
MULTI-OBJECTIVE OPTIMIZATION AND ITS ENGINEERING
APPLICATIONS

Hirotaka Nakayama1�

Dept. of Information Science and Systems Engineering, Faculty of Science and Engineering, Konan University

Abstract
Many practical optimization problems usually have several conflicting objectives. In those multi-objective

optimization, no solution optimizing all objective functions simultaneously exists in general. Instead, Pareto optimal
solutions, which are “efficient” in terms of all objective functions, are introduced. In general we have many Pareto
optimal solutions. Therefore, we need to decide a final solution among Pareto optimal solutions taking into account
the balance among objective functions, which is called “trade-off analysis”. It is no exaggeration to say that the most
important task in multi-objective optimization is trade-off analysis. Consequently, the methodology should be discussed
in view of how it is easy and understandable for trade-off analysis.

In cases with two or three objective functions, the set of Pareto optimal solutions in the objective function space
(i.e., Pareto frontier) can be depicted relatively easily. Seeing Pareto frontiers, we can grasp the trade-off relation among
objectives totally. Therefore, it would be the best way to depict Pareto frontiers in cases with two or three objectives.
(It might be difficult to read the trade-off relation among objectives with three dimension, though). In cases with more
than three objectives, however, it is impossible to depict Pareto forntier. Under this circumstance, interactive methods
can help us to make local trade-off analysis showing a “certain” Pareto optimal solution. A number of methods differing
in which Pareto optimal solution is to be shown, have been developed. This paper discusses critical issues among those
methods for multi-objective optimization, in particular applied to engineering design problems.

Keywords: Multi-Objective Optimization, Interactive Multi-Objective Optimization, Evolutionary Algorithms,
Pareto Frontier

1. Introduction

Multi-objective programming problems are formulated as follows:

(MOP) Minimize f(x) ≡ (f1(x), f2(x), . . . , fr(x))

over x ∈ X.

The constraint set X may be given by

gj(x) ≤ 0, j = 1, . . . , m,

and/or a subset of Rn itself. For the problem (MOP), we define Pareto solutions as follows:

Definition 1.1 A solution x̂ is said Pareto optimal, if there is no better solution x ∈ X other than x̂, namely, if

f(x) ≤/ f(x̂) for any x �= x̂ ∈ X.

In general, there may be many Pareto solutions. The final decision is made among them taking the total balance
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over all criteria into account. This is a problem of value judgment of decision maker (in abbreviation, DM). The totally
balancing over criteria is usually called trade-off. It should be noted that there are very many criteria, say, over one
hundred in some practical problems such as erection management of cable stayed bridge, and camera lens design.
Therefore, it is very important to develop effective methods for helping DM to trade-off easily even in problems with
very many criteria.

Interactive multi-objective programming search a solution in an interactive way with DM while eliciting informa-
tion on his/her value judgment. Along this line, several methods were developed remarkably in 1980’s: Among them,
the aspiration level approach is now recognized very effective in practice, because

(i) it does not require any consistency of DM’s judgment,
(ii) aspiration levels reflect the wish of DM very well,

and
(iii) aspiration levels play the role of probe better than the weight for objective functions.

In the following, we will discuss the difficulty in weighting method which is commonly used in the traditional
goal programming.

2. Why is the Weighting Method Ineffective?

In multi-objective programming problems, the final decision is made on the basis of the value judgment of DM.
Hence it is important how we elicit the value judgment of DM. In many practical cases, the vector objective function
is scalarized in such a manner that the value judgment of DM can be incorporated.

The most well known scalarization technique is the linearly weighted sum:
r∑

i=1

wifi(x). (2.1)

The value judgment of DM is reflected by the weight. Although this type of scalarization is widely used in many
practical problems, there is a serious drawback in it. Namely, it can not provide a solution among sunken parts of
Pareto surface due to “duality gap” for nonconvex cases. Even for convex cases, for example, in linear cases, even if
we want to get a point in the middle of line segment between two vertices, we merely get a vertex of Pareto surface, as
long as the well known simplex method is used. This implies that depending on the structure of problem, the linearly
weighted sum can not necessarily provide a solution as DM desires.

