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Abstract

This paper addresses the question of multi party computation in a model with

asymmetric information. Each agent has a private value (secret), but in contrast to

standard models, the agent incurs a cost when retrieving the secret. There is a social

choice function the agents would like to compute and implement. All agents would like

to perform a joint computation, which input is their vector of secrets. However, agents

would like to free-ride on others’ contribution.

A mechanism which elicits players’ secrets and performs the desired computation

defines a game. A mechanism is ‘appropriate’ if it (weakly) implements the social

choice function for all secret vectors. namely, if there exists an equilibrium in which

it is able to elicit (sufficiently many) agents’ secrets and perform the computation, for

all possible secret vectors. We show that ‘appropriate’ mechanisms approach agents

sequentially and that they have low communication complexity.



Key words: Multi-Party Computations, Sequential Mechanisms, Equilibrium,

Revelation Principle, Information Acquisition.



1 Introduction

It is well known that group activities, where a joint decision must be reached, may

result in inefficient outcomes due to the free riding phenomena. Consider a very simple

model where all agents utility, derived from the group decision, are fully aligned. Ad-

ditionally, they may have (dis-)utility from contributing to the group decision process.

We investigate this model in a positive framework and ask how can one overcome the

free-riding problem and achieve efficiency

Consider the following motivating setting. Strategic decisions taken by firms, such

as a company’s product direction or its geographic expansion, are often a result of a

management process, and involve an analysis of the various aspects of the organization

(R&D, human resources, financial considerations, sales prospects, market analysis and

more). Each analysis is undertaken by a different management member, according to

her expertise, and the final decision is optimally based on a complete set of recom-

mendations. Often, all the management team is incentivized such that their goals are

aligned (e.g., in many high tech firms the management team holds stock options) and

so all of them would like to ensure the ‘right’ decision is reached. However, it may be

costly for some (or all) members to do a complete analysis of their domain expertise

and this may result in some of the team members relying on others to do a competent

analysis, while they suffice in making a recommendation that is not well founded.

In analogy to the above setting, an academic department often wants to recruit

high quality candidates, and all department members may have a similar interest. In

such recruiting processes we trust each other to evaluate each candidate. Often such an

evaluation involves a tedious reading of some of the candidates’ work, and consequently

a detailed reading is replaced with a glance at the paper.

We treat situations as above in a game-theoretic setting which we refer to as multi-

party computation games. In a multi-party computation game a society of n agents

(players) has access to some private information (secret). Each agent may access his

(and only his) secret, but by doing so he incurs a cost. The agents would like to

reach a decision, by computing, jointly, a function whose input is the vector of n se-

crets. Assume agents are selfish and are driven by utility maximization considerations.

Additionally, assume all agents’ utilities are aligned. Namely, except for the cost of

accessing the secret they all have the same utility function. The question we pose is

how can one guarantee efficiency in such a setting? This general setting is often an
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important component in the analysis of problems and models in computer science (e.g.,

computation based on a distributed data base), statistics (e.g., computing a population

statistic such as an order statistic), economics (e.g., computing a clearing price in a

two-sided auction), political sciences (e.g., voting) and more. In the various settings

one may interpret the access costs as participation costs, computational costs, cost of

accessing a data base, revelation costs (due to the revelation of the individuals private

opinion / secret) or even a learning cost, depending on the specific model.

As our setting is motivated by models in computer science and in economics we al-

ternate terminology between ‘multi-party-computations’ and ‘social-choice-functions’.

An example of a multi-part computation game, in the context of distributed com-

puting, is as follows: A classical problem in distributed computing is the need to reach

a consensus on the value of a shared variable where the value of this variable might

have been corrupted due to machine failure. This value will typically depend on the

history of information available to a set of processors. Each processor will therefore

need to access its memory and extract from it the relevant information, to be shared

with other processors, in order to reach a decision on the value of the shared variable.

However, if the processes represent different entities (say, in a distributed operating sys-

tems context) then each processor may be interested in free-riding on other processors

computations, leading to phenomena as above.

Note that in the proposed setting, accessing one’s own private information becomes

a strategic question. This approach generates a natural tension between the socially

(and even privately) optimal action, which is to compute the joint function correctly,

and agents’ incentive to free-ride. In order to overcome this tension one may need

to design a mechanism to prevent (some or all) agents from free-riding, elicit agents’

secrets and execute the desired computation:

Example 1 Assume a candidate to the economics department has already written 11

research papers, and the economics department would like to decide on whether to

make her a job offer based on the quality of the papers. There are 11 agents (committee

members) who are each given one paper to read in order to make a recommendation.

Initially, each paper may be ”good” or ”bad” with equal probabilities, and the department

has chosen to make an offer to a candidate if he has a majority of ”good” papers.

Consider a situation where a committee member values the correct recommendation
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of the committee, at 1000 USD to him, but values the time he needs to spend on

reading the paper at 400 USD. A simple mechanism asks all the agents, simultaneously,

for their secrets. The strategy tuple where all agents choose to read the papers and

report truthfully is not an equilibrium. To see this consider the perspective of agent 1.

Assuming all agents report (truthfully, or not), then agent 1 can alter the outcome of

G only if the other 10 replies split evenly between 0 and 1, which has a probability of
10!
5!5!

0.510 ≈ 0.25. Therefore, by guessing, and assuming all other agents compute, he

will gain 0.25× 500 + 0.75× 1000 = 875 USD. However, by computing an agent gains

at most 1000 − 400 = 600 USD, and so player 1 has no incentive to compute. The

same argument holds for all 11 agents.

Example 2 Consider 4 agents, each having a secret of either 0 or 1, drawn indepen-

dently with equal probabilities. The agents attribute a utility of 1 for implementing the

right decision, which simply depends on whether all agents are in consensus or not.

Assume three of them have very low computation costs (say, zero) and the fourth has a

cost of 0.4. A mechanism that approaches all agents simultaneously may fail to compute

correctly as the fourth agent will choose to ‘guess’ his secret (by guessing his payoff is

0.875, whereas by accessing the secret the payoff is 0.6). However, if the mechanism

approaches the first three then the mechanism will either learn the true value (which

is the case if there is lack of consensus already among these three) or he may update

the fourth agent about the previous replies. In this case the fourth agent’s ‘pivotalness’

increases and so by guessing he expects a payoff of 0.5, compared to 0.6, when not

guessing. Consequently, the fourth agent will access his secret and the mechanism will

surely compute correctly.

