04491 Abstracts Collection
Synchronous Programming - SYNCHRON’04

— Dagstuhl Seminar —

Stephen A. Edwards', Nicholas Halbwachs?, Reinhard von Hanxleden® and
Thomas Stauner?

! Columbia University, US
sedwards@cs.columbia.edu
2 VERIMAG - IMAG, FR
3 Universitit Kiel, DE
rvh@informatik.uni-kiel.de
4 BMW Car IT, DE

thomas.stauner@bmw-carit.de

Abstract. From 28.11.04 to 03.12.04, the Dagstuhl Seminar 04491 “Syn-
chronous Programming - SYNCHRON’04” was held in the International
Conference and Research Center (IBFI), Schloss Dagstuhl. During the
seminar, several participants presented their current research, and on-
going work and open problems were discussed. Abstracts of the presen-
tations given during the seminar as well as abstracts of seminar results
and ideas are put together in this paper. The first section describes the
seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.

Keywords. Synchronous languages, executive summary, Esterel, Lus-
tre, Signal, semantics, programming languages, real-time systems

04491 Executive Summary — Synchronous Programming -
SYNCHRON’04

This seminar was the 11th in a series of semi-annual workshops on the Synchro-
nous Languages (Esterel, Lustre, and Signal). These languages were invented in
the early 1980’s to make the programming of reactive systems easier. The goal
of the seminar was to bring together researchers and practitioners of synchro-
nous programming, and furthermore to reach out to relevant related areas and
industrial users.

Keywords: Synchronous languages, executive summary, Esterel, Lustre, Signal,
semantics, programming languages, real-time systems

Joint work of: Edwards, Stephen A; Halbwachs, Nicholas; von Hanxleden,
Reinhard; Stauner, Thomas

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/195
Dagstuhl Seminar Proceedings 04491

Synchronous Programming - SYNCHRON’04
http://drops.dagstuhl.de/opus/volltexte/2005/196

https://core.ac.uk/display/62911067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://drops.dagstuhl.de/opus/volltexte/2005/195

2 S. A. Edwards, N. Halbwachs, R. v. Hanxleden and T. Stauner

Playing Charts

Joagquin Aguado (Universitit Bamberg, D)

This talk is about some results towards a game-theoretic account of the semantics
of synchronous languages, which provides a framework encompassing both non-
deterministic Statecharts (as per Pnueli and Shalev) and deterministic Esterel-
SyncCharts.

Keywords: Game-theory, semantics, synchronous languages

Joint work of: Mendler, Michael; Aguado, Joaquin

Heterogeneous Reactive Systems

Albert Benveniste (IRISA/INRIA Rennes, F)

I shall present in detail our recent collective work on Heterogeneous reactive
systems and tagged systems. This is a generalization and systematisation of our
previous work on desynchronisation. It will be appropriate to put this presenta-
tion after the one on SHIM by Stephen Edwards, as I shall be using it.

Keywords: Synchronous, asynchronous, heterogeneous, tag, reactive systems,
deployment

Joint work of: Benveniste, Albert; Caillaud, Benoit; Carloni, Luca; Caspi, Paul;
Sangiovanni-Vincentelli, Alberto

Extending SCADE/LUSTRE with Automata.

Jean-Louis Colaco (Esterel Technologies - Toulouse, F)

This talk is about the extension of LUSTRE, some on the data flow side (merge
and reset) and another more important: automata. A simple but not completely

trivial example will be treated and the main ideas of the compilation will be
sketched.

Keywords: LUSTRE, SCADE, data-flow, automata, compilation

Joint work of: Colaco, Jean-Louis; Pagano, Bruno

Synchronous Programming - SYNCHRON’04 3

Nemo: A Domain-Specific Language for the Description of
Multi-Task Systems

Gwendél Delaval (INRIA Rhoéne-Alpes, F)

We propose a programming language specific to the domain of multi-task real-
time control systems, such as in robotic, automotive or avionics systems. It can be
used to specify a set of resources, with usage constraints, and a set of tasks, that
use them, as well as imperative applications requesting them in sequence, and ex-
plicit temporal properties. We then obtain automatically, through a compilation
process including a phase of discrete controller synthesis, an application-specific
task handler that satisfies the constraints (if there exists one).