In the traditional goal programming (Charnes-Cooper, 1961), some kind of metric function from the goal f∗ is
used as the one representing the preference of DM. For example, the following is well known:(

r∑
i=1

wi|fi(x) − f∗
i |p
)1/p

(2.2)

The preference of DM is reflected by the weight wi, the value of p, and the value of the goal f∗
i . If the value of

p is chosen appropriately, a Pareto solution among a sunken part of Pareto surface can be obtained by minimizing
the function (2.2). However, it is usually difficult to pre-determine appropriate values of them. Moreover, the solution
minimizing (2.2) can not be better than the goal f∗, even though the goal is underestimated.

In addition, one of the most serious drawbacks in the goal programming is that people tend to misunderstand that
a desirable solution can be obtained by adjusting the weight. It should be noted that there is no positive correlation
between the weight wi and the value fi(x̂) corresponding to the resulting solution x̂ as will be seen in the following
example.

Example 2.1 Let y1 = f1(x), y2 = f2(x) and y3 = f3(x), and let the feasible region in the objective space be
given by

{(y1, y2, y3)| (y1 − 1))2 + (y2 − 1)2 + (y3 − 1)2 ≤ 1}.
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Suppose that the goal is (y∗
1 , y∗

2 , y∗
3) = (0, 0, 0).The solution minimizing the metric function (2.2) with p = 1 and

w1 = w2 = w3 = 1 is (y1, y2, y3) = (1−1/
√

3, 1−1/
√

3, 1−1/
√

3). Now suppose that DM wants to decrease the
value of f1 a lot more and that of f2 a little more, and hence modify the weight into w′

1 = 10, w′
2 = 2, w′

3 = 1. The
solution associated with the new weight is (1−10/

√
105, 1−2/

√
105, 1−1/

√
105). Note that the value of f2 is worse

than before despite that DM wants to improve it and hence increased the weight of f2 up to twice. Someone might
think that this is due to no normalization of weight. Therefore, we normalize the weight by w1 + w2 + w3 = 1. The
original weight normalized in this way is w1 = w2 = w3 = 1/3 and the renewed weight by the same normalization is
w′

1 = 10/13, w′
2 = 2/13, w′

3 = 1/13. We can observe that w′
2 is less than w2. Now increase the normalized weight

w2 to be greater than 1/3. To this end, set the unnormalized weight w1 = 10, w2 = 7 and w3 = 1. With this new
weight, we have a solution (1−10/

√
150, 1−7/

√
150, 1−1/

√
150). Despite that the normalized weight w′′

2 = 7/18
is greater than the original one (= 1/3), the obtained solution is still worse than the previous one.

As is readily seen in the above example, it is usually very difficult to adjust the weight in order to obtain a
solution as DM wants. Therefore, it seems much better to take the aspiration level of DM rather than the weight as
the probe. Interactive multi-objective programming techniques based on aspiration levels have been developed so that
the drawbacks of the traditional goal programming may be overcome. In the following section, we shall discuss the
satisficing trade-off method developed by the author (Nakayama 1984) as one of them.

3. Satisficing Trade-off Method

In the aspiration level approach, the aspiration level at the k-th iteration f
k

is modified as follows:

f
k+1

= T ◦ P (f
k
) (3.1)

Here, the operator P selects the Pareto solution nearest in some sense to the given aspiration level f
k
. The operator

T is the trade-off operator which changes the k-th aspiration level f
k

if DM does not compromise with the shown
solution P (f

k
). Of course, since P (f

k
) is a Pareto solution, there exists no feasible solution which makes all criteria

better than P (f
k
), and thus DM has to trade-off among criteria if he wants to improve some of criteria. Based on this

trade-off, a new aspiration level is decided as T ◦ P (f
k
). Similar process is continued until DM obtains an agreeable

solution. This idea is implemented in DIDASS (Grauer et al. 1984) and the satisficing trade-off method (Nakayama
1984). While DIDASS leaves the trade-off to the heuristics of DM, the satisficing trade-off method provides a device
based on the sensitivity analysis.

