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Abstract. In this paper, we introduce two measurements for computing
the diversity and spread of non-dominated solutions in the objective
space. These measurements compute the angular positions of solutions
in the objective space and are able to find a percentage which indicates
the distribution of solutions in the space. Also, because we are able to
compute the positions of the solutions, the spread of solutions along the
non-dominated front can also be measured. This is more important when
we evaluate solutions of a problem with a large number of objectives,
the objective space of which cannot be illustrated graphically. These
measurements are being examined to measure distribution of several sets
of non-dominated solutions in the objective space.

1 Introduction

Most of the Multi-objective Optimization (MO) methods approximate the Pareto-
optimal front by a set of non-dominated solutions. The approximated solu-
tions (non-dominated solutions) must have obtained a) good convergence to
the Pareto-optimal front, and b) good diversity and spread along the front. The
quality of an approximated set can be obtained by comparing it with the set of
Pareto-optimal solutions and this can only be achieved for problems, the Pareto-
optimal front of which is available. In the 90’s, the diversity and convergence of
solutions to the Pareto-optimal front (in the objective space) are being eval-
uated by by visual inspection. This kind of evaluations is possible for 2- and
3-objective test functions. However, in general the quality of the approximated
sets must be measured by a quantitative metric. Different metrics have been
studied in [10, 7, 5, 5, 15]. Here, we categorize these methods into two groups.
The first group consists of methods which compare two approximated sets. In-
deed, they deliver no information about the diversity, spread and convergence of
one approximated set. But in fact two approximated sets are compared. Many
scientist use these methods to observe the improvements of the new approaches.
Most of the existing measurements belong to this group.

The second group consists of methods which deliver information about an
approximated set. These methods are valuable when there are no information
about the Pareto-optimal front or when there is no possibility to observe the

Dagstuhl Seminar Proceedings 04461
Practical Approaches to Multi-Objective Optimization
http://drops.dagstuhl.de/opus/volltexte/2005/254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


approximated set graphically, for example for m-objective problems (m ≥ 4).
This measurements can also be used as the stopping criteria in the iterative
methods like Multi-Objective Evolutionary Algorithms (MOEAs).

In this paper, we study the latter methods and introduce two quality mea-
surements, which evaluate the diversity and spread of a set of non-dominated
solutions. These methods compute the percentage of the space occupied by the
solutions and also calculate the spread of solutions. They are applied to the
obtained results of several test problems and the qualities of solution sets are
studied.

This paper is organized as follows: In the following, we study the background
and the existing methods. Section 2 is dedicated to the diversity and spread
measurements. Several experiments and the results are explained in Section 3
and Section 4 concludes the paper with a summary and future work.

1.1 Background

It is stated by Deb [1] that the quality of a set of non-dominated solutions can
be measured in terms of convergence and diversity of the solutions. It has also
been studied by Zitzler et al. [18] that for comparing two approximated sets,
several quality measurements are required.

Here, we consider those methods, which evaluate the spread and distribution
of solutions. Figure 1 illustrates examples of spread and diversity of solutions.
In this figure, the Pareto-optimal front is illustrated by a solid line and we
consider that the MO method has approximated the front with 5 non-dominated
solutions. In Figure 1 (a), the non-dominated solutions are located with equal
distances to each other. Also, they have a good spread on the Pareto-optimal
front, since two of the approximated solutions, namely A and B are lying on
the so-defined extreme solutions. Extreme solutions show the upper bounds of
the objective functions over the Pareto-optimal front. One component of these
solutions must be the maximal value of each objective [2]. The solutions in
Figure 1 (b) have a good spread but not a good distribution and in contrast
to these, the solutions in Figure 1 (c) have good distribution and not a good
spread.