Keywords: Real-time systems, safe design, domain-specific language, discrete
control synthesis, synchronous programming

Joint work of: Delaval, Gwenaél; Rutten, Eric

SHIM: A Language for Hardware/Software Integration

Stephen A. Edwards (Columbia University, USA)

Virtually every system designed today is an amalgam of hardware and soft-
ware. Unfortunately, software and circuits that communicate across the hard-
ware/software boundary are tedious and error-prone to create. This suggests a
more automatic way to synthesize them.

I present the SHIM language, which combines imperative C-like semantics for
software and RTL-like semantics for hardware to allow a unified description of
hardware/software systems. Hardware processes and software functions commu-
nicate through shared variables, hardware for which is automatically synthesized
by the SHIM compiler, which generates C and synthesizable VHDL.

I demonstrate the effectiveness of the language by re-implementing an 12C
bus controller. The SHIM source is half the size of an equivalent manual im-
plementation, slightly faster, and has a smaller memory footprint. Partial and
complete hardware implementations in SHIM are also presented, showing that
SHIM is succinct and effective.

Keywords: Hardware /software codesign, synchronous, asynchronous, language
design, integration

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/158

http://drops.dagstuhl.de/opus/volltexte/2005/158

4 S. A. Edwards, N. Halbwachs, R. v. Hanxleden and T. Stauner

Uncertainties and Nondeterminism in UML 2.0 State
Machines

Harald Fecher (Universitit Kiel, D)

UML 2.0 state machines, which are modifications of Harel’s statecharts, are used
to model the behavior of objects. They allow the concepts of synchronous and
asynchronous communication.

Unfortunately their semantics is only described informally in the UML 2.0
standard.

This talk presents uncertainties in the semantics of UML 2.0 state machines.
Furthermore, (intended) nondeterminism of UML 2.0 statt machines are execu-
tion) and are formalized.

Keywords: UML, state machine, formal semantics

IMA-based Design within Polychrony: Current Status

Abdoulaye Gamatié (Université de Rennes, F)

The work exposed here concerns the design of avionic applications based on
Integrated Modular Avionics (IMA) model, within Polychrony, the academic
design environment associated with the synchronous language Signal.

We first give an overview of the previous results.

Then we address the ongoing part of this work. In particular, we focus on
partitioning issues.

Keywords: Modeling, integrated modular vvionics, synchronous approach, AR-
INC, partitioning, signal, design methodology

Towards a Higher-Order Synchronous Data-Flow Language

Alain Girault (INRIA Rhone-Alpes, F)

The paper introduces a higher-order synchronous data-flow language in which
communication channels may themselves transport programs. This provides a
mean to dynamically reconfigure data-flow processes. The language comes as a
natural and strict extension of both Lustre and Lucy. This extension is conser-
vative, in the sense that a first-order restriction of the language can receive the
same semantics.

We illustrate the expressivity of the language with some examples, before giv-
ing the formal semantics of the underlying calculus. The language is equipped
with a polymorphic type system allowing types to be automatically inferred and
a clock calculus rejecting programs for which synchronous execution cannot be
statically guaranteed. To our knowledge, this is the first higher-order synchro-
nous data-flow language where stream functions are first class citizens.

Synchronous Programming - SYNCHRON’04 5

Keywords: Synchronous data-flow programming language, stream functions,
Kahn processes, functional programming, dynamic reconfiguration, type systems

Joint work of: Colago, Jean-Louis; Hamon, Grégoire; Girault, Alain; Pouzet,
Marc

Runtime Verification for Detection of Scheduling
Dependencies in SystemC

Claude Helmstetter (VERIMAG - IMPG, F)

We present a new approach to detect scheduling dependencies in SystemC pro-
grams. For a medium size SystemC program, there are too many possible schedul-
ings to test them all. However, lots of distincts schedulings can be proved to
produce the same result. Our approach is based on observing operations on
communication objects during execution to generate only a small subset of all
possible schedulings. With this subset, we are able to find all deadlocks and as-
sertion violations. Our solution has some similarities with partial order reduction
techniques.

Keywords: SystemC, Scheduling, Runtime verification, Test
Joint work of: Helmstetter, Claude (Verimag & STMicroelectronics); Maran-
inchi, Florence (Verimag); Maillet-Contoz, Laurent (STMicroelectronics)

Sanity Checks for Stateflow Diagrams

Ralf Huuck (National ICT Australia - Eveleigh, AU)

Simulink/Stateflow is the most accepted programming and design language in
the area of control engineering for safety critical systems. The semantics is to a
certain extend clearly defined, but often complex and rather counter-intuitive.
We present ongoing work on detecting stateflow diagrams exhibiting potential
flaws due to those aspects.

