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Abstract We consider the stochastic identical parallel machine schedul-
ing problem and its online extension, when the objective is to minimize
the expected total weighted completion time of a set of jobs that are
released over time. We give randomized as well as deterministic online
and offline algorithms that have the best known performance guarantees
in either setting, online or offline and deterministic or randomized. Our
analysis is based on a novel linear programming relaxation for stochastic
scheduling problems that can be solved online.

1 Introduction

We consider stochastic and online versions of the following deterministic, offline
scheduling problem. There is a set of n jobs to be processed on m identical
parallel machines. Each job j has a nonnegative weight wj , processing time pj ,
and release date rj . After its release, each job has to be processed on any machine,
and each machine can handle at most one job at a time. The objective is to
minimize the total weighted completion time

∑n

j=1 wjCj , where Cj denotes the
completion time of job j in the schedule. This problem is well understood: It
is known to be strongly NP-hard (Lenstra, Rinnooy Kan, and Brucker 1977),
and it has a polynomial-time approximation scheme (Afrati et al. 1999); a 2-
approximation algorithm was earlier given by Schulz and Skutella (2002b).

In stochastic scheduling, job processing times are random, known in advance
only as independent probability distributions (with expected values µj and stan-
dard deviations σj). The actual processing time of a job does not become known
before it is completed. Research has traditionally focused on nonanticipative poli-
cies that aim at minimizing the objective function in expectation. A scheduling
policy is nonanticipative if its decisions about which jobs to schedule at any given
time t only depend on the jobs that are already completed by that time and on
the conditional distributions of the remaining processing times of those jobs that
are still active at time t. In particular, the optimal policy also has no knowledge
about the actual processing times and has to make decisions based only on the in-
formation of the release dates, weights, and distributions of the processing times
of the jobs. For a formal introduction of policies, we refer the reader to Möhring,
Radermacher, and Weiss (1984, 1985). For the single-machine problem without
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nontrivial release dates (m = 1, rj = 0 for all jobs j), Rothkopf (1966) showed
that the WSEPT rule is optimal, which schedules the jobs in order of nonin-
creasing ratios of weight to expected processing time. For unit weights and expo-
nentially distributed processing times, the Shortest Expected Processing Time
rule remains optimal on identical parallel machines (Weiss and Pinedo 1980).
In fact, Weber, Varaiya, and Walrand (1986) showed that it suffices when the
processing time distributions are stochastically comparable in pairs. For arbi-
trary weights, WSEPT is optimal for exponentially distributed processing times
if the WSEPT order of jobs coincides with sequencing the jobs in the order
of nonincreasing weights (Kämpke 1987). Under minor technical assumptions,
Weiss (1990) showed that the WSEPT rule is asymptotically optimal.

The problem considered here, when jobs may have individual release dates,
was first addressed by Möhring, Schulz, and Uetz (1999). For processing time
distributions whose coefficients of variation σj/µj are bounded from above by√

∆, they gave a static priority policy whose expected objective function value
is within a factor of max{4, 3 + ∆} of that of an optimal policy.1 In addition,
they showed that the WSEPT rule has a performance guarantee of 1+(∆+1)/2
for the problem with identical release dates. This also marked the first time that
the use of approximation algorithms was proposed in the realm of stochastic
scheduling. The analysis as well as the algorithm for the general case is based on
a linear programming relaxation, which provides a lower bound on the expected
value of an optimal policy.

A different way of dealing with incomplete information is that of online al-
gorithms and competitive analysis. In our context, jobs arrive over time and are
completely unknown prior to their arrival. However, a job’s processing time and
weight are fully revealed at the time of its arrival. The performance of an online
algorithm is usually compared to that of an optimal offline algorithm, which
has complete information beforehand. This value is known as the competitive
ratio. For randomized online algorithms, we compare the expected objective
function value of the solution generated by the algorithm to the value of an
offline optimum. This corresponds to the so-called oblivious adversary model.
We refer the reader to Borodin and El-Yaniv (1998) for a general introduc-
tion to online algorithms, and to Sgall (1998) for a survey of online scheduling
models and results. In the context of the identical parallel machine scheduling
problem considered here, online algorithms were designed and analyzed by Hall
et al. (1997), Chakrabarti et al. (1996), Schulz and Skutella (2002b), Megow
and Schulz (2004), and Correa and Wagner (2005). The currently best deter-
ministic online algorithm has a competitive ratio of 2.618 (Correa and Wag-
ner 2005), while the best known randomized algorithm is 2-competitive (Schulz
and Skutella 2002b).