What the last example demonstrates is that the naive way of approaching agents si-

multaneously will not necessarily work, while a sequential approach will. The intuition

behind this example and the advantage of sequential mechanisms is as follows. As-

sume there are agents with low (computation) costs. These agents can be approached

first. It is possible that based on their replies the desired multi party computation

can be carried out. However, if this is not the case then, intuitively, the impact of

the other agents on the result of the computation (their pivotalness) increases, and so

the incentive to incur the cost and compute increases. In other words, as agents are

approached sequentially the remaining agents become either redundant for the desired

computation or highly pivotal.

3



The class of multi party computations (social choice functions) we study is that of

anonymous functions. An anonymous function is one where the function’s value does

not depend on the identity of the agents but on the secrets only. In other words, a

permutation of agents’ secrets will not change the value of the function. This class of

functions is quite elementary and often used in models. Among the anonymous func-

tions are majority, consensus, unanimity, average, variance, order statistic, percentile

and more.

The basic new terminology we introduce for sequential mechanisms is that of an

‘appropriate mechanism’. A mechanism is deemed appropriate if it (weakly) imple-

ments, in equilibrium, the social choice function, for all realizations of secrets. As we

will see it is often the case that we can only guarantee weak implementation.

The class of sequential mechanisms is quite rich. However, we show that appropriate

mechanisms have a simple characterization. More surprisingly, the characterization is

agnostic to the structure of the function, as long as this function is anonymous.

Informally, the main results we report are as follows:

• A general chracterization/reduction theorem (Theorems 1 and 2) – In looking for

an appropriate mechanism one may reduce the search domain: an appropriate

mechanism exists if and only if there exists an appropriate mechanism that is

“simple” (in a sense made precise in the paper). The reduction in size of the

search domain is quite significant and, may turn an impractical search problem

into a practical one. A numerical example follows Theorem 2.

• In some scenarios we can actually further characterize the appropriate mecha-

nisms:

– If all communication is done via broadcasting, then it is sufficient to look at

a kind of “greedy” mechanism.

– If all agents’ costs are equal then it is sufficient look at a mechanism that

approaches agents simultaneously.

– If the mechanism must commit to the order at which the agents are ap-

proached, then it is sufficient to look at a mechanism that orders agents by

costs - from low to high.
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The model we study connects to various strands of the literature. The closest one is

the very recent literature on ‘Non-Cooperative Computation’, introduced by Shoham

and Tennenholtz (2002). In this literature the multi party computation game asserts

that agents would like to know the result of the computation but would rather others

don’t learn the result. We briefly discuss here some other branches of the literature

which is related to our work, and refer the reader to section 4 where we elaborate.

Secure multi party computation involves a similar setup with a different incentive

scheme. Agents, holding a private secret, would like to compute some value, without

disclosing anything about their own secret (at least nothing beyond what is disclosed

by the value of the function).

The literature on Public Goods studies games and mechanisms where there is a

basic tension between agents’ individual efforts (contributions) and the desire to sup-

ply a public good. Often, this literature demonstrates the impossibility of supplying

the public good, even in situations where it is the socially optimal action. In this

literature, agents’ main consideration is how much they can influence the result of

the computation, namely their pivotalness versus their expected contribution. The

topic of pivotalness has been studied extensively by economists as well as by computer

scientists.

The literature on mechanism design discusses the existence and characterization of

‘optimal’ mechanisms, in the same vein that we do. However, the knowledge of private

information in those models is assumed. We consider it part of a player’s strategy. One

should note that, consequently, we cannot rely on the revelation principle, as agents

cannot ‘reveal’ what they do not know.

The next section provides a general model and a detailed definition of ‘sequential

mechanisms’ and section 3 states all the results. Section 4 discusses related literature

and section 5 provides some natural directions for future research.

2 Model

Let N = {1, . . . , n} be a finite set of agents. Each agent j has a unique secret

sj ∈ {0, 1} that he may compute. Let q ∈ [0.5, 1) be the prior probability of sj = 1 and

5



assume these events are independent. The assumption that q ∈ [0.5, 1) is without loss

of generality (if not, then rename the secrets). Agents may compute their own secrets,

however, computation is costly and agent j pays cj > 0 for computing sj. Without

loss of generality we shall assume c1 ≤ c2 ≤ . . . ≤ cn (in words, agents are ordered by

their costs).

Agents are interested in computing some joint binary parameter, i.e. implementing

a corresponding social choice function (e.g., the majority vote or whether they have a

consensus) that depends on the vector of private inputs. Let G : {0, 1}n → {0, 1} de-

note the desired computation. Each agent, j, has a utility of vj from implementing the

correct value of G, and a utility of zero for incorrect implementation. We will assume

that vj > cj, otherwise the agent faces no dilemma (we assume no side payments) .

In the exposition we will use the convention that vj = 1. This is done without loss

of generality, as the more general case where vj > cj > 0, is equivalent to the case

where the value of agent j is 1 but the cost is cj

vj
.

A central designer elicits the agents’ secrets, computes G and reports the computed

value of G back to each agent. In this setup each agent faces a dilemma of whether

to compute his private secret sj, at a cost of cj, or perhaps to submit a guess to the

central designer. The desired property of a mechanism is the correct computation of

G, which is done through the elicitation of secrets from sufficiently many agents.

In the introduction we considered an example where computation and truth reveal-

ing is not an equilibrium. The following example illustrates another situation.

Example 3 - Let G be the parity function, q = 0.5, and cj = 0.4 for all j = 1, . . . , 11.

Once again, consider a simple mechanism that asks all the agents simultaneously for

their secrets and computes G. In this example each agent is pivotal and therefore all

agents computing is an equilibrium, and so G will be computed correctly.

2.1 Sequential Mechanisms

Interestingly enough, there may be a strict advantage in approaching agents sequen-

tially. The intuition is that agents with a high computational cost may not be willing

to compute, unless convinced they are pivotal. If some agents with low computation
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cost have already provided their secret the other agents may face one of two situa-

tions. Either G can be computed from previous replies or it cannot. In the latter

case the remaining agents are more pivotal, perhaps sufficiently so to justify a costly

computation.

We now model mechanisms that may approach players sequentially. We begin with

the most general construction and later look at natural restrictions.

A sequential mechanism (or mechanism) is an ordering of the set of agents, where the

kth agent in the order is selected according to the reply of its predecessors. Furthermore

the kth agent is provided with some information based on the replies of its predecessors.

Let Ω = {0, 1}n be the state space of agents’ replies. For each subset of indices

M ⊂ N we abuse notation and use ωM ∈ {0, 1}M also to denote the cylinder subset

{(ωM , ω−M) : ω−M ∈ {0, 1}−M} ⊂ {0, 1}n. Let HM denote the set of all such cylinders,

with H∅ = ∅ (HM can be viewed as the set of all histories that can be generated after

approaching the agents in M ⊂ N). Let FM denote the field generated by all elements

in HM and finally H = ∪M⊂NHM (think of H as the set of all possible histories).

