
Removing Cycles in Esterel Programs

Jan Lukoschus1, Reinhard von Hanxleden2

1 Christian-Albrechts-Universität zu Kiel, Institut für Informatik
24098, Kiel, Olshausenstr. 40, Germany

jlu@informatik.uni-kiel.de
2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik

24098, Kiel, Olshausenstr. 40, Germany
rvh@informatik.uni-kiel.de

Abstract. Synchronous programs may contain cyclic signal interdepen-
dencies. This prohibits a static scheduling, which limits the choice of
available compilation techniques for such programs. This paper proposes
an algorithm which, given a constructive synchronous program, performs
a semantics-preserving source-level code transformation that removes
cyclic signal dependencies, and also exposes opportunities for further op-
timization. The transformation exploits the monotonicity of constructive
programs, and is illustrated in the context of Esterel; however, it should
be applicable to other synchronous languages as well. Experimental re-
sults indicate the efficacy of this approach, resulting in reduced run times
and/or smaller code sizes, and potentially reduced compilation times as
well. Furthermore, experiments with generating hardware indicate that
here as well the synthesis results can be improved.

Keywords. Synchronous Languages, Compilation, Cyclic Circuits, Con-
structiveness, Esterel, Lustre, Hardware, Software

1 Introduction

One of the strengths of synchronous languages [2] is their deterministic seman-
tics in the presence of concurrency. It is possible to write a synchronous program
which contains cyclic interdependencies among concurrent threads. Depending
on the nature of this cycle, the program may still be valid; however, translat-
ing such a cyclic program poses challenges to the compiler. Therefore, not all
approaches that have been proposed for compiling synchronous programs are
applicable to cyclic programs. Hence, cyclic programs are currently only trans-
latable by techniques that are relatively inefficient with respect to execution
time, code size, or both. This paper proposes a technique for transforming valid,
cyclic synchronous programs into equivalent acyclic programs, at the source-
code level, thus extending the range of efficient compilation schemes that can be
applied to these programs.

The focus of this paper is on the synchronous language Esterel [5]; how-
ever, the concepts introduced here should be applicable to other synchronous
languages as well, such as Lustre [17].

Dagstuhl Seminar Proceedings 04491
Synchronous Programming - SYNCHRON'04
http://drops.dagstuhl.de/opus/volltexte/2005/160

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Lukoschus, R. von Hanxleden

Next we will provide a classification of cyclic programs, followed by an
overview of previous work on compiling Esterel programs and handling cycles.
Section 2 introduces the transformation algorithm for pure signals, which do not
carry a value. Section 3 describes how to derive replacement expression for sig-
nals from an Esterel program. Optimization options are presented in Section 4.
Section 5 demonstrates the transformation with further examples, including a
program using valued signals. Section 6 provides experimental results, the paper
concludes in Section 7.

module NREACT:
inputoutput A;

present A else
emit A

end
end module

K0GO

A

(a)

module NDET:
inputoutput A;

present A then
emit A

end

K0GO

A

(b)

module CYCLE:
inputoutput A, B;

present A then
emit B

end
||

present B then
emit A

end
end module

GO

A

B

(simplified)

(c)

Fig. 1. Invalid cyclic Esterel programs. The wires shown as dashed lines indicate
the cyclic dependencies.

1.1 Cyclic Programs

The execution of an Esterel program is divided into discrete instants. An Es-
terel program communicates through signals that are either present or absent
throughout each instant; this property is also referred to as the synchrony hy-
pothesis. If a signal S is emitted in one instant, it is considered present from
the beginning of that instant on. If a signal is not emitted in one instant, it is
considered absent.

The Esterel language consists of a set of primitive statements, from which
other statements are derived [3]. The primitives that directly involve signals

Removing Cycles in Esterel Programs 3

are signal (signal declaration), emit (signal emission), present (conditional), and
suspend (suspension).

Consider the three short Esterel programs shown in Figure 1. The first pro-
gram NREACT involves the signal A, which is an input signal, meaning that it
can be emitted in the environment, and also an output signal, meaning that
it can be tested by the environment. Here the environment may be either the
external environment of the program, or it may consist of other Esterel modules.
The body of NREACT states that if A is present (emitted by the environment),
then nothing is done, which is not problematic. However, if A is absent, then the
else part is activated: A is emitted, which invalidates the former presence test
for A. Such a contradiction is an invalid behavior of an Esterel program; such
a program is over-constrained, or not reactive, and should be rejected by the
compiler. This problem also becomes apparent when synthesizing this program
into hardware, as the gate representation of this program is an inverter with its
output directly fed back to the input. This is obviously not a stable circuit and
hence forbidden in Esterel.