Lurette V2 : Hispano-SUIza Cases Studies

Erwan Jahier (VERIMAG - IMPG, F)

We will illustrate the use of the automated testing tool Lurette with some the
case studies we have worked on within the SAFEAIR II project, in particular
the ones provided by hispano-suiza.

Keywords: Automated testing, tool environment, real-time embedded systems,
reactive programs, synchronous languages, stochastic machines

Joint work of: Jahier, Erwan; Raymond, Pascal

6 S. A. Edwards, N. Halbwachs, R. v. Hanxleden and T. Stauner

Towards a Proof Theory for UML 2.0 Action Semantics

Marcel Kyas (Universitit Kiel, D)

This presentation depends on the presentation of Harald Fecher

In this talk we present the basic concepts of the UML 2.0 Action Semantics
(AS), which is an abstract syntax of a programming language together with an
informally defined semantics. We discuss the notion of atomicity of actions and
the notion of progress of time, as well as a formal semantics for actions, as a
structured operational semantics and as an axiomatic semantics.

We observe that AS shares properties with SDL but also with data flow
oriented languages like Lustre. In AS the notion of an atomic action is defined
in a flexible manner, we propose constraints which may allow the use of AS as
a synchronous language.

The contents of this presentation is work in progress.

Keywords: UML 2.0 Action Semantics

The Kiel Esterel Processor—A Semi-Custom, Configurable
Reactive Processor

Xin Li (Universitit Kiel, D)

The synchronous language Esterel is an established language for developing re-
active systems. It gives an abstract, well-defined and executable description of
the application, and can be synthesized into hardware and software. Typically,
an Esterel program is first translated into other, lower-level languages (such as
VHDL or C), and then compiled further. However, there is also the alternative
of executing Esterel-like instructions directly. For example, in the REFLIX and
RePIC projects, Roop et al. have augmented traditional processors with custom
hardware to execute Esterel instructions. This patch strategy is a convenient
approach, but has some shortages.

We present the Kiel Esterel Processor (KEP), a semi-custom, configurable
reactive processor for the direct execution of Esterel programs. It consists of a
reactive core and scalable peripheral elements. KEP supports standard Esterel
statements directly, except (so far) for the concurrency operator. Valued signals
and counter functions in Esterel statements are supported by KEP. Due to its
control path and its cooperation with elements, KEP obeys exact Esterel (pre-
emption and priority) rules, including for example abort/weak abort (nests).

Keywords: Esterel, synchronous languages, reactive programming, ASIPs
Joint work of: Li, Xin; Von Hanxleden, Reinhard
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/159

http://drops.dagstuhl.de/opus/volltexte/2005/159

Synchronous Programming - SYNCHRON’04 7

Removing Cycles in Esterel Programs

Jan Lukoschus (Universitit Kiel, D)

Programs written in the synchronous programming language Esterel may con-
tain statically cyclic dependencies of signals, which inhibits the application of
certain compilation approaches that rely on static scheduling. This talk pro-
poses an algorithm which, given a constructive synchronous program, performs
a semantics-preserving source-level code transformation that removes cyclic sig-
nal dependencies. The transformation exploits the monotonicity of constructive
programs, and is illustrated in the context of Esterel, but should be applicable
to other synchronous languages as well.

Keywords: Synchronous Languages, compilation, cyclic circuits, constructive-
ness, Esterel

Joint work of: Lukoschus, Jan; von Hanxleden, Reinhard

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/160

Simulation of Age- and Position-Based Protocols for
Mobile Ad-hoc Networks in Reactive ML

Louis Mandel (Université Paris VI, F)

This talk presents a programming experiment of a complex network routing
protocol for mobile ad hoc networks within the ReactiveML language.

Mobile ad hoc networks are highly dynamic networks characterized by the
absence of physical infrastructure. In such networks, nodes are able to move,
evolve concurrently and synchronize continuously with their neighbors.

Due to mobility, connections in the network can change dynamically and
nodes can be added or removed at any time. All these characteristics — con-
currency with many communications and the need of complex data-structure —
combined to our routing protocol specifications make the use of standard simu-
lation tools (e.g., NS, OPNET) inadequate and network protocols appear to be
very hard to program efficiently in conventional programming languages.

