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Abstract. This paper presents a scheme for generating the Pareto front
of multiobjective optimization problems by solving a sequence of con-
strained single-objective problems. Since the necessity of determining
the constraint value a priori can be a serious drawback of the original
epsilon-constraint method, our scheme generates appropriate constraint
values adaptively during the run. A simple example problem is presented
where the running time (measured by the number of constrained single-
objective sub-problems to be solved) of the original epsilon-constraint
method is exponential in the problem size (number of decision variables),
although the size of the Pareto set grows only linearly. For our method
we show that — independent of the problem or the problem size — the
time complexity is O(km−1), where k is the number of Pareto-optimal so-
lutions to be found and m the number of objectives. Using the algorithm
together with a standard ILP solver for the constrained single-objective
problems, the exact Pareto front is generated for the three-objective 0/1
knapsack problem with up to 100 decision variables. Links to problem
instances and a reference implementation of the algorithm are provided.

Keywords. Multiobjective optimization, generating methods, epsilon-
constraint method, knapsack problem

1 Introduction

An important task in multiobjective optimization is to find Pareto-optimal so-
lutions. Their knowledge allows a decision maker to learn more about the trade-
offs among the different objectives. From both a practical as well as a theoretical
viewpoint it is desirable to have a method that is in principle able to generate all
Pareto-optimal objective vectors. This maximizes the trade-off information for a
decision maker in search of a final solution. In addition, the growing interest in
approximate methods creates a need for benchmarking, which is often difficult
without the knowledge of the true Pareto set.

Whenever a multiobjective problem has a finite number of Pareto-optimal
objective vectors, one would expect being able to identify all of them using
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one of the traditional generating methods proposed in the literature, detailed
overviews and discussion of such methods can be found in [1–3]. Many multi-
objective optimization algorithms — heuristics as well as exact methods — use
variations of these generation methods as a frame, and thereby implicitly follow
this assumption.

Most generating methods work by transforming the multiobjective problem
into a sequence of parameterized single-objective problems such that the opti-
mum of each single-objective problem corresponds to a Pareto-optimal solution.
Thereby, these methods rely on the availability of a suitable single-objective
optimization algorithm. In this sense, the generating methods represent meta-
strategies whose tasks are (i) to determine an appropriate scalarization and (ii)
to provide a scheme to vary the parameters. As to the scalarization techniques,
a lot is known with respect to the properties of the obtained single-objective
optima, e.g., whether they are supported, weakly, or proper Pareto-optimal.
However, not much work has been done with respect to the time complexity of
the schemes to vary the parameters. Until recently, no scheme has been avail-
able that can determine the whole Pareto front by a number of single-objective
subproblems which depends only on the cardinality of the Pareto front and not
on additional properties such as the location of Pareto-optimal solutions in ob-
jective space. In [4] we proposed such a scheme based on the epsilon-constraint
method. We proved the correctness of the new algorithm and that its running
time, measured by the number of calls of a single-objective optimizer, is bounded
by O(km−1), where k is the number of Pareto-optimal objective vectors and m
the number of objectives. In contrast, the running time of the original epsilon-
constraint method [5] is determined by the product of the ratio of the range to
the minimum distance between two solutions in each objective. This expression
is at least of order km−1, but can also be exponential in k as was shown on a sim-
ple two-objective example. A further advantage besides the considerably lower
worst-case time complexity of the new method is that it alleviates the necessity
to guess an appropriate grid size because the constraint values are adaptively
modified during the run.

The purpose of this paper is to briefly recap the ideas and results from [4] and
to present an alternative algorithm. Instead of using box constraints (upper and
lower bounds), the new algorithm uses only lower bounds, i.e., less constraints
in the single-objective subproblems. Empirical tests on the knapsack problem
have shown that this improves the solution time of the underlying ILP solver
considerably. In addition, the problem of dealing with weakly Pareto-optimal
solutions has been solved more elegantly by two subsequent calls of the single-
objective optimization algorithm. The new algorithm is presented visually in a
flow chart, which should make reimplementation even easier.
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2 Problem Scenario

The problem we are dealing with is to find the Pareto front of a general multi-
objective problem with m objectives. We assume that all objective functions are
to be maximized. We assume that the Pareto front is finite.

