
04381 Abstracts Collection

Dependently Typed Programming

� Dagstuhl Seminar �

Thorsten Altenkirch1, Martin Hofmann2 and John Hughes3

1 University of Nottingham, GB
txa@cs.nott.ac.uk

2 LMU München, DE
hofmann@ifi.lmu.de

3 Chalmers TU, Göteborg, SE
rjmh@cs.chalmers.se

Abstract. From 12.09.04 to 17.09.04, the Dagstuhl Seminar 04381 �De-
pendently Typed Programming� was held in the International Confe-
rence and Research Center (IBFI), Schloss Dagstuhl. During the semi-
nar, several participants presented their current research, and ongoing
work and open problems were discussed. Abstracts of the presentations
given during the seminar as well as abstracts of seminar results and ideas
are put together in this paper. The �rst section describes the seminar
topics and goals in general. Links to extended abstracts or full papers
are provided, if available.

04381 Summary � Dependently Typed Programming

The Dagstuhl seminar (04381) on Dependently Typed Programming brought
together researchers from all over the world who are interested in the use of
dependent types in programming. An emerging topic was the interaction of the
functional programming community and the Types community: an example is
the use of GADTs in Haskell, which represent a restricted use of dependent
types in Haskell while on the other hand proof systems like COQ in which allow
the expression of many functional programming idioms. Emerging languages
and systems, like Epigram, attempt to unify functional programming and Type
Theory based proof development environments. Discussions during the seminar
centred on the question how to integrate dependent types in real programming
languages and on the pragmatic and theoretical questions raised by doing this.

Joint work of: Altenkirch, Thorsten; Hofmann, Martin; Hughes, John

Dagstuhl Seminar Proceedings 04381
Dependently Typed Programming
http://drops.dagstuhl.de/opus/volltexte/2005/186

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 T. Altenkirch, M. Hofmann and J. Hughes

Data vs. codata

Thorsten Altenkirch (University of Nottingham, GB)

In a total language we have to distinguish data and codata. I'll explain codata
using a mirror: while data is de�ned by a producer contract, i.e. the producer
promises only to use the agreed constructors to construct data, codata is de�ned
by a consumer contract, i.e. the consumer promises only to use pattern matching
to analyze the codata. These principles give rise to recursion - corecursion and
induction - coinduction. I explain how coinductive reasoning can be explained
using a coinductive de�nition of equality.

Filters on Co-Inductive streams; a study on the example
of Eratosthene's sieve

Yves Bertot (INRIA - Sophia Antipolis, F)

Filters are functions from streams to streams that collect data satisfying a given
predicate. Formalizing �lters in Co-Inductive programming is di�cult because
they are not plain co-recursive function. We describe a solution that combines
ideas from temporal logic, recursion on an ad-hoc predicate, uses of dependent
types to describe partial functions, and advanced use of guardedness conditions.
This solution was completed using Coq 8.0.

Keywords: Co-induction, dependent types to describe partial functions, general
recursion.

Formalising Bitonic Sort using Dependt Types

Ana Bove (Chalmers UT - Göteborg, S)

Bitonic sort (Batcher, 1968) is one of the fastest sorting networks. A sorting
network is a special kind of sorting algorithm, where the sequence of comparisons
is not data-dependent. This makes sorting networks (and in particular bitonic
sort) suitable for implementation in hardware or in parallel processor arrays.

Although the algorithm is short and computationally rather simple, we face
two problems when we want to use type theory for its formalisation:

1) the algorithm is not structurally smaller;
2) its correctness proof is not very intuitive, hence its formalisation is not

straightforward.
In this talk we present a formalisation of bitonic sort and its correctness proof

in constructive type theory.
Here, the correctness of bitonic sort is developed on the basis of the 0-1-

principle (Knuth, 1973). For bitonic sort, the 0-1-principle states that if bitonic
sort sorts every sequence of 0's and 1's then it sorts every sequence of arbitrary
values.