3.1. On The Opearation P

The operation which gives a Pareto solution P (f
k
) nearest to f

k
is performed by some auxiliary scalar opti-

mization. It has been shown in Sawaragi-Nakayama-Tanino (1985) that the only one scalarization technique, which
provides any Pareto solution regardless of the structure of problem, is of the Tchebyshev norm type. However, the
scalarization function of Tchebyshev norm type yields not only a Pareto solution but also a weak Pareto solution. Since
weak Pareto solutions have a possibility that there may be another solution which improves a critera while others being
fixed, they are not necessarily “efficient” as a solution in decision making. In order to exclude weak Pareto solutions,
the following scalarization function of the augmented Tchebyshev type can be used:

max
1≤i≤r

wi(fi(x) − f i) + α

r∑
i=1

wifi(x). (3.2)

where α is usually set a sufficiently small positive number, say 10−6.

Theorem 3.1 (Nakayama-Tanino 1994) For arbitrary w ≥ 0 and α > 0, x̂ ∈ X minimizing (3.2) is a properly
Pareto optimal solution to (MOP). Conversely, if x̂ is a properly Pareto optimal solution to (MOP), then there exist
w > 0, α > 0 and f such that x̂ minimizes (3.2) over X .
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Fig. 1 Difference between Pareto Solutions by (3.3) and(3.4)

The weight wi is usually given as follows: Let f∗
i be an ideal value which is usually given in such a way that

f∗
i < Min{fi(x)| x ∈ X}. For this circumstance, we set

wk
i =

1

f
k

i − f∗
i

(3.3)

If the weight is preferable to be unchanged for the change of aspiration level, it can be given by

wk′
i =

1
f∗i − f∗

i

. (3.4)

Here f∗i be a nadir value which is usually defined as

f∗i = max
1≤j≤r

fi(x∗
j ) (3.5)

where
x∗

j = arg min
x∈X

fj(x). (3.6)

The minimization of (3.2) with (3.3) or (3.4) is usually performed by solving the following equivalent optimization
problem, because the original one is not smooth:

(Q) Minimize z + α
∑r

i=1 wifi(x)

subject to
wk

i (fi(x) − f
k

i ) ≤ z (3.7)

x ∈ X.

Remark 3.1 The difference between solutions to (Q) for two kinds of weights (3.3) and (3.4) is illustrated in Fig.
1. In the auxiliary min-max problem (Q) with the weight by (3.3), f

k

i in the constraint (3.7) may be replaced with f∗
i

without any change in the solution. For we have

fi(x) − f∗
i

f
k

i − f∗
i

=
fi(x) − f

k

i

f
k

i − f∗
i

+ 1.
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3.2. On The Operation T

In cases that DM is not satisfied with the solution for P (f
k
), he/she is requested to answer his/her new aspiration

level f
k+1

. Let xk denote the Pareto solution obtained by projection P (f
k
), and classify the objective functions into

the following three groups:
(i) the class of criteria which are to be improved more,
(ii) the class of criteria which may be relaxed,
(iii) the class of criteria which are acceptable as they are.

Let the index set of each class be denoted by Ik
I , Ik

R, Ik
A, respectively. Clearly, f

k+1

i < fi(xk) for all i ∈ Ik
I .

Usually, for i ∈ Ik
A, we set f

k+1

i = fi(xk). For i ∈ Ik
R, DM has to agree to increase the value of f

k+1

i . It should be
noted that an appropriate sacrifice of fj for j ∈ Ik

R is needed for attaining the improvement of fi for i ∈ Ik
I .

