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Abstract. This paper visually demonstrates the effect of crossover operations 
on the performance of EMO algorithms through computational experiments on 
multi-objective 0/1 knapsack problems. In our computational experiments, we 
use the NSGA-II algorithm as a representative EMO algorithm. First we 
compare the performance of the NSGA-II algorithm between two cases: 
NSGA-II with/without crossover. Experimental results show that the crossover 
operation has a positive effect on the convergence of solutions to the Pareto 
front and a negative effect on the diversity of solutions. That is, the crossover 
operation decreases the diversity of solutions while it improves the convergence 
of solutions to the Pareto front. Next we examine the effects of recombining 
similar or dissimilar parents using a similarity-based mating scheme. 
Experimental results show that the performance of the NSGA-II algorithm is 
improved by recombining similar parents and degraded by recombining 
dissimilar ones. Finally we show that the recombination of extreme and similar 
parents using the similarity-based mating scheme drastically improves the 
diversity of obtained non-dominated solutions without severely degrading their 
convergence to the Pareto front. An idea of dynamically controlling the 
selection pressure toward extreme and similar parents is also illustrated through 
computational experiments. 

1 Introduction 

Recently developed EMO algorithms usually share some common ideas such as 
elitism, fitness sharing and Pareto ranking. While mating restriction has been often 
discussed in the literature, it has not been used in many EMO algorithms. Even the 
necessity of crossover operations in EMO algorithms has not been clearly 
demonstrated in the literature. In this paper, we first examine the necessity of 
crossover operations in EMO algorithms. Then we examine the effect of mating 
restriction on the performance of EMO algorithms to find well-distributed Pareto-
optimal or near Pareto-optimal solutions. 
 A similarity-based mating scheme was proposed in Ishibuchi & Shibata [1] to 
examine positive and negative effects of mating restriction on the performance of 
EMO algorithms. In their mating scheme, one parent (say Parent A) was chosen by 
the standard fitness-based binary tournament scheme while its mate (say Parent B) 

Dagstuhl Seminar Proceedings 04461
Practical Approaches to Multi-Objective Optimization
http://drops.dagstuhl.de/opus/volltexte/2005/239

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


was chosen among a pre-specified number of candidates (say β  candidates) based on 
their similarity or dissimilarity to Parent A. To find β  candidates, the standard 
fitness-based binary tournament selection was iterated β  times. Ishibuchi & Shibata 
[2] extended their similarity-based mating scheme as shown in Fig. 1. That is, first a 
pre-specified number of candidates (say α  candidates) were selected by iterating the 
standard fitness-based binary tournament selection α  times. Next the average vector 
of those candidates was calculated in the objective space. The most dissimilar 
candidate to the average vector was chosen as Parent A. On the other hand, the most 
similar one to Parent A among β  candidates was chosen as Parent B. Furthermore, it 
was demonstrated in [3] that the diversity-convergence balance can be dynamically 
adjusted by controlling the values of the two parameters α  and β  in the mating 
scheme in Fig. 1. Ishibuchi & Narukawa [4] also examined the relation between the 
similarity of recombined parents and the performance of EMO algorithms. 

 

Selection of the most
extreme solution

1 2 α

Crossover

Selection of the most
similar solution to

Parent A

1 2 β

Parent A Parent B

Parent A

 

Fig. 1. Mating scheme in Ishibuchi & Shibata [2]. 

 In this paper, we examine the effect of crossover operations on the performance of 
EMO algorithms through computational experiments on multiobjective 0/1 knapsack 
problems using the NSGA-II algorithm of Deb et al. [5]. We also examine the effect 
of the similarity-based mating scheme in Fig. 1 on the performance of the NSGA-II 
algorithm.  