Dependently Typed Programming 3

Computation by Judgement Rewriting

Venanzio Capretta (University of Ottawa, CDN)

I will shortly explain two methods to implement general recursion in type theory:
(1) by a coinductive model of potentially diverging comutation; (2, with Ana
Bove) by and inductive characterization of the domain of an algorithm.

The second method gives rise to some problem when interpreting higher order
functionals. I will discuss a solution that exploit the power of impredicative type
theory. Since the method relies on Dybjer's induction-recursion, I will also discuss
a representation of this contruct in the Calculus of Constructions.

Both methods (1) and (2) represent functions, but do not allow direct com-
putation by term reduction. However, in both cases, an e�ective computation
model can be realized by a notion of judgement rewriting, consisting in a goal-
directed re�nement algorithm for sequents starting from the assumption of a
variable as result of the computation.

Keywords: General Recursion, Impredicativity, Judgement Rewriting

Dependent Types for Update Programming

Martin Erwig (Oregon State University, USA)

Cells in spreadsheets that serve as headers can be interpreted as unit information
for other cells to constrain the operations that are allowed to be applied. Units
essentially re�ne types and thus are an example of dependent types.

We can de�ne a unit system for end-user spreadsheets that is based on the
concrete notion of units instead of the abstract concept of types. The unit system
contains concepts, such as dependent units, multiple units, and unit generaliza-
tion, that allow the classi�cation of spreadsheet contents on a more �ne-grained
level than types do. Also, because communication with the end user happens
only in terms of objects that are contained in the spreadsheet, this system does
not require end users to learn new abstract concepts of type systems.

Since the unit inference depends on information about headers in a spreads-
heet, a realistic unit inference system requires a method for automatically de-
termining headers. We sketch several spatial-analysis algorithms for header in-
ference.

The combined header- and unit-inference system is fully integrated into Mi-
crosoft Excel and can be used to automatically identify various kinds of errors in
spreadsheets. Test results show that the system works accurately and reliably.

4 T. Altenkirch, M. Hofmann and J. Hughes

Preservation of Typing for the Domain-Free Calculus of
Inductive Constructions with Implicit Parameters

Benjamin Gregoire (INRIA - Sophia Antipolis, F)

In a proof system like Coq, checking the validity of a proof involves compa-
ring types modulo beta-conversion, which is potentially a time-consuming task.
To speed up this conversion test, Grégoire and Leroy showed how proof terms
could be compiled towards a slightly modi�ed Objective Caml bytecode. But
compilation erases most of the type information carried by the proofs. It was an
open problem to show that erasure does not change the underlying formalism. In
this paper, we show the equivalence of the formalism implemented by the proof
compiler and the o�cial formalism of Coq.

The interest for such a result goes beyond the mere correctness proof of a
compilation scheme since even non compiled implementations can be made more
e�cient by not comparing type annotations. It is also a signi�cant generalisation
and strengthening of a similar result (Preservation of Equational Theory) by
Barthe and Sørensen on the class of Domain-free pure type systems.

Dependently Typed Programming and the Coq Proof
Assistant

Nicolas Magaud (Univ. of New South Wales, AU)

Coq is a proof assistant based on the calculus of inductive constructions. Among
other features such as polymorphism, higher-order and primitive inductive de-
�nitions, it provides dependent types. These dependent types can be used in a
wide range of applications.

On the one hand, dependent types are used to achieve function de�nitions.
Such functions usually would not feature dependent types if written in a

functional language like Caml or Haskell. In particular, they allow the user to
transform partial functions into total ones by restricting the range of its inputs,
e.g. from fact:int->int in a functional programming language we get fact:forall
n:int, n>=0 -> int. In addition to that, dependent types are useful to de�ne
functions by well-founded induction. In this case, they are used to make sure
one does only make recursive calls on smaller terms according to the considered
relation.

On the other hand, we can view Coq as a functional programming language
and actually use dependent types to specify the type of programs. Instead of
de�ning a function with a simple type and later prove as lemmas some of its
properties, we can re�ne the type of the function to make it more informative
regarding the properties of the function. This leads to fully-speci�ed functions
whose type carries the function actual speci�cation.