Example 3.1 Consider the same problem as in Example 2.1: Let y1 = f1(x), y2 = f2(x) and y3 = f3(x), and let
the feasible region in the objective space be given by

{(y1, y2, y3)| (y1 − 1))2 + (y2 − 1)2 + (y3 − 1)2 ≤ 1}.
Suppose that the ideal point is (y∗

1 , y∗
2 , y∗

3) = (0, 0, 0), and the nadir point is (y∗1, y∗2, y∗3) = (1, 1, 1). Therefore,
using (3.6) we have w1 = w2 = w3 = 1.0. Let the first aspiration level be (y1

1, y1
2, y1

3) = (0.4, 0.4, 0.4). Then the
solution to (Q) is (y1

1 , y1
2 , y1

3) = (0.423, 0.423, 0.423). Now suppose that DM wants to decrease the value of f1

a lot more and that of f2 a little more, and hence modify the aspiration level into y2
1 = 0.35 and y2

2 = 0.4. Since
the present solution (y1

1 , y1
2 , y1

3) = (0.423, 0.423, 0.423) is already Pareto optimal, it is impossible to improve all
of criteria. Therefore, suppose that DM agrees to relax f3, and with its new aspiration level of y2

3 = 0.5. With this
new aspiration level, the solution to (Q) is (y2

1 , y2
2 , y2

3) = (0.366, 0.416, 0.516). Although the obtained solution
does not attain the aspiration level of f1 and f2 a little bit, it should be noted that the solution is improved more than
the previous one. The reason why the improvement of f1 and f2 does not attain the wish of DM is that the amount
of relaxation of f3 is not much enough to compensate for the improvement of f1 and f2. In the satisficing trade-off
method, DM can find a satisfactory solution easily by making the trade-off analysis deliberately. To this end, methods
for automatic trade-off or exact trade-off are devised using the sensitivity analysis in mathematical programming. See
[23], [19], [24] in more detail.

3.3. Interchange between Objectives and Constraints

In the formulation of the auxiliary scalarized optimization prolem (Q), change the right hand side of the equation
(3.7) into βiz, namely

wi(fi(x) − f i) ≤ βiz. (3.9)

As is readily seen, if βi = 1, then the function fi is considered to be an objective function, for which the aspiration
level f i is not necessarily attained, but the level of fi should be better as much as possible. On the other hand, if
βi = 0, then fi is considered to be a constraint function, for which the aspiration level f i should be guaranteed. In
many practical problems, there is almost no cases in which we consider the role of objective and constraint fixed from
the beginning, but usually we want to interchange them depending on the situation. Using the formula (3.9), this can
be done very easily (Korhonen 1987). In addition, if the value of βi is set in the middle of 0 and 1, fi can play a role
in the middle of objective and constraint which is neither a complete objective nor a complete constraint (Kamenoi et

al. 1992). This is also very effective in many practical problems.

4. Applications

Interactive multi-objective programming methods have been applied to a wide range of practical problems. Good
examples in engineering applications can be seen in Eschenauer et al. (1990). The satisficing trade-off method also
has been applied to several real problems:
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1) blending

a) feed formulation for live stock (Mitani et al. 1997)

b) plastic materials (Nakayama et al. 1986)

c) cement production (Nakayama 1991)

d) portfolio (Nakayama 1989)

2) design

a) camera lens

b) erection management of cable-stayed bridge (Furukawa et al. 1986; Nakayama et al. 1995)

3) planning

a) scheduling of string selection in steel manufacturing (Ueno et al. 1990)

b) long term planning of atomic power plants

In the following, an application of satisficing trade-off method to erection management of cable-stayed bridges
will be explained briefly. In erection of cable stayed bridge, the following criteria are considered for accuracy control
(Furukawa et al. 1986):

i. residual error in each cable tension,
ii. residual error in camber at each node,

iii. amount of shim adjustment for each cable,
iv. number of cables to be adjusted.

