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“Discrete Convex Analysis” is aimed at establishing a novel theoretical frame-
work for solvable discrete optimization problems by means of a combination of
the ideas in continuous optimization and combinatorial optimization. The the-
oretical framework of convex analysis is adapted to discrete settings and the
mathematical results in matroid/submodular function theory are generalized.
Viewed from the continuous side, the theory can be classified as a theory of
convex functions f : R” — R that have additional combinatorial properties.
Viewed from the discrete side, it is a theory of discrete functions f : Z" — Z
that enjoy certain nice properties comparable to convexity. Symbolically,

Discrete Convex Analysis = Convex Analysis + Matroid Theory.

The theory puts emphasis on duality and conjugacy as well as on greedy algo-
rithms. This results in a novel duality framework for nonlinear integer program-
ming.

Two convexity concepts, called L-convexity and M-convexity, play primary
roles in the present theory, where “L” stands for “Lattice” and “M” for “Ma-
troid.” L-convex functions and M-convex functions are convex functions with
additional combinatorial properties distinguished by “L” and “M,” and they are
conjugate to each other through a discrete version of the Legendre—Fenchel trans-
formation. L-convex functions and M-convex functions generalize, respectively,
the concepts of submodular set functions and base polyhedra of (poly)matroids.

L-convexity and M-convexity prevail in discrete systems.

— In network flow problems, flow and tension are dual objects. Roughly speak-
ing, flow corresponds to M-convexity and tension to L-convexity.

— In matroids, the rank function corresponds to L-convexity and the base fam-
ily to M-convexity.

— M-matrices correspond to L-convexity, and their inverses to M-convexity.
Hence, in a discretization of the Poisson problem of partial differential equa-
tions, for example, the differential operator corresponds to L-convexity and
the Green function to M-convexity.

— Dirichlet forms in probability theory are essentially the same as quadratic
L-convex functions.

This talk is intended to be a brief introduction to the central ideas in discrete
convex analysis.
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