Finally, dependent data types such as vectors (dependent lists) can be de�-
ned. Coq provides means to write dependently typed programs such as reverse

Dependently Typed Programming 5

rev:forall n:nat, (vect n) -> (vect n) and tools such as dependent equality to
reason about them.

All this shows Coq is a suitable environment to write dependently typed
programs. In addition, it is a framework in which you can even prove properties
of the dependently typed programs one has de�ned and also extract these �then
certi�ed� programs to e�cient functional programming languages like Haskell or
Caml.

Keywords: Dependent types, Coq, well-founded recursion, formal proofs

Towards iteration for truly nested datatypes

Ralph Matthes (Universität München, D)

A case study is presented how one can predicatively justify nested datatypes with
a nested recursive call in the datatype de�nition. The example is a representation
of lambda terms including explicit substitutions by the equation

Lam A = A + Lam A x Lam A + Lam(1+A) + Lam(Lam A). (*)
Following an idea of Anton Setzer and a handwritten manuscript by Peter

Aczel (Edinburgh, March 2003), Lam can be introduced by an inductive family
of types, indexed over �nite lists of booleans - a predicative construction. It can
be shown (done by Peter Aczel) that Lam is a minimal pre-�xed point of the
rank-2 operator underlying equation (*). The new insight is that this can even be
used to program an iterator for Lam (in our case, within system Coq). However,
its operational behaviour is hard to express in an implementation-independent
fashion. A possible solution comes from a syntactic form of Kan extensions that
reintroduces impredicativity.

The use of Lam is demonstrated by a representation of beta-developments of
untyped lambda terms.

Wobbly types: type inference for generalised algebraic
data types

Simon L. Peyton-Jones (Microsoft Research UK, GB)

Generalised algebraic data types (GADTs), sometimes known as �guarded re-
cursive data types� or ��rst-class phantom types�, are a simple but powerful
generalisation of the data types of Haskell and ML.

Recent works have given compelling examples of the utility of GADTs, alt-
hough type inference is known to be di�cult.

It is time to pluck the fruit. Can GADTs be added to Haskell, without losing
type inference, or requiring unacceptably heavy type annotations? Can this be
done without completely rewriting the already-complex Haskell type-inference
engine, and without complex interactions with (say) type classes? We answer

6 T. Altenkirch, M. Hofmann and J. Hughes

these questions in the a�rmative, giving a type system that explains just what
type annotations are required, and a prototype implementation that implements
it. Our main technical innovation is �wobbly types�, which express in a declarative
way the uncertainty caused by the incremental nature of typical type-inference
algorithms.

Joint work of: Simon Peyton Jones, Stephanie Weirich, Geo�rey Washburn

Certi�ed Typechecking in Foundational Certi�ed Code
Systems

Susmit Sarkar (CMU - Pittsburgh, USA)

Certi�ed code enable untrusted programs to be proven safe to execute in a
machine-checkable manner. This is done by packaging a proof of code safety to-
gether with the code. Recent work has focused on building foundational certi�ed
code systems, where safety is de�ned relative to a concrete machine architecture.
To be practical, such systems factor the proof of program safety into two parts.
The �rst part is a generic part, in which a class of programs is proven safe. In
the second, program-speci�c part, the program of interest is shown to belong to
the class. If the class of programs is de�ned as a type system, the �rst problem
corresponds to proving type safety, and the second problem to type checking.

Previous work, including ours, have focussed on the �rst problem. The second
problem is less well studied. A typechecker for the untrusted program has to be
provided by untrusted sources. It may not implement the type system correctly.
We need a certifying typechecker, which can be statically checked. We propose a
dependently-typed version of SML to write such typecheckers. Dependent types
help us check partial correctness statically.

Keywords: Foundational certi�ed code

Delphin: Functional Programming with Dependent Types

Carsten Schürmann (Yale University, USA)

Logical frameworks are meta languages designed to represent deductive systems,
such as derivation in logic and type theories, or traces of operational semanti-
cs and translation procedures. Functional programming languages are designed
to help programmers express computations. Delphin aims at combing the two
and provides a programming paradigm for writing programs with higher-order,
dependently typed encodings. in a natural way as if they were natural numbers
lists or trees.

