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Abstract
We consider the single-machine scheduling problem of minimizing the number of late

jobs. We omit here one of the standard assumptions in scheduling theory, which is that
the processing times are deterministic. Our main message is that in a number of cases the
problem with stochastic processing times can be reformulated as a deterministic problem,
which is solvable in polynomial time through the famous algorithm by Moore and Hodgson.
We first review and reinterpret this algorithm as a dynamic programming algorithm. We
then consider four problem classes with stochastic processing times. The first one has equally
disturbed processing times, that is, the processing time consist of a deterministic part and
a random component that is independently, identically distributed for each job. The jobs
in the other three classes have processing times that follow: (i) A gamma distribution with
shape parameter pj and scale parameter β, where β is common to all jobs; (ii) A negative
binomial distribution with parameters pj and r, where r is the same for each job; (iii) A
normal distribution with parameters pj and σ2

j .
In this scheduling environment, the completion times will be stochastic variables as well.

Instead of looking at the expected number of on time jobs, we introduce the concept of a job
being ‘stochastically on time’, that is, we qualify a job as being on time if the probability that
it is completed by the deterministic due date is at least equal to a certain given minimum
success probability. We show that in case of equally disturbed processing times we can
solve the problem in O(n log n) time through the algorithm by Moore and Hodgson, if we
make the additional assumption that the due dates and the minimum success probabilities
are agreeable, which encompasses the case of equal minimum success probabilities. The
problems with processing times following a gamma or a negative binomial distribution can
be solved in O(n log n) time by Moore and Hodgson’s algorithm, even if the minimum success
probabilities are arbitrary; based on these two examples, we characterize the properties that
a distribution must possess to allow such a result. For the case with normally distributed
processing times we need the additional assumption that the due dates and minimum success
probabilities are agreeable. Under this assumption we present a pseudo-polynomial time
algorithm, and we prove that this is the best we can hope for by establishing weak NP-
hardness. We also show that the problem of minimizing the weighted number of late jobs
can be solved by an extension of the dynamic programming algorithm in all four cases;
this takes pseudo-polynomial time. We further indicate how the problem of maximizing the
expected number of on time jobs (with respect to the standard definition) can be tackled if
we add the constraint that the on time jobs are sequenced in a given order.

Keywords. Scheduling, sequencing, single machine, number of late jobs, stochastic pro-
cessing times, minimum success probability, dynamic programming, NP-hardness.

∗E-mail: marjan@cs.uu.nl. Department of Computer Science, Utrecht University, P.O.Box 80089, 3508 TB
Utrecht, The Netherlands. Supported by EC Contract IST-1999-14186 (Project alcom-FT).

†E-mail: slam@cs.uu.nl. Department of Computer Science, Utrecht University, P.O.Box 80089, 3508 TB
Utrecht, The Netherlands. Supported by EC Contract IST-1999-14186 (Project alcom-FT).

1Dagstuhl Seminar Proceedings 05031
Algorithms for Optimization with Incomplete Information
http://drops.dagstuhl.de/opus/volltexte/2005/192

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

One of the standard complaints of many people nowadays is ‘so many things to do, so little time’.
If it is not possible to increase the amount of time available (for instance by hiring somebody),
then it may be inevitable to skip some tasks. The question then becomes of course: which tasks
should be skipped? This boils down to the machine scheduling problem that was studied in the
famous paper by Moore (1968). The busy person is translated into a single machine, and the
things to do are called jobs. Formally, the problem is then formulated as follows. The machine
is assumed to be continuously available from time zero onwards, and it can perform at most
one job at a time. The machine has to execute n jobs, denoted by J1, . . . , Jn. Performing task
Jj requires a period of length pj , and the execution of this task is preferably finished by its
due date dj . If job Jj is finished after its due date, then it is marked as late. The objective
is to minimize the number of late jobs. Since for this objective it does not matter at which
time a late job is finished, such a job can just as well be skipped altogether; the machine then
only carries out the jobs that will finish on time. Since it is not acceptable for a customer to
just hear ‘sorry, we did not make it’ at the due date, we assume that the firm has to tell the
potential client at time zero whether it will honor its request. If the request is denied, then
the client will go elsewhere, and the company does not have to execute this job. Note that,
if all information is available at time zero in a deterministic situation, then this assumption is
in fact irrelevant. Moore shows that the problem of maximizing the number of jobs that are
finished on time can be solved in O(n log n) time by an algorithm that since then is known as
Moore-Hodgson’s algorithm.