Chou, Liu, Queyranne, and Simchi-Levi (2001, 2004) proposed to look at
stochastic online scheduling, where jobs arrive over time, as in online schedul-

1 The performance guarantee of this algorithm is actually slightly better than this; to
make for an improved reading, we generally suppress terms of order 1/m from this
extended abstract.
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ing, but when a job arrives only its weight and expected processing time become
known. The expected total weighted completion time of the schedule computed
by an online policy is then compared to that of the optimal stochastic policy,
which has access to all job release dates, weights, and processing time distri-
butions at time 0. In other words, the adversary controls the arrival of jobs,
their weights, and their processing time distributions, but he cannot influence
the actual realization of processing times. While Chou et al. (2001, 2004) consid-
ered single-machine and flow-shop problems, Megow, Uetz, and Vredeveld (2005)
studied the identical parallel machine model considered here. They introduced
δ-NBUE distributions2 and gave a deterministic online algorithm with perfor-
mance guarantee 3/2 + δ +

√
4δ2 + 1/2. Their analysis uses the linear program-

ming relaxation introduced by Möhring, Schulz, and Uetz (1999), but Megow,
Uetz, and Vredeveld are anxious to point out that their algorithm does not. In
fact, they claim that “LP-based approaches to define list scheduling algorithms
[for the problem considered here] do not seem to make sense at all.”

In this paper, we present LP-based online algorithms for stochastic schedul-
ing problems. The key is a new linear programming relaxation for the stochastic
scheduling problem of minimizing the total weighted completion time on iden-
tical parallel machines. This linear program can be solved online. The result-
ing “LP schedule,” which can be interpreted as a preemptive single-machine
schedule, is then used to define an online policy for the original problem. This
approach has previously been used successfully for various deterministic online
problems, including nonpreemptive scheduling on a single machine (Goemans
et al. 2002), preemptive single-machine scheduling (Schulz and Skutella 2002a),
identical parallel machine scheduling (Schulz and Skutella 2002b), and uniform
parallel machine scheduling (Chou, Queyranne, and Simchi-Levi 2001).

We present one randomized and one deterministic algorithm; both work on-
line and run in polynomial time. Their respective performance ratios are 2 + ∆
and max{3.618, 2.309 + 1.309∆}, respectively. The randomized algorithm can
be derandomized, which results in a deterministic (2 + ∆)-approximation algo-
rithm for the stochastic (offline) scheduling problem. Table 1 compares the new
results from this paper to earlier results; to simplify the exposition, we restrict
ourselves in the table and throughout the remainder of this extended abstract
to processing time distributions that satisfy ∆ ≤ 1.

The algorithms proposed here are derived from earlier algorithms for deter-
ministic scheduling problems, as were previous algorithms for stochastic schedul-
ing. In our case, we convert a randomized online algorithm of Schulz and Skutella
(2002b) as well as a deterministic online algorithm by Correa and Wagner (2005).
Previously, Möhring, Schulz, and Uetz (1999) built on deterministic algorithms
by Hall et al. (1997), Skutella and Uetz (2001) used techniques of Chekuri
et al. (2001), and Megow, Uetz, and Vredeveld (2005) drew on ideas from Megow

2 For δ = 1, one recaptures the well-known NBUE distributions, “new better than used
in expectation,” which contain, among others, exponential, Erlang, uniform, and
Weibull distributions. NBUE distributions satisfy ∆ ≤ 1 (Hall and Wellner 1981).
In general, ∆ ≤ 2δ − 1 (Megow, Uetz, and Vredeveld 2005).
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Table 1. Summary of performance guarantees for instances for which the distributions
of job processing times fulfill ∆ ≤ 1. The relative order of the algorithms’ performances
remains the same for arbitrary distributions.

Model
Performance Guarantee

Reference
deterministic randomized

deterministic online 4 + ε Hall et al. (1997)
2.885 + ε Chakrabarti et al. (1996)

2 Schulz and Skutella (2002b)
3.281 Megow and Schulz (2004)
2.618 Correa and Wagner (2005)

stochastic offline 4 − Möhring, Schulz, and Uetz (1999)
3.618 − Megow, Uetz, and Vredeveld (2005)

3 − this paper

stochastic online 3.618 Megow, Uetz, and Vredeveld (2005)
3.618 3 this paper

and Schulz (2004). The key is to refine the algorithms and their analyses such
that they still work even though job processing times are random. In contrast
to the previous approximation and online algorithms for stochastic scheduling
problems, which all relied on the lower bounds presented by Möhring, Schulz,
and Uetz (1999), we use a linear programming relaxation that is new in the
context of stochastic scheduling.