Delphin is a two level programming language that distinguishes between a
universe for representation and a universe for computation.

Dependently Typed Programming 7

As a novelty it would be useful to mentation the injection type embedding
data into the computation level and a modal type constructor that permits
evaluation under lambda binders and ensures scoping. A version for the simply
typed logical framework is implemented and accessible thorough our homepage
http://www.cs.yale.edu/Carsten/delphin.

Keywords: Delphin, Logical Frameworks, Higher-order Abstract Syntax, Func-
tional Programming, Dependent Types.

Joint work of: Schürmann, Carsten; Poswolsky, Adam; Sarnat, Je�

Interactive Programs and Weakly Final Coalgebras in
Dependent Type Theory (Extended Version)

Anton Setzer (University of Wales - Swansea, GB)

We reconsider the representation of interactive programs in dependent type theo-
ry that the authors proposed in earlier papers. Whereas in previous versions the
type of interactive programs was introduced in an ad hoc way, it is here de�ned
as a weakly �nal coalgebra for a general form of polynomial functor. The are
two versions: in the �rst the interface with the real world is �xed, while in the
second the potential interactions can depend on the history of previous interac-
tions. The second version may be appropriate for working with speci�cations of
interactive programs.

We focus on command-response interfaces, and consider both client and ser-
ver programs, that run on opposite sides such an interface. We give formati-
on/introduction/elimination/equality rules for these coalgebras. These are ex-
plored in two dimensions: coiterative versus corecursive, and monadic versus
non-monadic. We also comment upon the relationship of the corresponding ru-
les with guarded induction. It turns out that the introduction rules are nothing
but a slightly restricted form of guarded induction. However, the form in which
we write guarded induction is not recursive equations (which would break norma-
lisation � we show that type checking becomes undecidable), but instead involves
an elimination operator in a crucial way.

Keywords: Dependently types programming, interactive programs, coalgebras,
weakly �nal coalgebras, coiteration, corecursion, monad

Joint work of: Setzer, Anton; Hancock, Peter

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/176

http://drops.dagstuhl.de/opus/volltexte/2005/176

8 T. Altenkirch, M. Hofmann and J. Hughes

Partiality is an e�ect

Tarmo Uustalu (Tallinn Technical University, EE)

Partial functions are usually considered as something basic or �purely functio-
nal� in functional languages, hence semantics starts from CPO-like categories
with �xpoint operators. We maintain that partiality due to non-termination
can alternatively be treated as a monadic e�ect. The appropriate monad is the
free completely iterative monad on the identity functor which captures timed,
possibly non-terminating computation; one can also consider the quotient that
identi�es all terminating computations yielding the same value (constructively,
this is not the same as the error monad, which can only capture partiality due
to �nite failure). Looping constructions are supported immediately; we discuss
general recursion and combination of the monad with monads for other e�ects.
Time permitting, I will also show how the dual comonad can be used to repre-
sent causal stream functions. (Work in progress jointly with T. Altenkirch and
V. Capretta.)

A Core Language for Generalized Algebraic Datatypes

Stephanie Weirich (University of Pennsylvania, USA)

Generalised algebraic data types (GADTs), sometimes known as �guarded re-
cursive data types� or ��rst-class phantom types�, are a simple but powerful
generalisation of the data types of Haskell and ML. Recent works have given
compelling examples of the utility of GADTs, although type inference is known
to be di�cult.

Simon Peyton Jones will be speaking about our work in combining GADTs
with Haskell type inference. However, before we could even think about doing
that, we needed to de�ne the semantics of GADTs in Haskell's explicitly-typed
core language. Although the semantics of GADTs in explicitly-typed languages
is not new, we did encounter a few technical di�culties in designing a version
that worked well with Haskell's existing core language. I'll speak about these
issues as well as provide material background for Simon's talk.

	04381 Abstracts Collection Dependently Typed Programming --- Dagstuhl Seminar ---
	 Thorsten Altenkirch, Martin Hofmann and John Hughes