Definition 1 A sequential mechanism, A = (σ, A), is composed of two components.

For each 1 ≤ j ≤ n:

1. The order function, σ : H → N , which determines the agent that is approached

following any history. For each M ⊂ N and hM ∈ HM we apply the restriction

that σ(hM) 6∈ M .

2. The information function, A : H → 2H . For each h ∈ H, the mechanism provides

the information A(h) to σ(h).

We will denote by σj the (random) agent in the jth place in the order induced by σ,

and Aj denotes the information provided to agent σj, the jth agent. Note that agent σj

will not necessarily know he is the jth agent. The (random) order of agent j is denoted

σ−1(j),

We consider some natural restrictions of the above definition:
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• A fixed order sequential mechanism is one where all the functions σi are constant.

In words, the order of the agents is set in advance, and is independent of their

replies.

• A truth revealing sequential mechanism satisfies h ∈ A(h) for all h ∈ H.

• A sequential mechanism is fully revealing if A(h) = h for all h ∈ H (in which case

it must also be truth revealing). This is a natural restriction in situations where

all communication is done via broadcast channels (see section 3.3 for further

discussion).

Note that the above definition excludes the possibility of approaching agents more

than once. Some examples for various types of mechanisms are:

Example 4 - The simultaneous mechanism is one where all agents are asked simul-

taneously. Formally, σj = j and Aj = H ∀ j. Note that the simultaneous mechanism

has a fixed order and is truth revealing. However, it is not fully revealing.

Example 5 - Let G be the simple majority function (i.e., G = 1 if the number of

secrets with value one is greater than or equals to the number of secrets with value

zero). Set σ1 = 1 and assume that after receiving replies from j agents the algorithm

for approaching the next agent is as follows: if the conditional probability for G = 1

is greater than or equal to 0.5 then the agent with the lowest index (among the ones

who have not been approached yet) is approached, otherwise the agent with the highest

index among them is approached. The information given to that agent is the number

of secrets of both types received so far. Assuming q = 0.5 then this mechanism does not

have a fixed order and is not fully revealing. However, it is truth revealing.

Example 6 - Let G be an arbitrary function and assume the mechanism approaches

the agents according to some fixed order. When approaching agent σj+1 it truthfully

tells him whether he is able to compute the value of G from the input so far, or not.

This mechanism has a fixed order but is not necessarily fully revealing (perhaps it

is easy to think of the consensus function, G, defined by G(s) = 1 if and only if

s1 = s2 = . . . = sn).

In the sequel, we refer to mechanisms of this type as Yes/No mechanisms, and such

mechanisms will prove to be central to our analysis.
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2.2 Agents’ Strategies and Equilibrium

The action space of each agent, j, is the set {compute, don’t compute}×{0, 1}. The first

coordinate refers to whether the agent chooses to go through the costly computation

and the second coordinate is what the agent chooses to inform the central mechanism.

Note that this implies that each agent has 6 (and not 4) actions: Don’t compute and

report 0, Don’t compute and report 1, Compute and report 0, Compute and report 1,

Compute and report the true computed value, and Compute and report a false value.

Let us denote by Γ the set of actions.

A pure strategy for player j, xj : 2H → Γ, assigns an action to each possible subset

of histories, and a (mixed) strategy, Xj : 2H → ∆(Γ), assigns a probability distribution

over Γ. The parameter q, alongside the tuple of (mixed) strategies, {Xj}n
j=1, determines

the probability that G will be computed.

An equilibrium for the mechanism A, is a vector of n strategies, one for each agent,

such that each agent’s strategy is the best response against the other agents’ strategies.

Our first result suggests that for any arbitrary mechanism there exists another

mechanism which has the same incentive structure as the original one, and furthermore

has two notable properties: it is truth revealing and has the ‘partition property’, which

is defined below.

Theorem 1 For any q ∈ [0.5, 1), mechanism, A = (σ, A), and equilibrium, {Xj}n
j=1,

of A, there exists a truth revealing mechanism, B = (σ, B) (note it has the same order

as A), and an equilibrium, {X ′
j}n

j=1 of B, such that when agent j computes sj for a

given history of secrets in the equilibrium of A then it also does so in the equilibrium of

B. Furthermore, the sets B1
j , B

2
j , . . . , B

t
j, which are the possible sets reported to agent

j in B, are pairwise disjoint (we refer to this as the ‘partition property’).

Proof: For each h ∈ H let B(h) = {ĥ ∈ H | A(ĥ) = A(h)} and set B = (σ, B). It is

straightforward to see that B has the same incentive structure as A, is truth revealing

and has the partition property. QED

Theorem 1 provides an observation in the spirit of the revelation-principle (e.g.,

Myerson (1982)). Note that, whereas the proof of the classical revelation principle
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hinges on the mechanism simulating the agents actions in equilibrium, in the above

proof agents actually simulate the mechanism.

Assuming the mechanism is truth revealing then some of the actions are dominated

by others:

• Don’t compute and report 0 is dominated by Don’t compute and report 1 (recall

q =Prob(sj = 1) ≥ 0.5).

• Compute and report 0, Compute and report 1 and Compute and report a false

value are all dominated by Compute and report the true computed value.

So Theorem 1 suggests that we can replace an arbitrary mechanism with one in

which agents actions are restricted to the set ‘Don’t compute and report 1’ and ‘Com-

pute and report the true computed value’. From now on we will refer to these as

‘Guess’ and ‘Compute’. Formally, for each j, Xj : 2H → ∆({compute, guess}).

2.3 Appropriate Mechanisms

We seek mechanisms which can compute the true value of G in equilibrium. In fact, it is

required that a mechanism computes G with certainty. Therefore we seek mechanisms

that induce sufficiently many agents to compute their true secret, in order for G to

be computed. Note that in many cases G may be computed with partial information.

For example, in the case of a consensus function it is sufficient to elicit information

sequentially until we get 2 different replies, which are truthful.

Definition 2 A mechanism A is appropriate for G, at q ∈ [0.5, 1), if there exists an

equilibrium where G can surely be computed for all vector of agents’ secrets. Such an

equilibrium is referred to as a computing equilibrium.

Example 7 Let n = 5, G be the majority vote, and cj = 1
8

∀j. The simultaneous

mechanism is appropriate at q = 0.5. To see this note that for all agents to compute sj

is an equilibrium. However, for q = 0.8 the simultaneous mechanism is not appropriate

as in equilibrium no agent computes his secret and so G could be false with positive

probability.
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Our first result about appropriate mechanisms is a direct corollary of Theorem 1:

Corollary 1 For any function G, q ∈ [0.5, 1) and mechanism, A = (σ,A), that is

appropriate at q, there exists a truth revealing mechanism, B = (σ,B) which has the

‘partition property’, and is appropriate at q.