Definition 1 (Pareto optimality). Let f : X → F where X is called decision
space and F ⊆ IRm objective space. The elements of X are called decision
vectors and the elements of F objective vectors. A decision vector x∗ ∈ X is
Pareto optimal if there is no other x ∈ X that dominates x∗, where x dominates
x∗, denoted as x � x∗, if fi(x) ≥ fi(x∗) for all i = 1, . . . ,m and fi(x) > fi(x

∗)
for at least one index i. The set of all Pareto-optimal decision vectors X∗ is
called Pareto set. F ∗ = f(X∗) is the set of all Pareto-optimal objective vectors
and denoted as Pareto front.

In cases where several Pareto-optimal decision vectors map to the same
Pareto-optimal objective vector, we are satisfied with having one representa-
tive decision vector for each Pareto-optimal objective vector. This corresponds
to finding one optimal solution in the single-objective case [3].

Several methods exist devoted to this task, usually referred to as “a posteri-
ori” or “non-dominated solution generation” methods [1]. They typically define
a set of differently parameterized single-objective surrogate problems and apply
multiple runs of a single-objective optimizer. The choice of the parameter values
determines, which specific elements of the Pareto set are found. It is in general a
difficult and sometimes impossible task to choose a sequence of parameter values
such that the whole Pareto front is discovered. Consider for example the popular
methods based on the aggregation of the different objectives via a weighted sum.
Different weight vectors would ideally lead to finding different elements of the
Pareto front, but for an unknown problem it is not clear what weight combi-
nation to choose. Even if all possible weight combinations were used, it cannot
be guaranteed to find Pareto-optimal solutions in concave regions of the Pareto
front.

Another traditional method from the field of multiobjective optimization to
generate the whole Pareto front is the epsilon-constraint method [5]. The epsilon-
constraint method works by choosing one objective function as the only objective
and the remaining objective functions as constraints. By a systematic variation
of the constraint bounds, different elements of the Pareto front can be obtained.
The method relies on the availability of a procedure to solve constrained single-
objective problems. We abstract from the details of this procedure and simply
assume that it terminates after a fixed time T and returns either the optimum
of the constrained single-objective problem (cSOP)

maximize Φ(f(x)) ≡ Φ(f1(x, . . . , fm(x))
subject to fi(x) > εi ∀i ∈ {1, . . . ,m},

x ∈ X,
(1)

where f : X −→ IRm and Φ : IRm −→ IR, or reports that the feasible region is
empty.
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Algorithm 1 Bi-objective Epsilon-Constraint Method

Input: Objective bounds f , f ∈ IR and increment δ ∈ IR

1: P := ∅
2: ε := f
3: while ε ≥ f do
4: x := opt(f , ε− δ, ε)
5: if 6 ∃x′ ∈ P such that x′ � x then
6: P := P ∪ {x}
7: end if
8: ε := ε− δ
9: end while

Output: Set of Pareto-optimal decision vectors P

3 Drawbacks of the Original Epsilon-Constraint Method

Algorithm 1 gives an implementation according to the original description
of the epsilon-constraint method from [6, p. 285] for the case of two objectives.
The idea of the traditional epsilon-constraint method is to iteratively increase
the constraint bound by a pre-defined constant δ. The necessity to choose such
a value represents also the main drawback of this approach. Since only one solu-
tion can be found in each interval, the discretization has to be fine enough not
to ”miss” any Pareto-optimal solution. In the worst case, the difference between
objective vectors might be as small as the machine accuracy of the computer
used to run the algorithm. Choosing such a small δ, though, might cause a large
number of redundant runs of the single-objective optimizer because they are con-
strained to an objective space subset which contains no Pareto-optimal objective
vector. Thereby, a lot of search effort might be wasted and in fact prevents this
method from being applicable to certain problems, as we demonstrate below. All
these problems occur likewise in the epsilon-constraint metaheuristic proposed
by [7], as the strategy to vary the parameters is essentially the same as in the
original method.