(a) (b) (c)

f1(x)

f2(x) f2(x) f2(x)

f1(x) f1(x)
B

A

B

A

Fig. 1. Examples of solutions with different diversities and spreads along a Pareto-
optimal front. The Pareto-optimal front is shown by solid line.
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By considering this example, one possible way to evaluate the distribution
of solutions is to calculate the distances between the non-dominated solutions.
Deb et al. [2] proposed a method to measure the distribution of non-dominated
solutions as follows: They compute the Euclidian distance di between the solu-
tions in the non-dominated set A and then calculate the average of them as d̄.
Then, the distribution metric ∆‘

s is as follows:

∆‘
s =

|A|−1
∑

i=1

|di − d̄|

|A| − 1
(1)

This method is able to compute the distribution of solutions in 2-objective
spaces. However, it cannot be used for problems with more than two objectives,
as consecutive sorting is involved. Another variation of this method is proposed
by Deb et al. [1, 2], which also considers the spread of solutions as follows:

∆ =
df + dl +

∑|A|−1
i=1 |di − d̄|

df + dl + (|A| − 1)d̄
(2)

where df and dl are the Euclidian distances between the extreme solutions
and the boundary solutions of A. Also this method works only for 2-objective
problems. Another method called Spacing is introduced by Schott in [12]. This
method is based on computing the shortest distances between the non-dominated
solutions along each axis. In the cases that solutions are gathered in small groups
along the non-dominated front, the distances between the groups are not con-
sidered, because only the shortest distances are computed and therefore, it may
be misleading.

However, there are also other techniques for computing the spread and dis-
tribution of solutions like Maximum Spread [16], Chi-Square-Like Deviation [1]
and Uniform Distribution [13]. Maximum Spread method [16] uses a similar tech-
nique in S metric [15]. In S metric, a hyper-volume between the solutions and a
reference point is calculated, where in Maximum Spread method, a hyper-volume
between the minimum and maximum values among each axis and a reference
point is calculated. Other methods like Entropy approach [5] and Sparsity mea-

sure [3] are utilized to compare the diversity of solutions of two non-dominated
sets, the outcome of which is a value of having no information when considering
only one approximated set.

In fact, what we are going to emphasize here is that the existing methods do
not evaluate one approximated set, but they compare two approximated sets.
Here, there are still some open questions, e.g., what percentage of the objec-
tive space is occupied by the non-dominated solutions? Where are the solutions
concentrated? The answers to these questions are valuable particularly for high
dimensional fronts (e.g., for 4- and higher-objective spaces) or when there is no
information about the true set of optimal solutions.
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f1(x)

f2(x)

Fig. 2. 2-objective Sigma diversity metric. Black points illustrate a set of non-
dominated solutions and the lines are the so-called reference lines.

2 Sigma Diversity Metric

Sigma diversity metric is a method which considers the positions of solutions by
a vector called Sigma vector (value). This method is introduced in [9]. Indeed,
it is inspired from the polar and spherical coordinate axis for 2- and 3-objective
spaces. For higher dimensional objective spaces, we cannot define a coordinate
axis which presents a simple distribution like in polar or spherical coordinates.
Therefore, the Sigma diversity metric is suggested to calculate the positions of
the solutions in the objective space.

Figure 2 shows the idea of using the Sigma diversity metric for a 2-objective
space. In this figure, |A| number of solutions are illustrated. Also, |A| lines are
drawn from the origin, these lines are called reference lines. The angle between
each of the two neighboring reference lines is equal to π

2(|A|−1) . A possible good

diversity of solutions is to have one solution on each line or enclosed between
two lines.

This metric uses the idea of the Sigma method introduced in [9]. In the
following, we explain how we can compute the diversity of solutions. Consider
Figure 3 (left). To each line f2 = af1 a value σ is assigned as follows:

σ =
f2
1 − f2

2

f2
1 + f2

2

(3)

In fact, all the points on the line f2 = af1 have the same σ values: σi = (1 −
a2)/(1 + a2).

In the general case, σ is defined as a vector of
(

m
2

)

elements, where m is
the dimension of the objective space. In this case, each element of σ is the
combination of two coordinates in terms of the Equation 3. For example for
three coordinates of f1, f2 and f3, it is defined as follows:

σ =





f2
1 − f2

2

f2
2 − f2

3

f2
3 − f2

1



 /(f2
1 + f2

2 + f2
3 ) (4)
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Fig. 3. Sigma values (vectors) in 2- and 3-objective spaces.

Different values of σ for different values of f1, f2 and f3 are shown in Fig-
ure 3 (right). In the general case, when a point has the same position in each
dimension (e.g., f1 = f2 = f3 in 3 dimensional space), σ = 0.

It means that each point in the objective space can be described by a Sigma
vector. All the points along a line have the same Sigma vectors and the solutions
lying on the lines which are very close two each other have similar Sigma vectors.
This is the idea which is used to construct the Sigma diversity metric.