The program NDET in Figure 1(b) is similar to NREACT, but with else
changed to then. Here a present A will result in an emission of A in the then
branch of the present statement, which would justify taking the then branch.
Conversely, an absent A will skip the emission of A. Hence, this program is
under-constrained, or not deterministic. A compiler should reject NDET. This
also becomes apparent at the gate representation of NDET, which is a driver gate
that transmits the input value to the output. Now the output is fed back to the
input to map the behavior of the program. As a certain gate delay is inevitable,
this circuit may be an oscillator instead of providing stable outputs.

Programs NREACT and NDET have the same underlying problem: They in-
volve a signal that is self dependent. In both programs the emission of A depends
on a guard containing A. In these two examples, we have a direct self depen-
dence, where the emission of a signal immediately depends on the presence of a
signal. However, we may also have indirect self dependencies, in which a signal
depends on itself via some other, intermediate signals. Consider program CYCLE
in Figure 1(c), which contains two parallel threads, both testing for the signal
emitted by the other one. However, the signals are emitted only if the other one
has been emitted already; the emission of A depends on the presence of B and
vice versa. In this case, we have a cyclic dependency, or cycle for short, and the
program should again be rejected. We will refer to the emission of a signal that
is guarded by a signal test (using present, suspend, or a derived statement) as a
guarded emit.

All three programs shown in Figure 1 involve cyclic signal dependencies and
are invalid, and hence of no further interest to us. However, there are programs
that contain dependency cycles and yet are valid. A program is considered valid,
or constructive, if we can establish the presence or absence of each signal without
speculative reasoning, which may be possible even if the program contains cycles.
The equivalent formulation in hardware is that there are circuits that contains
cycles and yet are self-stabilizing, irrespective of delays [4].

4 J. Lukoschus, R. von Hanxleden

module PAUSE CYC:
input A, B;
output C;

present A then
emit B

end;
pause;
present B then

emit A
end

||
present B then

emit C
end

end module

(a)

module PAUSE PREP:
input A, B;
output C;
signal A , B , ST 0, ST 1, ST 2 in

emit ST 0;
[

present [A or A] then

emit B
end;
pause; emit ST 1;
present [B or B] then

emit A
end

||
present [B or B] then

emit C
end

]; emit ST 2

end signal

end module

(b)

module PAUSE ACYC:
input A, B;
output C;
signal A , B , ST 0, ST 1, ST 2 in

[
emit ST 0;
present [A or

(ST 1 and (B or ST 0))] then

emit B
end;
pause; emit ST 1;
present [B or B] then

emit A
end

||
present [B or B] then

emit C
end

] ; emit ST 2
end signal
end module

(c)

module PAUSE OPT:
input A, B;
output C;

signal B in
present A then

emit B
end;
pause;
present B then

emit A
end

||
present [B or B] then

emit C
end

end signal
end module

(d)

Fig. 2. Resolving a false cycle.

Removing Cycles in Esterel Programs 5

Consider the program PAUSE CYC in Figure 2(a): the cyclic dependency
consists of an emission of B guarded by a test for A and an emission of A guarded
by a test for B. At run time, however, the dependencies are separated by a pause
statement into separate execution instants. The emission of B in the first instant
has no effect on the test for B in the second instance.

module DRIVER CYC:
input D;
inputoutput A, B;

loop
present D then

present A then
emit B

end
else

present B then
emit A

end
end;
pause

end
end module

module DRIVER ACYC:
input D;
inputoutput A;
input B;

output B ;

loop
present D then

present A then
emit B

end
else

present B then
emit A

end
end;
pause

end
end module

A

GO

B

D

(a) (b) (c)

Fig. 3. False cyclic dependencies in a bidirectional bus driver. The wires shown
as dashed lines indicate the cyclic dependency.

In such a case, where not all dependencies are active in the same execution
instant, we will call the cyclic dependency a false cycle. In contrast, the programs
shown in Figure 1 all contained true cycles, where all dependencies involved
were present at the same instant. A cycle may be false because it is broken by
a register, as is the case in PAUSE CYC, or because it is broken by a guard,
as is the case in program DRIVER CYC shown in Figure 3(a). Programs that
only contain false cycles are still constructive and hence are valid programs that
should be accepted by a compiler.