3 Results for the Case of Anonymous Functions

A function that satisfies G(s) = G(σ(s)) for any s and any permutation σ : N → N is

called anonymous. In this paper we limit the discussion to anonymous functions.

First we look at some general results and then study some restricted cases, such

as fixed-order mechanisms, equal costs and the case of communication via broadcast

channels.

A subset, hM ⊂ HM , is called coherent if G is constant over all elements of hM .

Otherwise it is incoherent. A collection of subsets, {hM1 , . . . , hMk
} ∈ 2H is called

coherent if for all i, hMi
is coherent. In a coherent collection the value of G over

the different subsets may be different. Such a collection is called incoherent if all the

cylinders are incoherent. Note that a collection that is not coherent is not necessarily

incoherent.

The next lemma demonstrates the strength of an appropriate mechanism. It claims

that in the computing equilibrium of an appropriate mechanism an agent chooses the

action ’Guess’, with positive probability, if and only if the information it receives is

coherent.

Lemma 1 Assume G is anonymous and let A be an arbitrary truth revealing mecha-

nism with the partition property (see Theorem 1). If A is appropriate for G at q then

agent σj’s action is ’Guess’ if and only if Aj is coherent.

Proof: The first direction is straightforward. If Aj is coherent then G can already be

computed from previous replies and so Agent j has no incentive to compute.
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What about the converse? As A is appropriate the value of G can be computed

for any vector of signals. Thus, if some agent, σj, chooses ’Guess’ as his best reply, it

must be the case that his signal will not impact the value of G.

Note that as G is anonymous its value can be inferred from the number of coor-

dinates with value zero in the vector of signals. Denote the number of zeroes known

to A at time j by r. Assume, by way of contradiction, that G cannot be computed

at stage j. Therefore, there must be some number n ≥ t > r such that if the total

number of zeroes is t then G = 0 and if the total number of zeroes is t + 1 then G = 1

(or the other way around). But this suggests that it is possible that for some sequence

of signals agent σj will be pivotal, possibly shifting the number of zeroes between t and

t + 1. Consequently, it will influence the value of G. The conclusion is, therefore, that

if agent σj guesses it must be the case that G can be computed.

As G is truth revealing this conclusion must hold whenever agent σj is provided

with the information Aj. Namely for each h such that A(h) = Aj we know that G can

be computed, which means that all such h are coherent. As Aj = {h | A(h) = Aj} we

are done. QED.

We say that a mechanism has the Yes/No property if ∀j, Aj is either coherent or

incoherent.

A Yes/No Mechanism is a mechanism such that each agent j receives, when it is his

turn, one of only two subsets of H, one which is coherent and the other is incoherent.

In particular, a Yes/No mechanism has the Yes/No property.

Lemma 2 Assume G is anonymous and A is a truth revealing mechanism with the

partition property that is appropriate at q. Then there exists a truth revealing mech-

anism, B, with the partition property, that is appropriate at q and has the Yes/No

property. Furthermore, B has the same (random) order as A

Let Zj ⊂ {0, 1}n denote the set of secrets where agent j is pivotal. Namely Zj = {s |
G(s) 6= G(s−j, 1− sj)}. Zc

j is its complement. When A is a truth revealing mechanism

with the partition property then we can use Zj to compute the expected utility agent j

receives by guessing, at a computing equilibrium. Formally, when given the information

Aj ⊂ H, the expected utility from guessing is Prob(Zj | Aj) · q+Prob(Zc
j | Aj) · 1, in a
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computing equilibrium. (To see this note that if j is pivotal then it will learn the correct

value of G with probability q, otherwise it will learn the value of G with probability

1).

Proof: We prove this lemma by showing, first, a mechanism where the last agent

receives information which is either coherent or incoherent. We then claim that the

same argument can work for the agent which is one before the last and so on and so

forth.

Consider an arbitrary realization of secrets, s, and consider, σn, the last agent to

be approached. Aσn is the information provided to the last agent.

Assume that Aσn is not coherent. By the previous lemma we know that σn’s action

was to compute. By computing, agent σn will get a utility which is no less than the

utility from deviating. Therefore 1− cσn ≥ Prob(Zσn | Aσn) · q+Prob(Zc
σn
| Aσn) · 1.

Consider an alternative mechanism B which is equal to A, except that on s it

replaces Aσn with the subset composed of all cylinders that are coherent, denoted

Acoherent
σn

⊂ Aσn , or by Aincoherent
σn

= Aσn − Acoherent
σn

, depending on which is true.

The new mechanism has a computing equilibrium, with the following strategies:

All agents use the same strategies as in A, except for agent σn. For all subsets of 2H ,

but Acoherent
σn

and Aincoherent
σn

, this agent acts that same as in A. However in reply to

Acoherent
σn

, this agent guesses, as G can already be computed. In reply to Aincoherent
σn

this

agent computes. This is actually its best reply because Prob(Zσn | Aσn) ≤ Prob(Zσn |
Aincoherent

σn
), and so σn’s conditional probability of being pivotal increases (in fact it

becomes one). Consequently, the expected payoff from guessing diminishes, compared

to Aσn .

Now we re-visit the other agents’ strategies. Their consideration of the probability

of being pivotal has not changed in B and therefore the strategies in the computing

equilibrium of A are best replies in B.

Now repeat this argument, sequentially, for any s, for which Aσn is not coherent.

The resulting mechanism will be such that the (random) last agent will get information

which is either coherent or incoherent.

Now, we can use the same arguments for the agent σn−1, and then to σn−2 and so

on until we get the desired mechanism. QED
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Lemma 3 Assume G is anonymous and A is a truth revealing mechanism that is

appropriate at q and has the partition property and the Yes/No property. Then there

exists a truth revealing Yes/No mechanism, B, that is appropriate at q.

Proof: First, let us construct the mechanism B. The random order on B is that of A.

For each agent j let Bj denote the union of all coherent subsets of the form Aσ−1(j).

Let Bc
j be its complement. As A has the Yes/No property, Bc

j must be incoherent and

so B is a Yes/No mechanism.

Assume A is appropriate for q and let s be an arbitrary vector of secrets. Denote

by σn the last agent to be approached at the realization s . If Bσn is coherent then

σn surely chooses not to compute in B. But this is not important as G is computed

anyway.

Consider the other case, namely that Bσn is incoherent. Bσn can be partitioned

into incoherent subsets, A1
σn

, A2
σn

, . . . , At
σn

, which are all in the image of the function

Aσn , in A.