Diversity Metric Before computing the diversity of an approximated set, a
set of reference lines must be calculated. The number of reference lines must be
equal to the number of approximated solutions [8]. It must be emphasized that
the reference lines must be calculated once for each number of objectives and
can be stored in a table. Then the Sigma diversity metric can be computed as
follows:

– Calculate reference lines.
– Compute the Sigma vector of each reference line (reference Sigma vector).
– Keep a binary Flag of initial zero value beside each reference Sigma vector.

The Flag of each reference Sigma vector can only turn to 1, when at least
one solution has a Sigma vector equal to it or within a distance (Euclidian
distance) less than d. The value of d depends on the test function, however
it should be decreased for high number of reference lines.

– A counter C counts the reference lines with Flags equal to 1 and the diversity
metric D becomes:

D =
C

number of reference lines
(5)

The Sigma diversity measurement expresses at what percentage the non-dominated
solutions are distributed in the objective space.
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f2(x)

f1(x)

Fig. 4. Different spreads of solutions. Both of these sets of solutions occupy the same
percentage of the space, but with different spreads.

In the case that the extreme solutions lie on the coordinate axis, we are able
to obtain a high value for D, i.e., 100%. For discrete or disconnected sets of
solutions, the value of D can never reach the highest value.

Discussion We know from D in Equation (5), that the solutions are distributed
along the non-dominated front with D percent. If the value of D is high, it
means that the solutions are well distributed. But when D is small, it means the
solutions are

– either concentrated in one part of the space, or
– distributed in small groups along the front.

Indeed, there is a difference between these two kinds of solutions. Figure 4 shows
the difference between two sets of solutions with the same D values. These two
sets of solutions have different spreads and the Sigma diversity metric cannot
distinguish between them. In the next subsection, we investigate how to calculate
the spread of solutions. Also, this metric can only be used for non-dominated
solutions located in the positive part of the objective space. If the solutions are
not in the positive part of the space, they must be transformed into the positive
part.

2.1 Median Sigma Method (σ̃)

Let’s consider a 2-objective space. As it is shown in Figure 3 (left), the Sigma
value is changing from 1 to 0 and to -1, by changing the angle between the line
f2 = a.f1 and coordinate axis f1. We can use this property and find the median

of the Sigma values of the solutions. If our solutions have good diversity and
spread, then the median of their Sigma values is zero. Negative and positive
values of the median mean that the solutions are concentrated in the left and
right hand side of the front (i.e., left and right hand side of the line with σ = 0),
respectively. However, the zero value of median, is also valid when the solutions
are all concentrated in the middle of the non-dominated front.
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Fig. 5. Properties of the median Sigma method in (a) 2- and (b) 3-objective spaces

The same idea applies to higher number of objectives. The line in the middle
has the Sigma vector equal to 0 (see Figure 3 (right)). This time the median
vector should be considered. Let us consider σ = {σ1, · · · , σ|A|} as the set of
the Sigma vectors of the solutions in the the set |A|. Then, the jth element of
the median vector σ̃ is defined as follows:

σ̃j =

{

σl,j , if |A| = 2l + 1
1
2 (σ(l+1),j + σl,j) if |A| = 2l

(6)

Figure 5 shows different parts of the space for different median values for 2-
and 3-objective spaces. In this figure, σi is the ith element of the Sigma vector.
Calculating the median value is useful when the diversity measure D has a small
value. Indeed, this measurement completes the information on evaluating the
diversity and spread of the solutions along a non-dominated set.

Discussion The Sigma diversity metric and the median Sigma method evaluate
the diversity and spread of obtained solutions along the approximated Pareto-
optimal front. The advantages of these measurements in comparison to other
diversity and spread metrics are as follows:

– computing the metric is possible for any desired number of objectives.
– they evaluate one approximated front, where most of the other methods

compare two approximated fronts. Indeed, the output of the Sigma diversity
metric is a percentage of the objective space; the other methods presents
a scalar value representing a hyper volume or a measure which are used to
compare two sets.

– the median Sigma method computes the positions of the solutions in the
objective space. This can be used to describe the positions of solutions with
high number of objectives, where the graphical illustration is impossible.