So far, we have considered only programs that contained true cycles and were
invalid (NREACT, NDET, CYCLE) or that contained false cycles and were valid
(PAUSE CYC, DRIVER CYC). However, there also exist programs that contain
true cycles, with all dependencies evaluated at the same instant, and yet are
valid programs. A classic example of a truly cyclic, yet constructive program is
the Token Ring Arbiter [18]; Figure 4 shows a version with three stations. Each
network station consists of two parallel threads: one computes the arbitration

6 J. Lukoschus, R. von Hanxleden

signals, the other passes a single token in each instant from one station to the
next in each instant.

An inspection of the Arbiter reveals that there is a true cycle involving signals
P1, P2, and P3. However, the program is still constructive as there is always at
least one token present that breaks the cycle. Hence, a compiler should accept
this program. Note that the same program, but without the first thread that
emits T1 in the first instant, should be rejected—this illustrates that determining
constructiveness of a program is a non-trivial process.

module TR3 CYC:

input R1, R2, R3;
output G1, G2, G3;

signal P1, P2, P3,
T1, T2, T3

in
emit T1

||
loop % STATION1

present [T1 or P1]
then

present R1 then
emit G1

else
emit P2

end
end ;
pause

end loop
||

loop
present T1 then

pause;
emit T2

else
pause

end
end

||
loop % STATION2

present [T2 or P2]
then

present R2 then
emit G2

else
emit P3

end
end ;
pause

end loop
||

loop
present T2 then

pause;
emit T3

else
pause

end
end

||
loop % STATION3

present [T3 or P3]
then

present R3 then
emit G3

else
emit P1

end
end ;
pause

end loop
||

loop
present T3 then

pause;
emit T1

else
pause

end
end

end module

Fig. 4. Token Ring Arbiter with three stations.

1.2 Related Work

A number of different approaches for compiling Esterel programs into either
software or hardware have been proposed.

Removing Cycles in Esterel Programs 7

An early approach to synthesize software, employed by Berry et al.’s V3
compiler [5] and others [1,8], builds an automaton through exhaustive simulation.
This approach can compile cyclic programs. The resulting code is very fast, but
potentially very large, as it is affected by possible state explosion.

Another approach, used by the v5 compiler [6], is to translate an Esterel
program into a net-list, which can either be realized in hardware or which can
be simulated in software. Using the technique proposed by Shiple et al. [20], this
approach handles cycles by re-synthesizing cyclic portions into acyclic portions,
employing the algorithm by Bourdoncle [7]. This approach offers better scalabil-
ity than the automata-based approach, as it does not suffer from possible state
explosion; however, the software variant tends to be rather slow, as it simulates
the complete circuit during each instant, irrespective of which parts of the circuit
are currently active.

A third approach to synthesize software is to generate an event-driven simu-
lator, which breaks the simulated circuit into a number of small functions that
are conditionally executed [10,12,9]. These compilers tend to produce code that
is compact and yet almost as fast as automata-based code. The drawback of
these techniques is that so far, they rely on the existence of a static sched-
ule and hence are limited to acyclic programs. One approach to overcome this
limitation, which has been suggested earlier by Berry and has been described
in [12], is to unroll the strongly connected regions of the Conditional Control
Flow Graph; Esterel’s constructive semantics guarantees that all unknown in-
puts to these strongly connected regions can be set to arbitrary, known values
without changing the meaning of the program.

As it turns out, the transformation we are proposing here also makes use
of this property of constructiveness to resolve cycles; however, unlike the ap-
proaches suggested earlier [13,14], it does so at the source code level. Hence this
makes it possible to compile originally cyclic programs using for example the ex-
isting efficient compilers that implement event-driven simulators. Furthermore,
the experimental results indicate that this transformation can also improve the
code resulting from the techniques that can already handle cyclic programs, such
as the net-list approach employed by the V5 compiler. It also turns out that the
compilation itself can be sped up by transforming cyclic programs into acyclic
ones first.

2 The Basic Transformation Algorithm

Figure 5 introduces the notation we will use for our transformation. Figure 6
presents the algorithm for transforming cyclic Esterel programs into acyclic pro-
grams. The algorithm is applicable to programs with cycles that involve pure
signals only. The following section will discuss each transformation step along
with it’s worst-case increase in code size.

Step (1): The constructiveness of the Esterel program is a crucial precon-
dition for this algorithm to work. This analysis can be done by using the v5
compiler [15] or by implementation of published algorithms [20,3].