As A is assumed appropriate the action of agent σn, in reply reply to any such

subset, is to compute. So we deduce that 1−cσn ≥ Prob(Zσn | Ar
σn

)·q+P (Zc
σn
| Ar

σn
)·1

for all indices r . By multiplying this formula by Prob(Ar
σn
| Bσn) and summing over r

we conclude that 1− cσn ≥ Prob(Zσn | Bσn) · q + P (Zc
σn
| Bσn) · 1 which implies that

it is optimal for σn to reply truthfully in B.

Now we can use similar arguments for agent σn−1 and so on. QED

We now can phrase the main result for the general case:

Theorem 2 Assume G is anonymous. Then there exists an appropriate mechanism

at q if and only if there exists a truth revealing Yes/No mechanism that is appropriate

at q.

Proof: Follows directly from Corollary 1 and Lemmas 1-3. QED

The following example illustrates the power of Theorem 2.

Example 8 Consider a three agents problem and let us compute the number of mech-

anisms available:

14



• There are 3 options to choose the first agent, and for each of his two possible

replies, one of the remaining two agents is chosen, yielding 4 options. As there

is only a single option for the third agent, we conclude that there are 3 · 2 · 2 = 12

options in total.

• Each agent, once approached can be provided with any subset of histories. As there

are 27 possible histories in total, we conclude that the number of mechanisms is

12 · 227

On the other hand the only degree of freedom, when considering truth-telling Yes/No

mechanisms, is the order at which agents are approached. This implies that there are

only 12 such possibilities.

3.1 Restricted Case - Fixed Order Mechanisms

The next result points out an optimal mechanism when the discussion is restricted to

fixed order mechanisms.

Lemma 4 Assume G is anonymous and A is a fixed order truth revealing Yes/No

mechanism that is appropriate at q. Then the natural order Yes/No mechanism is also

appropriate at q.

Proof: Assume A is a fixed order Yes/No mechanism that is appropriate for G at q,

but it is not the natural order Yes/No mechanism. Let k be the smallest index for

which k = σi > i. Denote m = σ−1(i).

Denote by Permutei↔k : Ω → Ω the permutation function that switches between

the i and k entries.

Consider a new mechanism, B = (τ,B), defined as follows:

• τj = σj for all j 6= i, m, τi = i and τm = k.

• Bj(h) = Aj(Permutei↔k(h)) for all h ∈ H.

15



We claim that the following strategy tuple, {X ′
j}n

j=1, is a computing equilibrium for

B. For all H̃ ⊂ H:

• For all agents j 6= i, k, set X ′
j(H̃) = Xj(Permutei↔k(H̃))

• X ′
i(H̃) = Xk(Permutei↔k(H̃))

• X ′
k(H̃) = Xi(Permutei↔k(H̃))

In words, all agents, but i and k, permute the information they receive and then

follow the computing equilibrium strategy of A. Additionally, agents i and k change

roles. Once we show that {X ′
j}n

j=1 is an equilibrium it is immediate to verify it is

actually a computing equilibrium.

To prove our claim we introduce additional notation as follows. Let NOA
j (and

NOB
j ) be the incoherent set provided to the jth agent in A (respectively, B) and Y ESA

j

(respectively, Y ESB
j ) be its complement. Note that for each player σj, Zσj

⊂ NOA
j+j′ ⊂

NOA
j for all 1 ≤ j′ ≤ n− j (similarly for all τj), Zσj

⊂ NOB
j+j′ ⊂ NOB

j .

For all agents j 6= i, k our claim is straightforward. What about agents i and k?

Fix a specific realization of secrets and consider two cases as follows:

Case 1: Assume that for this realization agent i receives the information Y ESB
i .

This means that k must receive the information Y ESB
m in B. Note that in the mech-

anism A agent k received the information Y ESA
i (which equals Y ESB

i ), and so his

best reply is to guess, as dictated by X ′
i. Furthermore, agent i must have received the

information Y ESA
m, to which it replied by guessing. Therefore, X ′

k dictates to guess,

which is indeed agent k’s best reply.

Case 2: Assume that for this realization agent i receives the information NOB
i .

Therefore in A, agent k would receive the information NOA
i = NOB

i and would reply by

computing. So his expected payoff from computing (recall its a computing equilibrium)

is 1−ck, which is greater or equal than the expected payoff from guessing. We conclude

that 1 − ck ≥ Prob(Zk | NOA
i ) · q+ Prob(Zc

k | NOA
i ) · 1. In B, i faces the same

distribution that k faced in A and so guessing would result in Prob(Zi | NOB
i ) · q+

Prob(Zc
i | NOB

i ) · 1 as well. As 1− ci ≥ 1− ck we learn that i’s best reply, in B, is to

compute, which is exactly what is dictated by X ′
i.
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As for agent k, it may receive either the information Y ESB
m or NOB

m. Assume

it is the former then on one hand the best reply is to guess and on the other hand

X ′
k(Y ESB

m) = Xi(Permutei↔k(Y ESB
m)) = Xi(Y ESA

m), which is to guess, as well.

If agent k were to receive the information NOB
m then X ′

k dictates to compute. Lets

verify this is indeed the best reply. By guessing k expects to receive Prob(Zk | NOB
m)·q+

Prob(Zc
k | NOB

m) · 1. As Zk ⊂ NOB
m ⊂ NOB

i we know that guessing will generate an

expected utility that is less or equal Prob(Zk | NOB
i ) · q+ Prob(Zc

k | NOB
i ) · 1, which

is equal Prob(Zk | NOA
i ) · q+ Prob(Zc

k | NOA
i ). The last term is known to be less or

equal than 1− ck, as we know that k computes when receiving the information NOA
i

in A. We conclude that the payoff from guessing is less or equal that of computing and

so reach the desired conclusion that computing is k’s best reply.

Finally, note that if B does not have the natural order we can go on and switch one

more pair of indices and introduce C, and so on and so forth. We will eventually end

up with the natural order Yes/No mechanism. QED

A corollary of the last lemma is:

Theorem 3 Assume G is anonymous, then there exists a fixed order appropriate mech-

anism at q, if and only if the natural order Yes/No mechanism is appropriate at q.

Proof: Follows directly from Corollary 1 and Lemmas 1-4. QED

Note that the number of fixed order, truth-telling, Yes/No mechanisms, for N

agents is N !, whereas Theorem 3 suggest that only one mechanism should be studied

when looking for an appropriate mechanism.

The last result suggests that perhaps a similar observation may hold for the general

set of mechanisms. More formally:

Hypothesis: If G is anonymous and there exists a mechanism that is appropriate at

q then the Yes/No mechanism with natural order is also appropriate.