The following example problem shows that the time complexity of the original
epsilon-constraint method can be exponential in the problem size n, while the
size of the Pareto set is only linear in n.

Example 1. The pseudo-Boolean function BBV : {0, 1}n → IN2 is defined as

BBV(x1, . . . , xn) =

(
n∑

i=1

2n−ixi,
n∑

i=1

2i−1(1− xi)
)

The example problem is a bi-objective generalization of the BinaryValue
(BV) problem proposed in [8] for the complexity analysis of evolutionary algo-
rithms. The name refers to the fact that a decision vector is the binary repre-
sentation of the integer number given by its function value. Here, we use this
BV function as the first objective, while the second objective is the BV function
applied to the reversed and inverted sequence of bits.
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By construction it is apparent that the BBV-function is actually a bijection
from X into BBV(X), the objective space F contains 2n distinct elements, hence
|X | = |F |. However, its Pareto set contains exactly n+ 1 elements, which have
the following simple description [4]: A decision vector x ∈ X is Pareto-optimal
in the BBV problem, if and only if it has the form 1k0n−k, k ∈ {0, 1, . . . , n}

Proposition 1 ([4]). The expected running time of Algorithm 1 on the BBV
problem is bounded below by Ω(2n · T ).

Sketch of proof: The proof is based on the observation that a δ ≥ 4 leads to
missing at least one Pareto-optimal objective vector, regardless of the chosen
bounds f, f . Therefore, δ < 4 must be chosen, and at least (2n− 2)/4 iterations
are necessary to find all Pareto-optimal objective vectors. �

It could be argued that the problem here is only caused by an inappropriate
definition of the constraint increments δ. For our example problem, it would
indeed be possible to define a different set of, e.g., O(n) exponentially increasing
constraint bounds that would lead to finding every single Pareto-optimal solu-
tion. But it is important to note that in a general scenario, where the solutions
can be distributed arbitrarily in the objective space, such information is not
available.

4 A New, Adaptive Epsilon-Constraint Method

Our idea to circumvent the deficit of the original epsilon-constraint method is to
make use of information about the objective space as soon as it is available, and
that is during the search process. This is the concept behind the new adaptive
epsilon-constraint method described in this section.

In the two-objective case, the adaptive variation of the constraints is straight-
forward. There is only one constraint value to adapt, which can be achieved by
starting with an arbitrary lower bound for f2 and iteratively increasing the con-
straint on f2 using the f2-value of the optimum of the previous single-objective
run. Such a scheme has been employed in [9] for generating all Pareto-optimal
solutions for minimizing total cost and bottleneck time in a transportation prob-
lem. The three objective extension proposed in [9], however, is only able to find
those Pareto-optimal solutions whose projection onto the f1-f2 plane equals the
Pareto front of the two-objective problem. This indicates that the generaliza-
tion of the scheme for higher objective space dimensions is more difficult and
has therefore remained unsolved. The scheme we proposed in [4] and further
elaborate here works for arbitrary numbers of objectives m. It is guaranteed to
find all Pareto-optimal solutions for any m, provided that the underlying single-
objective algorithm can solve the single-objective subproblems. For the special
case of m = 2, our algorithm is equivalent to the scheme from [9].

The flowchart of the algorithm is depicted in Fig. 1. The core of the algo-
rithm is an m − 1 dimensional hypergrid, which partitions the whole objective
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Fig. 1. Flowchart of the new adaptive epsilon-constraint algorithm

space into rectangular axis-parallel co-domains. The coordinates for this grid
are determined by the function values of the already identified Pareto-optimal
solutions. These coordinates are stored in the matrix e = (e1, . . . , em), where
the ei are vectors containing the grid coordinates for objective i, defined by the
fi-values of all Pareto-optimal solutions found so far. These vectors ei initially
contain only suitable lower bounds, which can be guaranteed to be smaller than
all values of the respective objective component. In this case we chose a lower
bound of zero assuming a non-negative objective space.