We show that the synchronous reactive model, as introduced in the pioneering
work of Boussinot, matters for programming such systems. This model provides
adequate programming constructs — namely synchronous parallel composition,
broadcast communication and dynamic creation — which allow for a natural
implementation of the hard part of the simulation.

The implementation has been done in ReactiveML, an embedding of the reac-
tive model inside a statically typed, strict functional language. ReactiveML pro-
vides reactive programming constructions with most of the features of OCaml.
Moreover, it provides an efficient execution scheme for reactive constructs which

http://drops.dagstuhl.de/opus/volltexte/2005/160

8 S. A. Edwards, N. Halbwachs, R. v. Hanxleden and T. Stauner

made the simulation of real-size examples feasible. Experimental results show
that the ReactiveML implementation is two orders of magnitude faster than
the original C version; it was able to simulate more than 1000 nodes where the
original C version failed (after 200 nodes) and is twice faster than the version
programmed in NAB.

Joint work of: Mandel, Louis; Benbadis, Farid; Pouzet, Marc

Temporal Refinement for Lustre

Jan Mikac (VERIMAG - IMPG, F)

We propose a general stepwise refinement scheme for a large class of systems
including Lustre programs. Then, we "customise" the calculus to Lustre by re-
straining the scope. Practical considerations on the effective feasability of the
refinement proof obligations lead us to further constraints on the calculus, so
that we obtain a final form which provides (i)an effective stepwise refinement
(ii)with the possibility of replacing a program on some clock by a program on a
“quicker” clock, thus realizing a refinement of time.

Keywords: Lustre, refinement

Joint work of: Mikac, Jan; Caspi, Paul

A Generalised Synchronous Model for Software
Coordination

Barry Norton (University of Sheffield, GB)

We will present a synchronous model that generalises both an existing dataflow-
oriented model for component-based software development and the synchronous
model of Esterel. The resulting model allows the zero-time abstraction to be
made on multiple levels, hierarchically, and therefore allows both absence of
signals and signal recurrence to be treated systematically.

Joint work of: Norton, Barry

Synchronous Programming - SYNCHRON’04 9

Realization Theory for Linear Switched Systems

Mihaly Petreczky (CWI - Amsterdam, NL)

Realization theory is one of the major problems of system theory.The aim of
the realization theory is to construct a system with an input/output behavior
given in advance. In particular, an important problem is to construct the min-
imal system having a certain input/output behavior. Here minimality can be
understood in many different ways. For those systems which are defined on a
state-space for which the notion of dimension is defined, minimal systems are
understood to be the systems with the smallest possible state-space dimension.
An example of a successfully developed realization theory is the realization of
regular languages by finite automata.Realization theory has been developed for
linear, general non-linear, bilinear systems and automata.

The talk deals with the realization theory of linear switched systems. Linear
switched systems are a special case of hybrid systems. A linear switched system
is just a finite collection of continuous-time time-invariant linear systems.

The system evolution takes place by switching between the linear systems.
The switching is initiated externally, in fact it can be regarded as part of the
input.

In this talk necessary and sufficient conditions are formulated for a family of
input-output maps to be realizable by a linear switched system. Characterization
of minimal realizations is presented.The paper treats two types of linear switched
systems. The first one is when all switching sequences are allowed. The second
one is when only a subset of switching sequences is admissible, but within this
restricted set the switching times are arbitrary. The latter one covers the case
of linear switched systems with switching controlled by a finite automaton such
that the automaton is known in advance.

Keywords: Realization theory, hybrid systems, switched linear systems, rational
formal power series, minimal realization

Joint work of: Petreczky, Mihaly

Correct-by-Construction Asynchronous Implementation of
Modular Synchronous Specifications

Dumitru Potop-Butucaru (Université de Rennes, F)

In this paper, we introduce a new model for the representation of asynchronous
implementations of synchronous specifications.

The model covers classical implementations, where a notion of global synchro-
nization is preserved by means of signalling, and globally asynchronous, locally
synchronous (GALS) implementations where the global clock is removed.

10 S. A. Edwards, N. Halbwachs, R. v. Hanxleden and T. Stauner

The new model offers a unified framework for reasoning about two essential
correctess properties of an implementation: the preservation of semantics and the
absence of deadlocks. We use it to derive criteria insuring the correct deployment
of synchronous specifications over GALS architectures.