2 A Linear Programming Relaxation

Möhring, Schulz, and Uetz (1999) showed that the vector of expected completion
times of any given policy satisfies the following inequalities:

∑

j∈S

µj Cj ≥ 1

2m

(

∑

j∈S

µj

)2

for all S ⊆ N.

Here, N denotes the set of all jobs; i.e., N = {1, 2, . . . , n}. One can actually
strengthen these inequalities by observing that none of the jobs in a subset S
can be processed before rmin(S) := min{rj : j ∈ S}.

Lemma 1. Let Π be any nonanticipative policy for the stochastic identical par-
allel machine scheduling problem. Then, the corresponding vector E[CΠ ] of ex-
pected completion times satisfies the following inequalities:

∑

j∈S

µj Cj ≥ rmin(S)
∑

j∈S

µj +
1

2m

(

∑

j∈S

µj

)2

for all S ⊆ N. (1)

This observation was made earlier in the context of deterministic scheduling;
see Queyranne and Schulz (1995). Its relevance in our situation follows from
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the fact that the associated linear programming relaxation, when we minimize
∑

j∈N wjCj over (1), is equivalent to that of a deterministic single-machine prob-
lem with processing times µj/m and mean busy time variables Mj :

min
∑

j∈N

wjMj (2a)

s.t.
∑

j∈S

µj

m
Mj ≥

∑

j∈S µj

m

(

rmin(S) +

∑

j∈S µj

2m

)

for all S ⊆ N (2b)

The mean busy time Mj of a job j is the average point in time at which the
(single) machine is busy with processing j. In other words, if Ij(t) is 1 if the
machine is processing job j at time t, and 0 otherwise, then

Mj =
1

pj

∫ ∞

rj

Ij(t) t dt .

Here and henceforth, we use pj to denote the processing time of job j on the
single machine; i.e., pj = µj/m. The following theorem is crucial for the design
of an online LP-based policy.

Theorem 2 (Goemans et al. 2002). The mean busy time vector of the pre-
emptive single-machine schedule that is constructed by the following online algo-
rithm is an optimal solution to the linear programming relaxation (2):

At any point in time, schedule from the jobs that are not yet completed
the one with the highest ratio of weight to processing time.

We refer to this preemptive schedule as the LP schedule. Let us emphasize that
Theorem 2 implies that one can solve the linear programming relaxation of
minimizing

∑

j∈N wjCj over (1) online, and it still provides a lower bound on
the expected value of the optimal offline policy.

3 A Randomized Algorithm for Stochastic Online

Scheduling

In the spirit of previous approximation algorithms for stochastic scheduling
problems, which adopted earlier algorithms for deterministic scheduling prob-
lems to the stochastic setting, we will now extend an algorithm of Schulz and
Skutella (2002b) to stochastic online scheduling. Before we can describe the
algorithm, we need to introduce the notion of α-points. For 0 < α ≤ 1, the
α-point tj(α) of a job j is the first moment in time when an α-fraction of j has
been completed in the LP schedule. The algorithm is described in Figure 1.

Let us elaborate a bit on each step of the algorithm. As we mentioned before,
the LP schedule can be computed online. As soon as a job arrives, we assign it
to one of the m machines, with each machine being equally likely. This is done
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(1) Compute the LP schedule.
(2) Assign each job randomly to a machine.
(3) Draw αj randomly from (0, 1].
(4) Sequence the jobs in nondecreasing order of αj-points tj(αj).

Figure 1. A randomized online algorithm for stochastic scheduling.

independently for all jobs. We also immediately draw αj uniformly from (0, 1],
again independent from the drawings for other jobs. Then, on each machine,
the jobs assigned to that machine are sequenced in nondecreasing order of their
α-points. For this to work online, we just impose the additional restriction that
no job j may start before time tj(αj).

Theorem 3. The algorithm described in Figure 1 is a randomized online algo-
rithm for stochastic scheduling on identical parallel machines to minimize the
expected total completion time; its expected performance guarantee is 3.