8 J. Lukoschus, R. von Hanxleden

Basics
N: Set of natural numbers
For n ∈ N : Nn =def {i ∈ N | i < n}
P : Given Esterel Program
S: Set of signals used in P

Guarded emits
len ∈ N: Length of cycle
Cycle = {GEmiti | i ∈ Nlen}
i: Guarded emit index, i ∈ Nlen

GEmiti = 〈GSigi, GExpi〉: A guarded emit
GExpi: Boolean expression involving signals GIn ⊆ S
GSigi ∈ S: Signal emitted in guarded emit
GSigs: Set of original cycle signals
GSig

(i mod len)+1
∈ GIn: Cycle property

GSig′i: A fresh signal used to replace emission of GSig in GEmiti

GSigs′: Set of fresh cycle signals
STi: A fresh state signal (used to indicate testing of guarded emit)
STs = {STi | i ∈ Nlen}: Set of state signals

Fig. 5. Notation.

Step (2): The core algorithm is only applicable to Esterel programs re-
stricted in certain ways. Therefore we perform some preprocessing to simplify
the structure of the program:

Step (2.2a): The expansion of modules is a straightforward textual replace-
ment of module calls by their respective body. No dynamic runtime structures
are needed, since Esterel does not allow recursions. Just the replacement of for-
mal parameter names by their actual signals must be done.

The complexity of this module expansion can reach exponential growth of
code size, but this expansion is done by every Esterel compiler and not a special
requirement of this transformation algorithm.

Step (2.2b): Regarding the statements handling signals, the transformation
algorithm is expressed in terms of Esterel kernel statements. Therefore state-
ments that are derived from emit, present, or suspend must be reduced to these
statements.

One derived statement is replaced by a fixed construct of kernel statements,
therefore the complexity of this step is a constant factor on the number of state-
ments in the program.

Step (2.2c): We have to eliminate locally defined signals because replace-
ment expressions for signals computed by our algorithm could carry references
to local signals out of their scope. (Note that the programmer may still freely
use local signal declarations.) Furthermore, our method of finding replacement
expressions assumes that signals are unique, i. e., not re-incarnated. A simple
approach to eliminate re-incarnation is based on loop-unrolling, which results in
a potentially exponential increase in code size; using other techniques, this can

Removing Cycles in Esterel Programs 9

Input: Program P , potentially containing cycles
Output: Modified program P ′′, without cycles

1. Check constructiveness of P . If P is not constructive: Error.
2. Preprocessing of P :

(a) If P is composed of several modules, instantiate them into one flat main mod-
ule.

(b) Expand derived statements that build on the kernel statements
(c) Rename locally defined signals to make them unique and lift the definitions

up to the top level. Furthermore, eliminate signal re-incarnation.
(d) Transform suspend into equivalent present/trap statements.
(e) Rename trap names making them unique

3. If P does not contain cycles: Done.
Otherwise: Select a cycle Cycle, of length len.

4. Introduce state signals:
(a) Add boot register:

– Globally declare a new signal ST 0
– Add “emit ST 0;” to the start of the program body.

(b) Enumerate all pause and II statements starting from 1 and do for all pausei

and IIi:

– Globally declare a new signal ST i.
– Replace “pausei” by “pause; emit ST i.”
– Replace “p IIi q” by “[p II q]; emit ST i.”

5. Transform P into P ′; for all GSigi ∈ Cycle:
(a) If GSigi is an output signal in the module interface, then add GSig′i to the

list of output signals; otherwise, globally declare a new signal GSig′i.
(b) Replace “emit GSigi” by “emit GSig′i.”
(c) Replace tests for GSigi by tests for “(GSigi or GSig′i).”
Let GSigs′ be the union of all GSig′i.

6. Transform (still cyclic) P ′ into (acyclic) P ′′:
(a) For all GSig′i ∈ GSigs′ determine replacement expressions Expri.
(b) Select some cycle signal GSig′i ∈ GSigs′.
(c) Iteratively transform Expri to Expr∗i by replacement of all signals GSig′j ∈

(GSigs′ \GSig′i) by their expressions Exprj .
(d) Replace GSig′i in Expr∗i by false (or true) and minimize result.

Now Expr∗i does not involve any cyclic signals.
(e) Replace all tests for GSig′i in P ′ by Expr∗i .

7. Goto Step (3), treat P ′′ now as P .

Fig. 6. Transformation algorithm, for pure signals.

10 J. Lukoschus, R. von Hanxleden

be reduced to a quadratic increase [3] or more efficient by the introduction of a
“gotopause” statement into Esterel [21].

Step (2.2d): Program fragments of the form

suspend p when S

where p denotes the suspended body and S the suspension condition, are replaced
by just the body p, where all “pause” statements inside p are replaced by “await
not S.” This transformation emulates the behavior of “suspend” by explicitly
checking the suspension condition at the start of each instant. However, as the
await statement is a derived statement, we have to transform it further into
kernel statements; “await not S.” then becomes:

trap T in
loop

pause;
present S else exit T end

end
end

An example program with suspend statements is discussed in Section 5.1 on
page 20.