As the model captures the internal concurrency of the synchronous specifi-
cation, our criteria support implementations that are less constrained and more
efficient than existing ones.

Keywords: Globally Asynchronous Locally Synchronous, GALS, synchronous,
asynchronous, microstep, desynchronization, deadlock-free, correct-by-construction
deployment, concurrency

Joint work of: Potop-Butucaru, Dumitru; Caillaud, Benoit; Benveniste, Albert

Towards Robust Distribution of Synchronous Programs

Jan Romberg (TU Miinchen, D)

Towards Robust Distribution of Synchronous Programs Jan Romberg, TU Muenchen

For developing real-time control systems software, the synchronous para-
digm is potentially attractive for both small-scale and large-scale development:
the uniform logical time axis and deterministic notion of composition inherent
in synchronous formalisms has the potential to considerably facilitate behavioral
analysis. However, in the Automotive sector, the existing implementation archi-
tectures such as CAN for communication and OSEK VDX operating system are
not particularly suited for implementation of synchronous designs.

We propose a method where each distributable synchronous flow in a program
is associated with a particular degradation strategy. For most of the system’s
running time, the behavior of the distributed executive will implement the syn-
chronous semantics correctly. The degradation strategy is of importance in cases
when the real-time executive fails to meet a given deadline, loses a message, or
similar. We show how the method could be put to work with an implementa-
tion scheme for programs with state-semantics flows on top of event-triggered
protocols such as CAN.

Nemo: A Domain-Specific Language for the Description of
Multi-Task Systems

Eric Rutten (INRIA Rhéne-Alpes, F)

We propose a programming language specific to the domain of multi-task real-
time control systems, such as in robotic, automotive or avionics systems. It can be
used to specify a set of resources, with usage constraints, and a set of tasks, that

Synchronous Programming - SYNCHRON’04 11

use them, as well as imperative applications requesting them in sequence, and ex-
plicit temporal properties. We then obtain automatically, through a compilation
process including a phase of discrete controller synthesis, an application-specific
task handler that satisfies the constraints (if there exists one).

Keywords: Discrete control synthesis, multi-task system, domain-specific lan-
guage

Joint work of: Delaval, Gwenaél; Rutten, Eric

Software Development from the Point of View of Process
Development

Stefan-Alezander Schneider (BMW AG - Miinchen, D)

Main tasks for production code generation in an industry environment.

Keywords: Software development, process development

RISE Project Summary

Norman R. Scaife (VERIMAG - IMPG, F)

We summarize our experience in the IST RISE (Reliable Inovative Software
for Embedded systems) project. Firstly, we show analysis and translation of
imperative features from Stateflow into Lustre.

Secondly, we present a communications protocol which allows preservation
of idealised semantics in applications derived from it.

Keywords: Stateflow Lustre Event-triggered Time-triggered

Joint work of: Scaife, Norman R.; Caspi, Paul; Maraninchi, Florence; Tripakis,
Stavros; Sofronis, Christos

12 S. A. Edwards, N. Halbwachs, R. v. Hanxleden and T. Stauner

Challenges of Automotive Software Engineering

Thomas Stauner (BMW Car IT, D)

The talk outlined the main characteristics of current automotive software sys-
tems. Software today is a driving factor for innovations in the automotive do-
main. There are already about 100MB of Software in current premium cars
and the past exponential growth in memory size and complexity is expected to
continue. Automotive software engineering has to cope with this complexity in
an environment that is heterogeneous, ranging from multimedia entertainment
to hard real-time applications, like engine control. From the technological side,
trends are centralization of functionality on less computation units, usage of open
standards, model-based development and layering/abstraction (cf. Autosar stan-
dard). The increasing degree of abstraction together with the ongoing move to
deterministic architectures, like Flexray, provides a basis for the application of
synchronous languages.

Keywords: Automotive software, trends, application of synchronous languages

A Generic Framework to Model Embedded Software using
Multi-Clocked Synchrony

Jean-Pierre Talpin (INRIA Rennes, F)

We propose a framework based on a synchronous multi-clocked model of com-
putation to support the inductive and compositional construction of scalable
behavioral models of embedded systems engineered with de facto standard de-
sign and programming languages. Behavioral modeling is seen under the par-
adigm of type inference. The aim of the proposed type system is to capture
the behavior of a system under design and to re-factor it by performing global
optimizing and architecture-sensitive transformations on it. It allows to modu-
larly express a wide spectrum of static and dynamic behavioral properties and
automatically or manually scale the desired degree of abstraction of these prop-
erties for efficient verification. The type system is presented using a generic and
language-independent static single assignment intermediate representation.