Unfortunately, this is not the case as the following example demonstrates:

Example 9 Let G be the consensus function over 3 agents. Set q = 0.5 and c1 =

0, c2 = 0.26, c3 = 0.3.
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It is straightforward to verify that no fixed order Yes/No mechanism is appropriate,

whereas the Yes/No mechanism where σ1 = 1, σ2(0) = 2 and σ2(1) = 3 is appropriate.

To verify this note that player 1 computes as it has no cost for computing. As for

player 3, note that if he gets NO signal from the mechanism it may be the case that

s1 = 1, with probability of 2/3, or alternatively s1 = 0 and s2 = 0, with probability 1/3.

In the former case the probability of being pivotal is 1/2 whereas in the second case it is

1. Thus, the expected payoff of guessing is 2/3, which is less than 1− 0.3, the payment

from computing. Similar considerations yield that player 2 computes.

Consider the functions AND and OR (the AND function equals 1 if and only if all

secrets are 1, and the OR function equals 1 if and only if at least one secret is 1). Note

that there exists a unique realization for which the mechanism will inform agents of

the set NOj, for all j. Therefore, a Yes/No mechanism necessarily has a fixed order

(one can change the order of agents once the function can be computed to ensure this).

Theorem 3 now implies that if there exists an appropriate mechanism for the AND

(OR) function then the fixed order mechanism that approaches the agents according

to the natural order is also appropriate.

3.2 Restricted Case - Equal Cost Structure

Our next result discusses the case where all costs are equal. We show that the simul-

taneous mechanism is equivalent to the Yes/No mechanism with a natural order.

Theorem 4 If G is anonymous and costs are all equal then there exists an appropriate

mechanism at q, if and only if the simultaneous mechanism is appropriate at q.

Proof: One direction is obvious. Namely if the simultaneous mechanism is appropriate

at q then there definitely exists an appropriate mechanism at q.

As for the other direction, let A be an arbitrary mechanism and assume it is appro-

priate for some probability q and cj’s. By our previous results we can assume, w.l.o.g.,

that A is the Yes/No mechanism.

Consider the first agent, σ1. If he guesses, then by lemma 1 all subsequent agents will

guess as well (and the function can already be computed) and therefore the function G
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must be constant, in which case the theorem’s statement is obvious. Assume σ1 actually

computes his secret. Then we know that 1− cσ1 ≥ Prob(Zσ1 | A1) · q +P (Zc
σ1
| A1) · 1.

However, as A1 = H, 1− cj = 1− cσ1 and G is anonymous, we conclude that 1− cj ≥
Prob(Zσ1) · q + P (Zc

σ1
) · 1 = Prob(Zj) · q + P (Zc

j ) · 1.

We are done by noting that the condition for the simultaneous mechanism to be

appropriate for q is exactly 1− cj ≥ Prob(Zj) · q + P (Zc
j ) · 1. QED

3.3 Restricted Case - Communication via Broadcast Channels

The model of the communication structure that is implicit in the definition of sequential

mechanisms is that of ‘private communication’. The mechanism is able to communicate

with each agent over a private channel, without another agent eavesdropping. Con-

sequently, the mechanism is able to pass on any information it chooses, when moving

from one agent to another. It may reveal the exact nature of the previous replies or it

may reveal partial information, or none at all.

Consider a communication structure consisting, solely, of a broadcast channel, one

that allows everyone to communicate with everyone while all others may listen in. In

this case agents will know who was approached and what was his reply. Therefore,

mechanisms in such a communication environment, are necessarily ‘fully revealing’.

The flexibility of fully revealing mechanisms is limited to the choice of the order at

which to approach agents.

We introduce the HCF (High Cost First) algorithm for (dynamically) ordering the

agents:

• Step One - For each possible prefix compute the probability of being pivotal.

Note that if G is anonymous then this is easy.

• Step Two - Consider the following recursive structure. For any given set of

agents and costs choose the agent to move first as follows - Consider all agents

with a cost low enough to justify computing (namely all j such that 1 − cj ≥
Prob(Zj) · q + P (Zc

j ) · 1) and approach the agent with the highest cost among

these. Notice that computing the threshold cost is polynomial in the number of

agents (recall the function id anonymous).
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• Use this procedure to allocate the first agent (σ1). Depending on the reply of σ1

you end up with one of two trees. Apply the same procedure again to each tree,

and so on and so forth.

It turns out that in such cases one can efficiently derive the appropriate mechanism,

assuming such a mechanism exists. Notice that when we consider broadcast commu-

nication then the major issue in the definition of the mechanism is the order function.

We can show:

Theorem 5 Let G be an anonymous function. Assume it is common knowledge that

there exists a fully revealing mechanism for G, then the fully revealing mechanism

induced by the HCF algorithm has a computing equilibrium.

Proof: We use an inductive argument, on the total number of agents. For n = 1 this

is straightforward. Assume the algorithm holds for all problems with n = N agents

and consider a problem with n = N + 1 agents.

It is common knowledge that the original problem has an appropriate mechanism.

Assume agent k is the first agent in that appropriate mechanism. We now know two

things. First, that 1 − ck ≥ Prob(Zk) · q + P (Zc
k) · 1, and second, that in the two

problems induced, following k’s reply, there are n = N agents (all N + 1 agents, but

k) and it is common knowledge that an appropriate mechanism exists.

Consider agent σ1 that was chosen by our algorithm. By definition cσ1 ≥ ck (note

that due to anonymity Prob(Zσ1) ·q+Prob(Zc
σ1

) ·1 =Prob(Zk) ·q+Prob(Zc
k) ·1). Hence,

if agent σ1 moves first the existence of an appropriate mechanism for the two problems

it induces is common knowledge.

Now, by our induction hypothesis, the algorithm induces a fully revealing appro-

priate mechanism for each of the two games induced by σ1’s reply, and so a computing

equilibrium exists. It is therefore a best reply for agent σ1 to compute as well. QED

Remark: Note that the algorithm suggested can be implemented on-line. In other

words, computation may take place only along the realized path. This is particularly

interesting from a complexity point of view, as the number of histories along a particular

path is n, whereas the total number of histories in H is of the order of magnitude of

2n (and a naive off-line algorithm will have to refer to each of them).
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The above result hinges on the existence of an appropriate mechanism. Verifying

the actual existence of such a mechanism is a non trivial task. Indeed, one intuitive way

to go about this question is to apply the algorithm suggested in the proof of Theorem

5 and eventually check whether the resulting mechanism is appropriate. However, this

will be an exponential procedure. The discussion of the complexity of algorithms for

verifying the existence of appropriate mechanisms is a subject for further study and

will be discussed in a pending paper.