The Sigma diversity metric requires information about d, the neighborhood de-
fined around each reference line. The value of d depends highly on the shape of
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σ∼ = 0
D = 100%

σ∼ > 0
D < 100%

σ∼ = 0
D < 100%

(a) (b) (c)

Fig. 6. An example of different non-dominated sets with different diversities of solu-
tions. (a) Solutions are well-distributed: D = 100% and σ̃ = 0. (b),(c) Solutions are not
well-distributed: D 6= 100%. Median Sigma value, σ̃, indicates the spread of solutions.

the Pareto-optimal front. Computing the reference lines should be done once for
each number of objectives and the corresponding values can be stored in a table.
Also, this measure highly depens on the position of the origin and focuses very
much on the middle region of the Pareto-optimal front. If the Pareto-optimal
front is a line perpendicular the σ = 0 ray, the rays cut the front at more or less
equal distances. But, if the Pareto-optimal front has a strong bend (knee), then
the different segments of the front have very different lengths.

Figure 6 illustrates an example of three different non-dominated sets with
different spreads and diversities of solutions. In Figure 6 (a), the solutions are
well-distributed. Therefore, both of the Sigma diversity measure and the median
Sigma value are satisfactory, i.e., D = 100% and σ̃ = 0. In Figure 6 (b), there is
a large gap between the solutions and therefore, the Sigma diversity measure is
less than the desired value. The positive median value indicates that most of the
solutions are concentrated on the right hand side of the non-dominated front. In
Figure 6 (c), solutions are not well-distributed. Therefore, the Sigma diversity
measure is less than 100%. These solutions have better spread than those in
Figure 6 (b). This is also indicated by the median Sigma value.

3 Experiments

The diversity measurements are applied to the results of different test problems
with 2, 3 and 4 objectives. These tests problems3 are chosen from [4, 15] (shown
in Table 1). By studying the shape of the Pareto-optimal fronts, it can be con-
cluded that for ZDT3, ZDT6, CP3, and DLZT we cannot obtain 100% as the
diversity value. Because the solutions are not continuously distributed in the
space. On the other hand, the other test functions should have a diversity of
about 100%. The solutions are obtained by running two different methods (A
and B)4, which deliver solutions with different diversities. The optimal sets have

3 The ZDT6 test problem is constructed like ZDT6 in [1]; here the second objective is
modified.

4 Method A is based on a Multi-Objective Particle Swarm Optimization method [9]
and method B is the SPEA2 algorithm [17].
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Table 1. Test Functions

test Function

ZDT1 g(x2, · · · , xn) = 1 + 9(
P

n

i=2
xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 −
p

f1/g n = 30
f1(x1) = x1 i = 1, 2, . . . , n
f2(x) = g(x2, · · · , xn) · h(f1, g)

ZDT3 g(x2, · · · , xn) = 1 + 9(
P

n

i=2
xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 −
p

f1/g − (f1/g) sin(10πf1) n = 30
f1(x1) = x1 i = 1, 2, . . . , n
f2(x) = g(x2, · · · , xn) · h(f1, g) + 1

ZDT4 g(x2, · · · , xn) = 1 + 10(n − 1) + (
P

n

i=2
(x2

i − 10cos(4πxi)) x1 ∈ [0, 1]

h(f1, g) = 1 −
p

f1/g xi ∈ [−5, 5]
f1(x1) = x1 n = 10
f2(x) = g(x2, · · · , xn) · h(f1, g) i = 2, . . . , n

ZDT6 g(x2, · · · , xn) = 1 + 9[(
P

n

i=2
xi)/9]

0.25 xi ∈ [0, 1]

h(f1, g) = 1 −
p

x1/g n = 10
f1(x1) = 1 − exp(−4x1)sin

6(6πx1) i = 1, 2, . . . , n
f2(x) = g(x2, · · · , xn) · h(f1, g)