References

— “Compositional behavioral modeling of embedded systems and conformance
checking”. Talpin, J.-P, Le Guernic, P., Shukla, S., Gupta, R. In International
Journal on Parallel processing, special issue on testing of embedded systems.
Kluwer Academic Publishers, 2005.

— “Formal refinement checking in a system-level design methodology”. Talpin,
J.-P., Le Guernic, P., Shukla, S. K., Gupta, R., Doucet, F. Special Issue of
Fundamenta Informaticae on Applications of Concurrency to System Design.
IOS Press, 2004.

Synchronous Programming - SYNCHRON’04 13

— “Polychrony for system design”. Le Guernic, P., Talpin, J.-P., Le Lann, J.-C.
Journal for Circuits, Systems and Computers. Special Issue on Application
Specific Hardware Design. (¢) World Scientific, 2003.

— “Modular design through component abstraction”. Berner, D., Talpin, J.-P.,
Le Guernic, P., Shukla, S. K. International conference on compilers, archi-
tectures and synthesis for embedded systems. ACM Press, 2004

— “A behavioral type inference system for compositional system-on-chip de-
sign”. Talpin, J.-P., Berner, D., Shukla, S. K., Gamatié, A., Le Guernic, P.,
Gupta, R. Application of Concurrency to System Design. IEEE Press, 2004.

Joint work of: Talpin, Jean-Pierre;Le Guernic, Paul; Shukla, Sandeep; Gupta,
Rajesh

SharpHDL—A Hardware Description Language Embedded
in C#

Christine Vella (University of Malta, SEU)

Embedded domain specific languages have been shown to be useful in various
domains. One particular domain in which this approach has been applied is
hardware description languages. We present SharpHDL, a language embedded in
C++ which enable us to describe structurally large regular circuits in an intuitive
way. Descriptions can then be automatically used in simulators and verification
tools. We show the versatility of the approach by writing a hardware compiler
for regular expressions circuits in our language.

We also discuss future work with this language. This consists of extending it
to include placement information and description of other non-functional circuit
properties. SharpHDL will also be used to implement FFT algorithms using
butterfly circuits and to develop a framework where behavioural languages can
be embedded and combined.

Keywords: HDL, embedded languages, C#, hardware compilation

Accessing Databases within Esterel

David White (University of York, GB)

A current limitation of the Esterel language for reactive-systems »design is its
lack of support for accessing databases. This talk »presents the results of a
summer student project which investigated »a way of integrating databases and
Esterel by providing an API for »database use inside Esterel. » » A case study,
involving a warehouse storage system built using Lego » Mindstorms robotics
kits, demonstrates the utility of the API. This »system employs an Esterel-
programmed robot whose task it is to collect »various items from a customer’s
order and assemble them in one place. » To do so, the robot accesses customer-
order data and floor-plan data »stored in a database.

14 S. A. Edwards, N. Halbwachs, R. v. Hanxleden and T. Stauner

Keywords: Database esterel lego mindstorms
Joint work of: White, David; Luettgen, Gerald
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/161

Timing Analysis of Synthesized Code

Reinhard Wilhelm (Universitat Saarbricken, D)

Hard real-time systems need sound methods to compute bounds on execution
times. We have used Abstract Interpretation combined with Integer Linear Pro-
gramming successfully and hand-written and on synthesized code.

Although it is tempting to believe that synthesized code is easier to analyze
due to its regularity, this is not always true. Some code synthesizers obfuscate
knowledge they have about the algorithm by generating code that confuses com-
piler and timing analysis.

We present several case studies using popular specification languages.

Keywords: Timing analysis, hard real time, embedded system, specification
language, SCADE, ASCET-SD

Joint work of: Wilhelm, Reinhard; Thesing, Stephan

http://drops.dagstuhl.de/opus/volltexte/2005/161

	04491 Abstracts Collection Synchronous Programming - SYNCHRON'04 --- Dagstuhl Seminar ---
	 Stephen A. Edwards, Nicholas Halbwachs, Reinhard von Hanxleden and Thomas Stauner