One may note the contrast between Theorem 5, which suggests approaching agents

with high costs earlier, and Theorem 3, which suggests approaching agents with low

costs earlier. This contrast stems from the fact that these two cases are, in some

sense, orthogonal. Whereas the fixed order case, studied in Theorem 3, eliminates the

possibility to choose the order of agents on-line and leaves the information revelation as

the only degree of freedom on-line, the broadcast case does the opposite - it eliminates

the decision on what information to disclose and leaves the order as the only degree of

freedom.

4 Related Literature

This paper considers multi-party computation from a game-theoretic perspective. Its

novelty stems from treating multi-party computation as a public good setting, where

costly computation of private inputs leads to free-riding problem, and from the in-

troduction and study of mechanisms (and in particular sequential mechanisms) for

overcoming this problem. Our framework therefore bridges the gap between work in

multi-party computation in computer science and the literature on mechanism design

and free-riding in economics and game theory. We now discuss some of the related

literature, and position our work with respect to it.

4.1 Secure multi-party computation

Multi-party computation is a central topic in computer science. Many efforts have

been devoted to the understanding of this topic. Of particular interest is the subject of

secure multi-party computation (see e.g. Yao (1982), Goldreich, Micali and Wigderson

(1987), Ben-Or, Goldwasser and Wigderson (1988)and a survey by Goldreich (1998)).
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The basic idea behind that literature is that a group of agents, each of which observes

a private secret (e.g., bit) wishes to compute a function that is defined on these secrets

(e.g. the majority of the bits’ values). The main objective is to devise protocols for

collective computation of the desired function value without having any information

revealed to the parties, beyond the function’s value. In particular, an agent will not

be able to learn anything that is not implied by his private secret and the value of

the function. The formal definitions of this setting follow the idea of zero-knowledge

interactive proof systems of Goldwasser, Micali and Rackoff (1988), a central topic in

cryptography. Secure multi-party computation can be viewed as a form of a game

between honest agents and malicious agents (see Linial (1992) for a discussion of a

game-theoretic perspective on that issue).

4.2 Game-theoretic multi-party computation

Although game-theoretic in nature, the work on secure multi-party computation does

not include standard game-theoretic analysis. A complementary perspective, which

does adopt a game-theoretic approach to multi-party computation, has been recently

introduced by Shoham and Tennenholtz (2002). In their setting, titled non-cooperative

computing, an agent’s utility is effected by two factors: a primary objective of com-

puting the function, and a secondary objective of preventing others from comput-

ing it. They provide full characterization of the boolean functions that can be non-

cooperatively computed under various assumptions on the economic setting (e.g. pri-

vate values vs. correlated values) and the algorithmic setting (e.g. deterministic vs.

probabilistic algorithms). Most recently, work that attempts to combine secure multi-

party computation and non-cooperative computing has been introduced by McGrew,

Porter and Shoham (2003).

4.3 Multi-party computation and free riding

The above settings are all non-cooperative in nature, and consider agents with a strong

externality: preventing the others from gathering information about other agents’ se-

crets or/and the value of the function itself. In these settings each agent has some

private information, accessible only by him at no cost. In this paper we expose and

explore another fundamental aspect of multi-party computation. The main distinction
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of our setting from previous work on multi-party computation stems from the fact that

the agents do not know their secrets to start with, and each agent has to spend some

effort in obtaining his secret. The result of the computation is a public good and con-

sequently we run into a free-riding problem. An agent may be tempted not to compute

his own private value if this might not be pivotal for the function computation. This

central aspect, of potential free-riding in multi-party computation, which is orthogonal

to previous work on multi-party computation, is the subject of this paper.

The study of free riding has a long tradition in Economics and Game Theory,

in particular in the context of the Public Good problem (e.g., chapter 13 in Mas-

Colell, Whinston and Green (1995)). In many models it is shown that free riding

is sufficiently destructive to prevent socially optimal outcome (e.g., Rob (1989) and

Mailath and Postlewaite (1990)). In this paper, we take a more constructive approach

and seek mechanisms that overcome the free riding problem and result in the efficient

outcome, which is the correct execution of the multi-party computation. However, the

results reported in this paper are restricted to the class of anonymous computations,

namely computations that do not take into account agents’ names. As in many Public

Good problems the central consideration for the agents is whether or not their own

secret has an impact on the joint computation. In other words, agents calculate how

‘pivotal’ they are. Pivotalness considerations are prevalent in many game theoretic

models (e.g., Fudenberg, Levine and Pesendorfer (1998), Al-Najjar and Smorodinsky

(2000)). Such considerations also appear in problems studied by compute scientists,

such as variable influence (e.g. Ben-Or and Linial (1985) and Kahn, Kalai and Linial

(1988)) and t-resilient functions (e.g. Chor et al (1985)).

4.4 Mechanism design: entry fees

The basic model studied is that of asymmetric information. However, agents, initially,

do not know their types (and so we depart from the classical ‘private types’ setting) but

can access it, at a cost. Therefore, learning one’s own secret (a-k-a type) is a strategic

choice. An approach that resembles the one taken in this paper has been recently

suggested in a voting model by Smorodinsky (2003). More generally, our work has some

(although mostly superficial) similarity with assumptions taken in work on economic

mechanism design. For example, work in auction theory distinguishes between private

values, where each agent knows his type (e.g. valuation for an auctioned good), common

23



value, where there is a shared value for an auctioned good which is initially unknown

and is revealed only after the auction is over, and various intermediate cases (see

Klemperer (1999) for a recent overview). In our case, each agent has his own private

type (secret), but he does not know its value (instantiation of the corresponding random

variable); however, by applying some computation effort he can surely learn his type.

This decision about learning an agent’s own type is a strategic decision of the agent.

This should be distinguished from work on mechanism design with entry fee (see Levin

and Smith (1994), for example) where agents need to decide whether to spend some

fixed amount of money/effort in attending an auction. Although this decision may

well influence the number of participants in an auction, it does not refer to a strategic

decision about whether to learn one’s type, and does not refer to the fundamental free

riding problem associated with it.

Another paper which refers to the problem of a collective action with preliminary

sunk costs (similar to the notion of entry fees), is the model studied in Admati and

Perry (1991). They model a public good problem where agents pay up-front and bear

their costs before the decision on supply takes place. They show inefficiency when the

agents are approached sequentially in order to contribute. The Admati-Perry model

studies a specific institution and involves two players who alternate in their moves.