In each iteration of the outer loop, one new Pareto-optimal point is sought.
This is achieved by performing two consecutive constrained single-objective op-
timization runs for each grid point as a lower bound in decreasing order of the
index i. After a new Pareto-optimal point x is found, this point is added to the
set of already found solutions, P , and the grid is updated by recording the ob-
jective values of x. For each objective j ∈ {1, . . . ,m}, the value fj(x) is inserted
into the sorted vector ej. If no feasible solution can be found or the solution is
dominated by any previously found solution, the searched objective co-domain is
marked by storing the lower bound vector ε in the set Q. The purpose of function
getBounds is to translate the iteration counter i into the m − 1 corresponding
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Function initializeBounds

1: for j := 1 to m do
2: ej := (0)
3: end for

Function getBounds(i, p)

1: ε1 := 0
2: for j := 2 to m do
3: d := i mod (p+ 1)
4: i := (i − d) / (p+ 1)
5: εj := ejd {lower bound for objective j}
6: end for
7: return ε

Function updateBounds (y)

1: for j := 1 to m do
2: i := 1
3: while ej i < yj do
4: i := i + 1 {search for insertion position}
5: end while
6: ej := (ej1, . . . ej i−1, yj , ej i+1, . . . , ej |P |+2) {insert new constraint value}
7: end for

Fig. 2. Subroutines for storing, sorting and retrieving the bounds

indices to retrieve the right constraint values from each of the ei vectors. The
total number of calls to the single-objective optimization algorithm can now be
bounded by (k+ 1)m−1 +k, where k is the cardinality of the Pareto front. Using
as upper bound T on the running time of the single-objective algorithm yield
the following result.

Theorem 1. The running time of the algorithm given in Fig. 1 to discover a
Pareto front of an m-objective problem with k elements is at most T [(k+1)m−1+
k], where T is the running time of the single-objective optimization algorithm.

Sketch of proof: To show that the image of P at the end of the run equals
the Pareto front F ∗, it has to be shown that (i) only Pareto-optimal solutions
enter P and (ii) no Pareto-optimal objective vector is missed. For (i) we observe
that x can only be dominated by solutions from regions which has already been
fully searched and the dominance check would then prevent x from entering P .
For (ii) it can be shown that any potentially missed Pareto-optimal objective
vector must necessarily be the image of the optimum y of some grid cell, and
was therefore already found. The bound on the number of calls to the single-
objective optimization algorithm is due to the observation that in each iteration
at least one region is marked as searched, and the maximum number of different
regions to be searched is bounded by the maximum number of grid points, which
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is (k + 1)m−1. In addition, the second run of the single-objective optimization
is only performed if a new solution is found, which gives leads to an additional
number of k runs. �

5 Simulation Results

This section presents some simulation results of the new algorithm on the mul-
tiobjective knapsack problem. The multiobjective knapsack problem is one of
the most extensively used benchmark problem for multiobjective metaheuristics
(see, e.g., [10], [11], or [7]). Given is a set of n items, each of which has m profit
and k weight values associated with it. The goal is to select a subset of items such
that the sums over each of their k-th weight values do not exceed given bounds
and the sums over each of their m-th profit values are maximized. A represen-
tation as a pseudo-Boolean optimization problem is typically used, where the n
binary decision variables denote whether an item is selected or not. For empirical
studies, the parameters of the problem, the weight and profit values, are usually
drawn at random from a given probability distribution. Here, the weights and
profits are randomly chosen integers between 10 and 100, and the capacities are
set to half of the sum of the weights.

Table 1 summarizes the results obtained for different instances of the knap-
sack problem with 3 objectives. 3 To the best of our knowledge no exact Pareto
fronts have been computed so far for the three-objective knapsack problem,
probably due to the lack of an appropriate generating method besides complete
enumeration. Note that the total number of single-objective runs given in Ta-
ble 1 is considerably lower than the upper bound given in Theorem 1. Fig. 3
gives a visual impression of the obtained three-dimensional Pareto fronts.