In this setting, each job is equally important. In many applications, however, some jobs
are more important than others. This importance can be measured by assigning a positive
weight wj to each job Jj (j = 1, . . . , n); the objective function then becomes to minimize the
total weight of the late jobs. Lawler and Moore (1969) show that this problem is solvable in
O(n

∑
pj) time by dynamic programming. Karp (1972) shows that pseudo-polynomial running

time is unavoidable for this problem (unless P = NP) by establishing NP-hardness in the
ordinary sense, even if all due dates are equal.

In this paper, we look at the problems described above, but we abolish one of the common
assumptions of scheduling theory, which is that the data are deterministic. We consider four
specific classes of instances. In the first one the processing times are stochastic variables that
are distributed according to a gamma distribution with parameters pj (which varies per job)
and β (which is equal for all jobs). The gamma distribution is often applied to model the
processing time of a task (see for instance Law and Kelton, 2000). The second class of processing
times is used to model a production process where items are produced that work well with
probability r and malfunction with probability (1 − r); a job Jj corresponds then to an order
of pj correctly functioning items. The corresponding processing time then follows a negative
binomial distribution with parameters pj and r. In the third class the processing times consist
of a deterministic component pj and a random disturbance, which we assume to be identically
distributed for each job. This can be used to model the situation that the disturbances in the
production process are not job-related but due to some side-equipment that is used by each
job in the same way. In the last case, we assume that the processing times follow a normal
distribution with known expected value pj and known variance σ2

j .
We suppose that each due date is deterministic, which is reasonable, as they are specified
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by the customer issuing the request. More importantly, we further assume that this customer
is willing to accept a delayed completion of his/her order, if the company can convince him/her
that the planning is such that the probability that the order is delayed is ‘small enough’. This
is achieved by guaranteeing that the probability that the order is on time is at least equal to
some given lower bound value, which we define as the minimum success probability, and which
we denote by yj (j = 1, . . . , n). If the customer prefers to be convinced by hard cash, then you
can agree that he/her will be compensated if the completion is delayed; when the probability
distribution of the completion time of job Jj is known, then working with a minimum success
probability boils down to specifying an upper bound for the expected compensation payment,
which corresponds to a lower bound on the expected profit, and vice versa.

The remainder of the paper is organized as follows. In Section 2 we review the problem
of minimizing the number of late jobs with deterministic processing times, and we explain
Moore-Hodgson’s algorithm as a dynamic programming algorithm. In Section 3 we discuss
the consequences of working with stochastic processing times. We show that the first and
second class of processing times can be reformulated as deterministic problems, and hence can
be dealt with by the traditional algorithms. We further specify a number of constraints such
that, if a probability distribution satisfies these, then the problem with stochastic processing
times following this distribution is solvable in O(n log n) time irrespective of the minimum
success probabilities; the first two classes of instances satisfy these conditions. For the other
two classes of processing times, we need the additional assumption that the minimum success
probabilities and the due dates are agreeable, which here implies that the jobs can be numbered
such that i < j implies that di ≤ dj and yi ≥ yj . We develop dynamic programming algorithms
that minimize the (weighted) number of late jobs for these instances; these algorithms are
based on the insight gained in Section 2. We further discuss the problems that we face in
case of general minimum success probabilities. In Section 4, we show that the problem with
stochastic processing times that follow a normal distribution is fundamentally more difficult
than the problem with deterministic processing times by establishing ordinary NP-hardness
for the problem of minimizing the number of late jobs. In Section 5, we address the problem of
minimizing the expected value of the (weighted) number of late jobs under the side-constraint
that the on time jobs are executed in any given order.
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