Since the change of cable rigidity is small enough to be neglected with respect to shim adjustment, both the
residual error in each cable tension and that in each camber are linear functions of amount of shim adjustment. Let
us define n as the number of cable in use, ∆Ti (i = 1, . . . , n) as the difference between the designed tension values
and the measured ones, and xik as the tension change of i-th cable caused from the change of the k-th cable length
by a unit. The residual error in cable tension caused by the shim adjustment is given by

pi = |∆Ti −
n∑

k=1

xik∆lk| (i = 1, . . . , n)

Let m be the number of nodes, ∆zj (j = 1, . . . , m) the difference between the designed camber values and the
measured ones, and yjk the camber change at j-th node caused from the change of the k-th cable length by a unit.
Then the residual error in the camber caused by the shim adjustments of ∆l1, . . . , ∆ln is given by

qj = |∆Zj −
n∑

k=1

yjk∆lk| (j = 1, . . . , m)

In addition, the amount of shim adjustment can be treated as objective functions of

ri = |∆li| (i = 1, . . . , n)

And the upper and lower bounds of shim adjustment inherent in the structure of the cable anchorage are as follows;

∆lLi ≤ ∆li ≤ ∆lUi (i = 1, . . . , n).
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Fig. 2 Erection Management System of Cable-stayed Bridge

Fig. 3 Result by Erection Management System

Fig. 2 show a monitor output of erection management system of cable stayed bridge using the satisficing trade-off
method and Fig.3 does its result. The residual error of each criterion and the amount of shim adjustment are represented
by graphs. The aspiration level is inputted by a mouse on the graph. After solving the auxiliary min-max problem,
the Pareto solution according to the aspiration level is represented by a graph in a similar fashion. This procedure is
continued until the designer can obtain a desirable shim-adjustment. This operation is very easy for the designer, and
the visual information on trade-off among criteria is user-friendly. The software was used for real bridge construction,
say, Swan Bridge (Ube City) and Karasuo Harp Bridge (Kita-Kyusyu City) in 1992, and so on.
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5. Generating Pareto Frontiers

In cases with two or three objective functions, if it does not take so much time to evaluate each objective function,
it is most effective to depict Pareto frontiers which lead DM to grasp the trade-off relation among objectives totally.
Since we can not so easily read trade-off relation for 3 dimensional Pareto frontiers without rotation, it would be most
effective to depict Pareto frontiers in cases with two objectives. The constraint transformation method (ε constrained
method in some references) can be applied to this end. The method is seen at the dawn of development of multi-
objective optimization (Edgeworth [6]). Since a rough but acceptable approximation of Pareto frontiers can be obtained
usually at 10-20 sample values of right hand side of objective function transformed into a constraint, the method fits
our purpose well, if each optimization is not time consuming. However, if those auxiliary optimization problems are
difficult to solve by usual optimization tools (e.g., if the problems are highly nonlinear with multi-modal, combinatorial,
nonsmooth and so on), it becomes difficult to depict Pareto frontier by the constraint transformation method.

5.1. Evolutionary Methods and Other Approaches

In recent years, the research applying evolutionary algorithms to give Pareto frontiers has been extensively
developed. It has been observed that the performance of evolutionary algorithms is outstanding in particular for
optimization of multi-modal, discrete and nonsmooth objective functions. Although it is possible to apply evolutionary
algorithms for optimization by the constraint transformation method, main researches using evolutionary algorithms
aim to give Pareto frontiers directly. The idea is to move individuals towards Pareto frontier through evolution. In this
apporach, the important things are how fast individuals converge to Pareto frontier and how well spread they are on
the whole Pareto frontier. To this end, many researchers have reported many devices for evolutionary operators and
fitness function (see for example [26], [8], [10], etc). Tutorial books are [5], [4] and so on.