2  Test Problems  

A multiobjective 0/1 knapsack problem with k knapsacks (i.e., k objectives and k 
constraints) and n items in Zitzler & Thiele [6] can be written as follows: 
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[k-n knapsack problem] 
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In this formulation, x is an n-dimensional binary vector (i.e., n
nxxx }1,0{)...,,,( 21 ∈ ), 

ijp  is the profit of item j according to knapsack i, ijw  is the weight of item j 
according to knapsack i, and ic  is the capacity of knapsack i. Each solution x is 
handled as a binary string of length n in EMO algorithms. The k-objective n-item 
knapsack problem is referred to as a k-n knapsack problem in this paper. Zitzler & 
Thiele [6] examined the performance of several EMO algorithms using nine test 
problems. In this paper, we use the two-objective 500-item knapsack problem (i.e., 2-
500 test problem). 
 The distance between two solutions in the objective space is calculated by the 
Euclidean distance. That is, the distance between two solutions x and y is calculated 
in the objective space as  

   22
11 |)()(||)()(||)()(| yxyxyfxf kk ffff −+⋅⋅⋅+−=− ,     (4) 

where ))(...,),(()( 1 xxxf kff=  is the k-dimensional objective vector corresponding 
to the solution x.  

3  Computational Experiments 

We applied the NSGA-II algorithm with the standard one-point crossover operation to 
the 2-500 test problem. The population size was specified as 200. In Fig. 2, we show 
non-dominated solutions at each generation of a single run of the NSGA-II algorithm 
with crossover (in the left column with the crossover rate 0.8) and without crossover 
(in the right column). Three different specifications of the mutation rate were 
examined in Fig. 2. From Fig. 2, we can see that the crossover operation has a 
positive effect on the convergence of solutions to the Pareto front while it has a 
negative effect on the diversity of solutions. This is because the crossover operation is 
likely to generate new offspring in the intermediate region between their parents in 
the objective space. That is, the crossover operation is likely to shrink the spread of 
the population. As a result, extreme regions in the objective space are not frequently 
explored by the NSGA-II algorithm with the crossover operation if compared with the 
case of no crossover. Experimental results in Fig. 2 suggest that the recombination of 
similar parents may improve the performance of the NSGA-II algorithm because such 
recombination is not likely to shrink the spread of the population. Fig. 2 also suggests 
the necessity of a diversity-increasing mechanism in the NSGA-II algorithm. 
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     (a) With crossover (mutation rate is 0.001).   (b) No crossover (mutation rate is 0.001). 
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     (c) With crossover (mutation rate is 0.002).   (d) No crossover (mutation rate is 0.002). 
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     (e) With crossover (mutation rate is 0.01).   (f) No crossover (mutation rate is 0.01). 

Fig. 2. Effects of crossover on the performance of NSGA-II for the 2-500 test problem. 
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 Next we examine the effect of recombining similar parents using the similarity-
based mating scheme in Fig. 1. When a pair of parents is to be chosen, one parent (say 
Parent A) is selected by the standard fitness-based binary tournament selection in the 
same manner as the NSGA-II algorithm. That is, the value of α  in Fig. 1 is fixed as 
=α 1 in order to focus on the effect of recombining similar parents. Next we iterate 

the standard fitness-based binary tournament selection β  times to find β  candidates 
for the selection of the other parent (say Parent B). The most similar candidate to 
Parent A is chosen as Parent B (i.e., as the mate of Parent A). For comparison, we 
also examine the choice of the most dissimilar parent to Parent A. 
 We applied the NSGA-II algorithm with the mating scheme in Fig. 1 to the 2-500 
test problem using various values of β  while fixing the value of α  as =α 1. 
Experimental results are shown in Fig. 3 where the crossover rate and the mutation 
rate are 0.8 and 0.002, respectively.  
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                  (a) Similar parents ( =β 5).         (b) Dissimilar parents  ( =β 5). 
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                  (c) Similar parents ( =β 10).         (d) Dissimilar parents  ( =β 10). 