Proof. Let us consider an arbitrary but fixed job j. Initially, let us also fix the
index i of the machine to which j has been assigned, as well as a value of αj .
Note that j is ready to start at time tj(αj); in particular, rj ≤ tj(αj). If j is not
started at time tj(αj), then it is delayed by jobs with a smaller α-point that have
been assigned to the same machine i. We denote by Ei,αj

[Cj ] the conditional
expected completion time of job j, where the expectation is taken both over the
random choices of the algorithm, except for i and αj , which are still fixed, and
the processing times. We then have

Ei,αj
[Cj ] ≤ tj(αj) + µj +

∑

k 6=j

µk · P (k on i before j)

≤ tj(αj) + µj +
∑

k 6=j

µk

1

m

1

pk

∫ tj(αj)

0

Ik(t) dt

≤ tj(αj) + µj + tj(αj)

= 2 tj(αj) + µj .

In the first inequality, P (k on i before j) is the probability that job k 6= j is
assigned to the same machine as j and will be started before j. The probability
that k is assigned to machine i is 1/m. The integral in the second inequality
captures the fraction of job k that is processed in the LP schedule before tj(αj),
which by the choice of αk is precisely the probability of tk(αk) being smaller
than tj(αj). The remaining two inequalities are straightforward. We finally get
rid of the conditional expectation by noting that the average αj-point is equal
to the mean busy time Mj in the LP schedule (Goemans et al. 2002). Hence,

E[Cj ] ≤ 2

∫ 1

0

tj(αj) dαj + µj

= 2Mj + µj .
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The result now follows from our earlier observation that
∑

j∈N wjMj is a lower
bound on the expected value of an optimal policy, and so is

∑

j∈N wjµj . ⊓⊔

The crucial observation which makes this proof work is that the set of jobs that
is scheduled on machine i before j does not depend on the actual realization
of processing times. The order of jobs is determined by the LP schedule, which
only depends on the expected processing times.

Corollary 4. There exists a deterministic 3-approximation algorithm for the
stochastic (offline) problem of minimizing the weighted sum of completion times
on identical parallel machines subject to release dates.

We omit the proof from this extended abstract, but note that this algorithm
can be obtained from the one in Figure 1 by the method of conditional proba-
bilities. Of course, this implies that the derived algorithm does not work in an
online context. This will be fixed, to some extent, in the next section.

4 A Deterministic Algorithm for Stochastic Online

Scheduling

A simple, though somewhat less effective way of derandomizing the algorithm
given in Figure 1, yet one that does not destroy its online nature, is to choose
αj deterministically and beforehand. The resulting algorithm is described in
Figure 2. Step (2) requires some additional explanation. It essentially is a basic

(1) Compute the LP schedule.
(2) Schedule the jobs greedily in nondecreasing order of their α-points.

Figure 2. A deterministic online algorithm for stochastic scheduling.

list scheduling algorithm, where one job after the other is assigned to the earliest
possible start time, with a twist: No job j is started before its α-point tj(αj).
Let φ denote the golden ratio, and let us choose αj = φ − 1 for all j ∈ N .

Theorem 5. The algorithm described in Figure 2 is a deterministic online al-
gorithm for stochastic scheduling on identical parallel machines to minimize the
expected total completion time; it has performance guarantee 2 + φ.

Proof. The proof is saved for the full version of this paper; it mimics to a large
extent that of Correa and Wagner (2005, Theorem 3.2), which itself is an exten-
sion of that of Goemans et al. (2002, Theorem 3.3). Apart from Lemma 1, the
key insight is that the start of any job j is always delayed by the same set of
jobs, regardless of the instantiation of actual processing times. ⊓⊔
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Kämpke, T. (1987). On the optimality of static priority policies in stochastic
scheduling on parallel machines. Journal of Applied Probability 24, 430–448.

Lenstra, J., A. Rinnooy Kan, and P. Brucker (1977). Complexity of machine
scheduling problems. Annals of Discrete Mathematics 1, 343–362.

Megow, N. and A. Schulz (2004). On-line scheduling to minimize average com-
pletion time revisited. Operations Research Letters 32, 485–490.

Megow, N., M. Uetz, and T. Vredeveld (2005). Models and algorithms for
stochastic online scheduling. Technical Report 003-2005, Institut für Math-
ematik, Technische Universität Berlin, Berlin, Germany. A preliminary ver-
sion appeared in the Proceedings of the 2nd Workshop on Approximation
and Online Algorithms (WAOA 2004).
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