4.5 Mechanism design: sequential mechanisms

Notice that from a technical perspective, our results can be categorized as contribu-

tions to the theory of mechanism design. However, in the mechanism design literature

most models look at mechanisms that approach all agents simultaneously. Sequen-

tial mechanisms discussed in that literature are typically multi-stage games where the

designer/center does not access agents sequentially, but the agents themselves may

choose actions sequentially. In this paper we consider mechanisms that approach one

agent after the other. These type of mechanisms turn out to be central in overcoming

the free-riding problem in multi-party computations. An example for such sequential

actions by the agents is the model of Marx and Matthews (2000) where where agents’

voluntary contributions to a public project are made incrementally. At each stage

agents have information about the aggregate contribution and the mechanism plays no

role in disseminating information. Another example is the above mentioned paper by

Admati and Perry (1991).
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4.6 Mechanism design: preference elicitation

Recent work in computer science has been concerned with algorithms for preference

elicitation (see e.g. Boutilier et al (1997) and Cohen and Sandholm (2001)). Our

work contributes also to the literature on techniques for preference and information

elicitation. However, although some of that work adopts a game-theoretic perspective

(see e.g. Shoham and Tennenholtz (2001)), it does not deal with the fact private

information might be costly to acquire, and with the fundamental free riding problem

this issue introduces.

4.7 The Revelation Principle

A closely related branch of the literature is that on the revelation principle in Bayesian

games (e.g., Myerson (1982) and section 6 in Myerson (1991), among many others).

Consider a model of incomplete information where agents communicate their informa-

tion to an external mediator, who may in return suggest back to them some course of

action. According to the general version of the revelation principle one may restrict

attention to truth-telling agents, who comply with the mediator’s recommended action.

This is, intuitively, quite similar to the results of Theorems 1 and 2. One may inter-

pret the Yes/No mechanism as a recommendation by the mechanism to the agents on

whether to learn or to guess, and agents do comply, when mechanisms are appropriate.

There are two major reasons why the current model and results do not build on

this revelation principle: (i) First, in our model, agents’ information acquisition is a

strategic decision and is, furthermore, costly to the agents. In Bayesian games, how-

ever, agents information is given to them (at no cost) and there is no acquisition stage

(or, more accurately, the acquisition stage is not part of an agent’s strategy). Note that

agents decide on whether to acquire the information only after they get a recommenda-

tion from the mechanism. (ii) An important component in our model is the possibility

to approach agents sequentially. The information revealed by agents approached early

on is critical in determining the “recommendation” made to later agents. Example 2

demonstrates that a situation where a mechanism that simultaneously approaches all

agents cannot simulate a sequential mechanism.
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4.8 Collective Decision Making and the Condorcet Jury The-

orems

Collective decision making under uncertainty has been studied by various authors (e.g.,

Young (1988), Austen-Smith and Banks (1996) and Fedderson and Pesendorfer (1997,

1998)). In this setting committee members need to jointly decide which state of the

world is correct. A leading example is that of a jury that is appointed to decide whether

the defendant is guilty or innocent. Each committee member receives some noisy signal

about the state and submits a vote accordingly. The goal of this literature is to find

optimal voting rules, that minimize the probability of mistake. Often, the domain of

search is the set of all majority mechanisms. Of particular interest is the comparison

between simple majority and unanimity. Whereas collective decision making is at the

heart of our model as well, we look at various functions and not only majority rules,

and, furthermore, in our model information is costly.

Recent models look at situations where agents can acquire their information at a

cost. Persico (2004), does so in a simultaneous decision making framework, Gerardi

and Yariv (2004) extend Persico’s model and allow for communication among agents.

Finally, Gershkov and Szentes (2004) consider a sequential approach, similar to ours,

and study efficient mechanisms, where efficiency takes into account the probability of

correct decision making as well as the costs for acquiring information. In the work of

Gershkov and Szentes, as well as in all previous papers, the mechanism is a mean to

improve the probability of correct decision making. In our setting the goal is actually to

compute some exogenously given function, and hence the main conceptual difference.

Also, our approach allows for an arbitrary anonymous function and does not focus on

majority rules.

An earlier model that studies sequential mechanisms in this context is that of Dekel

and Piccione (2000), who look at a sequential model of decision making but do not

consider costly information acquisition. In fact, in the absence of this component,

Dekel and Piccione show that sequential mechanisms provide nothing beyond what

simultaneous mechanisms do.
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5 Future Research

This paper looks at the multi-party computation problem, from the perspective of

mechanism design and individual incentives. It provides a general model and intro-

duces ‘sequential mechanisms’. This setup provides ground for a variety of interesting

questions to pursue.

• Natural extensions: There are various ways to extend the model and questions

discussed in this paper.

– Model of randomness: In the model introduced here, agents’ secrets are

independent and identically distributed. Obviously this is quite restrictive.

One can look at the general case, or perhaps at additional restricted cases,

such as conditionally independent secrets, prevalent in the voting literature.

– Non-anonymous functions: The study of anonymous functions, although

well motivated, does exclude interesting functions such as electoral voting

or weighted majority.

– Communication structure: The generic model introduced in section 2

assumes a private communication channel between the mechanism and the

agents. However, in section 3.3 we look at the implications of a more re-

stricted model, that of a broadcast. In such a communications setup all

messages are heard by everyone. This in turn implied that the mechanism

must be fully revealing. Other natural restrictions can be studied. For

example, assuming all down-links (i.e., from the mechanism/center to the

agents) are public (broadcast), but up-links are private. Alternatively, the

mechanism may have access to some agents only via other agents (consider

a model of a circular network for example).

• Incentive structure / Externalities: In this paper we look at a primitive

incentive structure. Each agent may choose to pay or not for private information

and may receive, or not, information on the value of G. No externalities, for

example, are involved. However, agents’ considerations may often depend on

what opponents get. For example, whether or not they learned the agent’s secret,

or whether or not they learned the value of G (as in the paper of Shoham and

Tennenholtz (2002)).

27



• Existence of an appropriate mechanism: This paper focuses on the structure

of appropriate mechanisms. However, such mechanisms may fail to exist in some

cases (e.g., apply the conclusion of Theorem 4 to example 1). The existence of

appropriate mechanisms, which is the subject matter of a pending paper, is a

topic for further research. In particular, providing efficient algorithms or natural

criteria to decide about the existence is an important topic. The characterization

results of appropriate mechanisms, reported in this paper, provide an excellent

starting point to study the existence question.

• Probabilistic Mechanisms: In our setup mechanisms do not use lotteries to

determine the order of agents or the information provided to them. All random-

ness follows from the secrets and agents’ strategies. In fact, as demonstrated by

the next example, probabilistic mechanisms are more powerful in the sense that

there are cases where probabilistic mechanisms may be appropriate even when

no (deterministic) mechanism is appropriate.

Example 10 Consider example 9 without the agent with the zero cost. The

Yes/No mechanism that uses a fair coin to determine the first agent is appropriate

but any mechanism that chooses the first agent deterministically is not.
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