P)} = I.

restrictedPartner(N,Partner) :-
p(_,N), p(_,Partner),
restricted_fact(N,Partner,_,_).

countPartners(N,All) :-
p(_,N),
#count{P: p(_,P), P <> N} = All.

Execution of the consequences of a rule violation is ensured by rules like:

%------ replace: ---------------
-z(N) :- execute(N, replace, R).
r(R) :- execute(N, replace, R).

% ------ tariff: ------------
t(N) :- execute(N, tariff, R),

not fullGebuh.

Similarly, thefrequencyandforbiddenschemas are processed.

Note that also this alternative implementation of transforming the general rule
schemas to DLV exploits DLV’s default mechanism: E.g., the default rule for R1 as
presented in Sec. 5.1 is also present here.

5.3 DLV rules vs. Rule Schemas

The expressiveness of DLV’s input language, in particular its support of defaults and
negation and its aggregate facility, made it possible to express all relevant regulations
for checking medical invoices directly in DLV, using an obvious encoding of invoices,

10

tariff information, etc. The resulting system ACMI is operational and can be used by
the insurance company’s person in charge checking the invoices.

On the other hand, the direct modelling by DLV rules requires knowledge about
DLV and about the basics of ASP. Additionally, any changes of tariffs, the relevant
regulations concerning any fee numbers etc., force modifications of the DLV code. This
is not the case when the knowledge base is modelled using the three rule schemas we
have identified. Using appropriate input masks, instances of thefrequency, forbidden
andrestrictedschemas can be created and modified directly by the insurance experts
who need not have knowledge about DLV. Additionally, the three rule schemas provide
a powerful modelling tool: All rules and regulations concerning the GebüH [5] could be
expressed straightforwardly. We have also checked that various regulations concerning
the GOÄ [4] (containing many more fee numbers and rules) can be formulated directly
usingfrequency, forbiddenandrestricted. We are currently planning to extend ACMI
to cover the full GÖA, and our expectation is that no extension to the three rule schemas
will be needed.

6 Conclusion and Future Work

In this paper, we presented the knowledge-based system ACMI which provides support
for checking medical invoices at health insurance companies. ACMI helps performing
this task faster and more efficiently.

Using answer set programming for implementing ACMI’s knowledge base, we
were able to achieve a declarative realization of all rules, stemming either from the
relevant scale of fees or from the insurance company’s internal regulations. The declar-
ative modelling of ACMI’s knowledge base exploits DLV’s support of defaults and its
aggregate facility. As an alternative approach, we developed a modelling using only
the three general and abstract rule schemasfrequency, forbiddenandrestricted. These
schemas use sets which are not available in DLV, but they can be translated automati-
cally to DLV code.

Whereas up to now we have implemented a system covering the full GebüH [5],
future work will include the testing of ACMI in a large insurance company and its
extension to cover the full GÖA [4].

References

1. P. A. Bonatti, N. Shahmehri, C. Duma, D. Olmedilla, W. Nejdl, M. Baldoni, C. Baroglio,
A. Martelli, V. Patti, P. Coraggio, G. Antoniou, J. Peer, and N. E. Fuchs. Rule-based policy
specification: State of the art and future work. Project Deliverable D1, Working Group I2, EU
NoE REWERSE, Sept. 2004.

2. O. Dusso. Entscheidungssysteme für die Rechnungprüfung in der Krankenversicherung mit
logik-basierten Regelsprachen. Diplomarbeit, Fachbereich Informatik, FernUniversität Ha-
gen, 2005. (to appear).

3. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem solving using the DLV sys-
tem. In J. Minker, editor,Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic
Publishers, Dordrecht, 2000.

11

4. GOÄ – Geb̈uhrenordnung f̈ur Ärzte. www.e-bis.de/goae/defaultFrame.htm ,
2004.

5. Geb̈uH – Geb̈uhrenordnung f̈ur Heilpraktiker. www.znh.de/downloads/
GebuehrenordnungHP.doc , 2002.

6. M. Gelfond and N. Leone. Logic programming and knowledge representation – the A-prolog
perspective.Artificial Intelligence, 138:3–38, 2002.

7. I. Niemel̈a. Logic programs with stable model semantics as a constraint programming
paradigm.Ann. Math. Artificial Intelligence, 25(3-4):241–273, 1999.

8. R. Reiter. A logic for default reasoning.Artificial Intelligence, 13:81–132, 1980.

12