CP3 f1(x) = (1 + x3)(x
3

1x
2

2 − 10x1 − 4x2) 1 ≤ x1 ≤ 3.5
f2(x) = (1 + x3)(x

3

1x
2

2 − 10x1 + 4x2) −2 ≤ x2 ≤ 2
f3(x) = 3(1 + x3)x

2

1 0 ≤ x3 ≤ 1

DLZT f1(x) = x1 xi ∈ [0, 1]
f2(x) = x2 n = 3
f3(x) = 3.5 −

P

n

i=1
2xisin(nπxi) i = 1, 2, . . . , n

GSPm f1(x) = (1 + x2

m) cos(x1π/2) · · · cos(xm−1π/2) xi ∈ [0, 1]
f2(x) = (1 + x2

m) cos(x1π/2) · · · sin(xm−1π/2) n = m
... i = 1, . . . , m − 1
fm−1(x) = (1 + x2

m) cos(x1π/2) sin(x2π/2) xm ∈ [−1, 1]
fm(x) = (1 + x2

m) sin(x1π/2)

the same cardinality (50 for 2-, 100 for 3- and 4-objective test functions). It must
be mentioned that the solutions are not compared in terms of their convergence
to the Pareto-optimal set.

3.1 Results

Here, the results of different test functions are analyzed separately. Results of
2- and 3-objective test functions are studied for continuous and disconnected-
continuous Pareto-optimal fronts. Then the results of 4-objective test functions
are analyzed.

2-objective continuous Pareto-optimal front
Test functions ZDT1 and ZDT4 have convex and continuous Pareto-optimal

fronts. We estimate that the Sigma diversity metric finds a diversity of 100%
and the median values must be very close to zero. Figure 7 shows the results of
methods A and B for ZDT1 (top row) and ZDT4 (bottom row) test functions.
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Fig. 7. Continuous Pareto-optimal fronts. Solutions of ZDT1 (first row) and ZDT4
(second row) in the objective space. The left and right columns illustrate the results of
the methods A and B, respectively.

We observe that the results of A (in Figures 7 (top-left)) have a better diversity
and spread in the objective space than the solutions of B (in Figures 7 (top-
right)). The results of the Sigma diversity metric and the median Sigma method
are recorded in Table 2. In this table, the diversity of solutions is shown by using
the Sigma diversity metric D and the spread of solutions by the median Sigma
values σ̃. Large values of D indicate a better diversity, and low absolute values
of σ̃ show that the solutions are symmetrically distributed along the front. The
solutions of method A occupy 84% whereas the solutions of method B occupy
68% of the space for the test function ZDT1. These solutions have a median value
of 0.07 and -0.13 for methods A and B, respectively. It means that the solutions
of A have a better spread than B. The solutions of ZDT4 test function have
lower values of Sigma diversity metric. One reason can be that these solutions
are not converged to the Pareto-optimal front.

2-objective continuous-disconnected Pareto-optimal front

Test functions ZDT3 and ZDT6 have non-convex and continuous and discon-
nected Pareto-optimal fronts. Therefore, we estimate that the Sigma diversity
metric must have a value of less than 100%, but the median values must still be
very close to zero. Figure 8 shows the results of methods A and B. We observe
that the results of A (Figures 8 (top-left)) have a better diversity and spread in
the objective space than the solutions of B (Figures 8 (top-right)). As it can be
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Fig. 8. Continuous and disconnected Pareto-optimal fronts. Solutions of ZDT3 (first
row) and ZDT6 (second row) in the objective space. The left and right columns illus-
trate the results of the methods A and B, respectively.

observed in Table 2, all of the solutions have a Sigma diversity value less than
100%. The solutions of method B for the test function ZDT6 occupy only 20% of
the objective space and are all concentrated in the right hand side of the front,
close to the f1 axes. This can be concluded from the median value of 0.99.

3-objective continuous Pareto-optimal front

GSP3 and CP3 test functions have continuous Pareto-optimal fronts. The
solutions of methods A and B for these test functions are shown in Figure 9.
The solutions of the test function GSP3 must cover the whole objective space
and therefore the Sigma diversity metric must be very close to 100%. But the
solutions of the test function DLZT cover only a narrow surface of the objec-
tive space and the Sigma diversity metric cannot reach the value of 100%. The
corresponding values of Sigma diversity metric and the median Sigma vectors
are shown in Table 3. It can be concluded that method A can obtain solutions

Table 2. Diversity measures of 2-objective test functions

Test DA σ̃A DB σ̃B

ZDT1 84% +0.07 68% -0.13
ZDT3 66% -0.20 50% -0.37
ZDT4 74% -0.58 44% -0.54
ZDT6 80% +0.29 20% +0.99
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Fig. 9. Continuous Pareto-optimal fronts. Solutions of GSP3 (first row) and CP3 (sec-
ond row) in the objective space. The left and right columns illustrate the results of the
methods A and B, respectively.