Fig. 3. Effects of recombining similar or dissimilar parents on the performance of NSGA-II. 
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 From the comparison between Fig. 2 (c) and Fig. 3, we can see that the 
performance of the NSGA-II algorithm was slightly improved by the recombination 
of similar parents and degraded by the recombination of dissimilar parents. Since the 
performance improvement of the NSGA-II algorithm was not significant in Fig. 3, we 
further examine not only the recombination of similar parents but also the selection of 
extreme parents using the similarity-based mating scheme in Fig. 1. Experimental 
results by the NSGA-II algorithm with the mating scheme are shown in Fig. 4 for 
various values of α  and β . As in Fig. 2 (c) and Fig. 3, we used the crossover rate 
0.8 and the mutation rate 0.002 in Fig. 4. From the comparison between Fig. 2 (c) by 
the original NSGA-II algorithm and Fig. 4 with the similarity-based mating scheme, 
we can see that the performance of the NSGA-II algorithm with respect to the 
diversity of solutions was significantly improved without severe deterioration in the 
convergence by recombining extreme and similar parents in Fig. 4. 
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            (a) NSGA-II with =α 5 and =β 5.           (b) NSGA-II with =α 5 and =β 10. 
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           (c) NSGA-II with =α 10 and =β 5.          (d) NSGA-II with =α 10 and =β 10. 

Fig. 4. Effects of choosing extreme parents and recombining similar parents. 
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 While the recombination of extreme and similar parents significantly improved the 
diversity of solutions obtained by the NSGA-II algorithm, some experimental results 
in Fig. 4 were inferior to those in Fig. 2 (c) by the original NSGA-II algorithm with 
respect to the convergence of solutions to the Pareto front. So we further examine the 
effect of dynamically changing the parameter values in the similarity-based mating 
scheme in Fig. 1 (see Ishibuchi & Shibata [3] for the dynamic version of the 
similarity-based mating scheme). In computational experiments, we changed the 
value of α  at the 1000th generation (e.g., from =α 10 to =α 1). Experimental 
results are shown in Fig. 5. Very good results were obtained in Fig. 5 (c) and Fig. 5 
(d) where the value of  α  was specified as =α 10 in the first half and =α 1 in the 
second half of the multiobjective evolution by the NSGA-II algorithm with the 
similarity-based mating scheme. It should be noted the first half in Fig. 5 (c) and Fig. 
5 (d) were exactly the same as Fig. 4 (c) and Fig. 4 (d), respectively. 

2000th generation
500th generation
200th generation
100th generation

Pareto
    front

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

            

2000th generation
500th generation
200th generation
100th generation

Pareto
    front

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 
                   (a) =α 1→ 10 and =β 5.               (b) =α 1→ 10 and =β 10. 
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                   (c) =α 10→ 1 and =β 5.               (d) =α 10→ 1 and =β 10. 

Fig. 5. Effects of the dynamic control of the parameters in the similarity-based mating scheme. 
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4  Concluding Remarks 

Through computational experiments on multiobjective 0/1 knapsack problems, we 
examined the effect of the standard one-point crossover operation on the performance 
of the NSGA-II algorithm. First we showed that the crossover operation improved the 
convergence of solutions to the Pareto front while it decreased the diversity of 
solutions. Next we showed that the recombination of similar parents slightly 
improved the performance of the NSGA-II algorithm through computational 
experiments using a similarity-based mating scheme. Then we showed that the 
recombination of extreme and similar parents significantly improved the diversity of 
solutions. Finally we showed that the convergence and the diversity were dynamically 
controlled to find well-distributed near Pareto-optimal solutions using a dynamic 
version of the similarity-based mating scheme. 
 The effect of recombining similar parents was not large when the similarity-based 
mating scheme was not used for choosing extreme parents. The effect of choosing 
extreme parents was not large, either, when it was not used for recombining similar 
parents. That is, the recombination of extreme and similar parents had a large synergy 
effect. We also examined the effect of the similarity-based mating scheme through 
computational experiments on function optimization problems with real-number 
decision variables. Since the NSGA-II algorithm worked well on such an optimization 
problem, we did not observe any further improvement by the mating scheme. 
 The author would like to thank the financial support from Japan Society for the 
Promotion of Science (JSPS) through Grand-in-Aid for Scientific Research (B): 
KAKENHI (14380194). The author also would like to thank Mr. Kaname Narukawa 
for his help with some computational experiments.  
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