One of most widely applied evolutionary methods is the ranking method proposed by [8]. Although there have
been developed several methods for evaluating the diversity of individuals on Pareto frontier, its essential idea is in
the evaluating way how far each individual is from Pareto frontier by the number of dominating individuals. However,
the rank does not relect the “distance” itself between each individual and Pareto frontier. Arakawa et al. proposed to
apply DEA (Data Envelopment Analysis) to generate Pareto frontier [1]. DEA was originally developed to measure the
efficiency of decision making units by Charnes et al. [3]. Its idea is to measure the “distance” between each decision
unit and Pareto frontier by solving some linear programming problem. The real Pareto frontier is approximated by a
part of the convex hull of decision units. It has been observed through several applications that DEA provides Pareto
frontier with relatively less number of individuals. This means that Pareto frontier can be obtained with less number of
experiments (analyses) in engineering design problems. However, since DEA is based on the convex hull of decision
units, it can not provide nonconvex Pareto frontier as it is. Yun et al. extended DEA to GDEA (Generalized Data
Envelopment Analysis) so that it may be valid to non-convex cases [30], and applied GDEA to generate Pareto frontier
[31]. It has been observed through our experiences that GDEA provides well distributed Pareto frontier with less
number of experiments (analyses). Furthermore, Yun et al. try to apply some computational intelligence techniques
such as SVM (Support Vector Machine) [33] which was originally developed for pattern classification in machine
learning [29]. The essential idea of machine learning such as SVM is to approximate the discriminant boundary for
classification. In particular, ν-SVM [27] developed recently can be effectively applied to problems with one category.
Utilizing this property for one category problems, not only Pareto frontier but also the feasible region itself can be
approximated. It has been observed that SVM provides effectively Pareto frontier in some cases, but not in general.
Further research should be made along this line.

5.2. Comparison Through Simulations

In this subsection, we shall compare the stated methods through several computational simulations.

i) Cantilever Beam Problem

Consider a cantilever design problem with two design variables, that is, diameter (d) and length (l) as shown
in Fig. 4 which are cited from [5]. The beam has to carry an end load P . The cantilever design problem has two
conflicting objectives of design: minimization of weight f1 and minimization of end deflection f2, and two constraints:
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Fig. 4 A Schematic of Cantilever Beam Design
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Fig. 5 Comparison of the Results by :
(a) ε−constraint method (b) satisficing trade-off method (c) MOGA (d) GDEA (e) SVM

the developed maximum stress σmax is less than the allowable strength Sy and the end deflection δ is smaller than a
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Fig. 6 Comparison of the Results to the problem ZDT4 by :
(a) ε−constraint method (b) satisficing trade-off method (c) GDEA

specified limit δmax. Now, the optimization problem is formulated as follows:

minimize f1(d, l) := ρ
πd2

4
l

minimize f2(d, l) := δ =
64P l3

3Eπd4

subject to σmax � Sy,

δ � δmax,

10 � d � 50, 200 � l � 1000,

where the maximum stress is calculated as follows:

σmax =
32P l

πd3
.

The parameter values are used as follows:

ρ = 7800 kg/m3, P = 1 kN, E = 207 GPa,

Sy = 300 MPa, δmax = 5 mm.

ii) ZDT4 Problem

As an example which is not so easy to solve by MOGA, ZDT4 is suggested by Zitzler, Deb and Thiele [34]:

minimize
�

f1(x) = x1 (ZDT4)

f2(x) = g(x) ×
(

1 −
√

f1(x)
g(x)

)

subject to g(x) = 1 + 10(N − 1) +
N∑

i=2

(
x2

i − 10 cos(4πxi)
)
,

x1 ∈ [0, 1], xi ∈ [−5, 5], i = 1, 2, . . . , N (N = 10).

There are 10 design variables and two objective functions. Pareto optimal values to the problem (ZDT 4) is composed
of g(x) = 1.

Fig. 5, Fig. 6 and Table 1 show results for our test problems. The calculation was performed by MATLAB ver
6.5.