with better diversity than method B for the test function GSP3. However, both
of these methods find solutions with good spread all over the Pareto-optimal
front. Furthermore, we compute the location of the solutions of the CP3 test
function in the objective space. Let us consider Figure 5 (right) and the median
Sigma vectors in Table 3. Method A delivers solutions with σ1 ≤ 0,σ2 = 0.38,
and σ3 = −0.37. In Figure 5 (right), these values indicate the region between
the vectors (0 0 0), (−1 1 0) , and the 45 degree line passing on the f1-f2 (axis)
plane. It means that the median value of the solutions lies in this region. In other

Table 3. Diversity measures of the 3-objective test functions

Test DA σ̃A DB σ̃B

GP3 88%

0

@

+0.01
−0.00
−0.01

1

A 71%

0

@

+0.00
+0.02
−0.00

1

A

DLZT 19%

0

@

−0.00
−0.81
+0.80

1

A 16%

0

@

+0.00
−0.83
+0.84

1

A

CP3 22%

0

@

−0.00
+0.38
−0.37

1

A 28%

0

@

+0.03
+0.38
−0.42

1

A
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Fig. 10. Continuous and disconnected Pareto-optimal front. Non-dominated sets ob-
tained by method A (left) and B (right)

words, the zero value of σ1 means that solutions have a symmetric spread on the
f1-f2 planes with various f3 values, and also tend more toward the f1-f2 plane.
This can also be observed in Figure 9 (second row). The Pareto-optimal front
gets narrower for higher values of f3.

3-objective disconnected-continuous Pareto-optimal front

Test function DLZT has a continuous and disconnected Pareto-optimal front.
Therefore, the the Sigma diversity metric cannot reach the value of 100%. Fig-
ures 10 (left)-(right) show the results of method A and B, respectively. The
results of Sigma diversity metric indicate that the results of method A have bet-
ter diversity than method B in Table 3. This can also be observed in Figure 10.
The median Sigma vectors have the same values, it means the solutions have the
same spread all over the objective space.

4-objective continuous Pareto-optimal front

Table 4 shows the diversity values of the GSP4 test function. By these re-
sults, we conclude that method A has obtained solutions with better diversity
than method B. The solutions of method A have a good spread, because they
also have a median Sigma vector very close to zero vector. The solutions of
method B do not have a good spread and diversity. These solutions are dis-
tributed symmetrically on the f1-f2 axis plane (σ1 = 0.00). Because σ2 = −0.14
and σ3 = +0.12, we conclude the solutions are close to f3 axes5. The values
of σ4 = −0.14 and σ5 = +0.12 are close to zero, it means the solutions are
symmetrically distributed on the f4-f1 and f1-f3 planes.

5
σ = (σ1, σ2, · · · , σ6)

T (where T is the transpose operator). Here, σ1, σ2, σ3, σ4, σ5,
σ6 are related to f1-f2, f2-f3, f3-f4, f4-f1, f1-f3, f2-f4 axis, respectively.
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Table 4. Diversity measures on the 4-objective test function GSP4 (T indicates the
transpose operator)

method D σ̃T

A 79% (+0.00,−0.00, +0.01,−0.02,−0.00,−0.00)
B 62% (−0.00,−0.14, +0.12, +0.06, +0.03, +0.18)

4 Summary

Obtaining a well-distributed set of solutions is one of the goals of multi-objective
optimization. In this paper, we have studied and introduced Sigma diversity met-
ric and the median Sigma method for measuring the diversity and spread of a
set of non-dominated solutions. These measurements are able to provide infor-
mation like the percentage of the objective space being occupied by solutions,
or their positions in terms of their angular coordinates in the objective space.
These methods are tested on the results of several test problems. In the 2- and
3-objective spaces the evaluations confirm the observations. The measurements
are also applied to the results in a 4-objective space. These measurements can
evaluate solutions with several number of objectives and also give us a view of
the positions of the solutions in the objective space. This is more important when
we deal with problems of a large number of objectives, where a graphical illustra-
tion is not possible. The Sigma diversity metric depends on several parameters,
like the Euclidian distance around each reference line (d) and the number of
reference lines. Also, this method assumes positive objective values. Therefore,
solutions with negative objectives must be transformed into the positive part of
the axis.
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