Table 1. Results on different instances of the knapsack problem with three objectives

n 10 20 30 40 50 100

single-objective runs 76 1622 9870 26846 128695 644689
total CPU time 4 sec 102 sec 20 min 62 min 445 min 255 h
|P | 9 61 195 389 1048 6501

3 The source code of the algorithm implemented in C and invoking CPLEX
as an example for an arbitrary single-objective optimization technique
is available from http://www.tik.ee.ethz.ch/~laumanns as well as the
data of the knapsack problem instances and the Pareto fronts from
http://www.tik.ee.ethz.ch/~zitzler/testdata.html.
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Fig. 3. Knapsack problem: plots of the exact Pareto fronts for m = 3 objectives, n = 50
(top) and n = 100 (bottom).
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6 Conclusions and Theoretical Implications

We have presented a new scheme for generating or approximating the Pareto
set of multiobjective optimization problems based on the well-known epsilon-
constraint method. Its time complexity, measured by the number of constrained
single-objective sub-problems to be solved, is O(km−1), where k is the cardinality
of the Pareto front to be found and m the number of objectives. The implemen-
tation we have provided is compact, which facilitates its use in practice.

The existence of such a scheme with a polynomially bounded number of
single-objective sub-problems suggests the following implications regarding the
computational complexity of single- and multiobjective optimization. It is well-
known that if the constrained single-objective problem (cSOP) is NP-hard then
the corresponding multiobjective problem (MOP) is NP-hard as well. Not much
attention has been paid to the reverse, however. Under what circumstances can
we state that if cSOP is ’easy’ (i.e., solvable in polynomial time), the corre-
sponding MOP is also easy (solvable in polynomial time)? We have of course to
exclude cases, where the Pareto front is exponentially large. But if we assume
that Pareto front contains a polynomially bounded number of elements, or are
only looking for a polynomially bounded subset [12] as an approximate solu-
tion set, things change. The algorithms presented in this paper and in [4] yield
the proof that in this case solving MOP is not fundamentally more difficult than
cSOP and, as a direct consequence, if the MOP was still NP-hard then the cSOP
without restrictions on the range of constraint values would be NP-hard as well.

The proposed algorithm is also useful when the aim is to find only a represen-
tative subset of all Pareto-optimal solutions, for example in continuous objective
spaces. The only necessary change to adapt to such a scenario is to introduce
appropriate increments for the constraint values, like in the original epsilon-
constraint method. But in contrast to its predecessor, the new algorithm will
still avoid sampling in empty objective space regions to a large extent and hence
be more efficient in many cases, e.g., for continuous problems where the Pareto
front contains several disconnected parts.

The algorithm has been designed as a generic framework for different single-
objective optimizers. In case of problems where no efficient single-objective op-
timizer is available, one could use a heuristic or approximative method instead.
This could be especially useful, when a good single-objective heuristic is avail-
able, but it is not clear how to extend the heuristic to handle multiple objec-
tives simultaneously. In other cases, where true multiobjective metaheuristics are
available, the resulting algorithm would constitute a baseline algorithm, which
can be compared with other multiobjective metaheuristics. The necessity for
such baseline algorithms has been pointed out by many researchers in the field.

A further application area of the results of this paper is the running time
analysis of both exact and heuristic methods for specific problems or problem
instances. It is only necessary to instantiate our algorithm with an appropriate
method to solve the constrained sub-problems and to derive an upper bound
of the running time for this specific method on the given problem. Thereby,
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a problem-specific algorithm is obtained together with an upper running time
bound, which also can serve as a baseline to judge the efficiency of other methods.

Finally, a challenging and so far unsolved question is whether it is possible to
get rid of the exponent in the running time bound and to prove an upper bound
which is linear in the number of desired Pareto-optimal objective vectors.
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