In the cantilever beam design problem, almost similar results were obtained regardless methods. ZDT4 is well
known as the one difficult to solve by evolutionary algorithms. In applying GDEA, we used a simple GA in the internal
process. Therefore, both GDEA and MOGA using simple GA could not provide the exact Pareto frontier. In this case,
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Table 1 Comparison of the number of function call

1) Beam Deasign Problem

ε−constraint Method satisficing trade-off method MOGA & GDEA SVM

951

Fig. 5 (a)
52 per one aspiration level

Fig. 5 (b)
1000 (=100 data×10 generation)

Fig. 5 (c)-1, (d)-1
250 (=50 data×5 generation)

Fig. 5 (e)-1

cf. # ε : 23 cases cf. # on the average 500 (=50 data×10 generation)
Fig. 5 (e)-2

1500 (=100 data×15 generation)
Fig. 5 (c)-2, (d)-2

1000 (=100 data×10 generation)
Fig. 5 (e)-3

1500 (=100 data×15 generation)
Fig. 5 (e)-4

2) ZDT4 Problem

ε−constraint Method satisficing trade-off method GDEA SVM

613

Fig. 6 (a)
264 per one aspiration level

Fig. 6 (b)
25000 (=100 data×250 generation)

Fig. 6 (c)
—-

cf. # ε : 11 cases cf. # on the average

therefore, more sophisticated evolutionary algorithms should be applied. For this problem, SVM could not yield a
reasonable result within the number of function calls at the same order.

It should be noted that classical methods such as constraint transformation method (ε constraint method) can
provide Pareto frontier with less number of function calls in cases that traditional optimization techniques can be
applied. It is not sure how the nonlinear optimization tool of MATLAB treats the problem. Using another software on
the basis of SQP with numerical differentiation developed by one of author’s collaborators, it takes about 400 function
calls per one aspiration level. Therefore, if the derivatives of functions are available, the number of function calls can
reduce up to 1/10 (because the number of variables are 10 in ZDT4).

6. Concluding Remarks

One of the most impotant aims of multi-objecitve optimization is to assist decision makers to make a satisfactory
decision taking into account the balance among several conflicting objectives. Althouhg it would be the best to depict
the whole Pareto frontiers so that we can grasp the trade-off relation among objectives totally, it is not so easy in
cases with three objectives and impossible in cases with more than three objectives. Therefore, this approach is most
effective for cases with two objectives. In recent years, evolutionary methods have been remarkably developed for this
purpose. However, those methods needs usually very many individuals, in other words, very many function calls. In
engineering design problems in general, it is time consuming and expensive to evaluate functions, because they are
calculated through several kinds of analyses such as structural analysis, fluid mechanical analysis, thermo-dynamical
analysis and so on, and sometimes even by making real samples. In order to overcome this difficulty, parallelization
in computation of evolution is a device. Another device is to evaluate the fitness for only some part of individuals and
to approximate that of others by using some computational intelligence [13].

However, it is important to recall those approaches are effective for cases with only two or three objectives. Under
this circumstance, we have seen in this paper that the classical constraint transformation method (ε constraint method)
can be applied with less number of function call. I believe that we must not to miss the essense of multi-objective
optimization, and it is sometimes important to go back to classics. There have been a trial combining aspiration level
aproach and generating Pareto frontier in cases with more than three objectives [32].

One of outstanding differences between multi-objective optimization and natural sciences is the fact that multi-
objective optimization problems include the value judgement of human beings. In many cases, the value judgment of
decision makers is not consistent during the decision process. It is very important to get a solution reflecting faithfully
the value-judgment of decisin makers even though it may be inconsistent. To this end, it would be almost impossible to
obtain a solution by computer only, but cooperative systems of man and computers are inevitable in many engineering
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design problems. Under this event, it is important to make use of strong points of man and computer respectively.
Taking this into account, satisficing from the human side and optimization from the computer side might be practical
and effective in particular in multi-objective optimization problems in real life.
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