The complexity of this transformation is proportional to the number of
“pause” statements inside “suspend” statements.

Step (2.2e): Now there may be multiple instances of the same trap name T.
This constitutes a valid Esterel program, however, it simplifies the subsequent
transformation to have unique trap names.

Step (3): Cycles in the program are identified by building a graph represent-
ing the control flow dependencies between “present” tests and signal emissions.
That directed graph can be used to search for cyclic dependencies in the Esterel
program. Only the signals that are part of the cycle are of further interest.

If there is more than one cycle present in the program, then the application
of the algorithm is repeated for each cycle.

Steps (4): The introduction of state signals makes the current state of the
program available to signal expressions. Each pause statement is supplemented
with the emission of a unique signal ST i. The first state signal ST 0 is emitted
at program start. ST 0 resembles the boot register in the circuit representation
of Esterel programs. Additionally all parallel operators (II) are extended by the
emission of a state signal at termination.

The number of additional state signals and signal emissions is proportional
to the number of pause statements in the program and therefore proportional to
program size.

Steps (5.5a/5b): This step splits each cycle signal GSigi into two signals
GSigi and GSig′i. The signal with the original name GSigi is emitted outside
the cycle, a signal with a new name GSig′i is emitted as part of the cycle. The
motivation of this step is, to be able to distinguish between emissions from inside
and outside the cycle and the aim of the replacement expression is to replace
emissions inside the cycle. In a way, this introduction of fresh signals, which are
emitted exclusively in the cycle, is akin to Static Single Assignment (SSA) [11].

Removing Cycles in Esterel Programs 11

For each signal in the program, at most one replacement signal is added, thus
the complexity of this step is a constant factor of the program size.

Step (5.5c): All tests for cycle signals in the original program are extended
by tests for their replacement signals, respectively. Using the SSA analogy, this
corresponds to a φ-node [11].

Each changed signal test is expanded by an expression of constant size, there-
fore we get a constant factor on the number of signal test expressions in the
program.

Step (6.6a): The computation of replacement expressions is described in
detail in Section 3 on page 16.

Step (6.6b): One signal in the set of cyclic signals must be selected as a point
to break the cyclic dependency. Basically any signal in the cycle will work; the
actual selection can be based on the smallest replacement expression computed
in the next step.

Step (6.6c): Expri contains references to other cycle signals GSig′j . These
are recursively replaced by their respective expressions Exprj into Expr∗i . This
unfolding of expressions is performed until only GSig′i besides other non cyclic
signals is contained in GExp∗i .

The complexity of the replacement expressions depends on the length of the
cycle, because the length of the cycle dictates the number of replacement itera-
tions needed to eliminate all but the first cycle signals in the guard expression.
The length of the cycle and the size of each replacement are limited by the
number of signals in the program. So there is a quadratic dependency of the
size of the replacement expression to the program size. The number of times
the replacement expression will be inserted in the program is likewise dependent
on the program size. Thus the growth in program size for one cycle is of cubic
complexity.

Step (6.6d): Since the program is known to be constructive, it follows that
Sig′i in Exp∗i must not have any influence on the evaluation of Exp∗i . Therefore
we can replace Sig′i in Exp∗i by any constant value (true or false). Now Exp∗i
contains only non cyclic signals. It is important to replace just all Sig′i and not
any occurrence of Sigi, because Sigi is emitted outside the cycle therefore not
part of the cycle.

The true or false values must be used to minimize the expression, because
some Esterel compilers do not support those boolean constants.

Step (6.6e): The last transformation step in the algorithm replaces every
occurrence of Sig′i in present tests by it’s replacement expression Exp∗i . Now we
have replaced one signal of the cycle by an expression which is not part of the
cycle. Therefore we have broken the current cycle Cycle.

Step (7): The transformation algorithm must be repeated for each cycle,
and the upper limit of cycles to resolve is the number of signals in the program.

Overall, a very conservative estimate results in a code size of O(n4), where
n is the source program size after module expansion and elimination of signal
re-incarnations; however, we expect the typical code size increase to be much
lower. In fact, we often experience an actual reduction in source size, as the

12 J. Lukoschus, R. von Hanxleden

transformation often offers optimization opportunities where statements are re-
moved. As for the size of the generated object code, here the experimental results
(Section 6) also demonstrate that typically the transformation results in a code
size reduction.

Application to example The algorithm is applied to the example PAUSE CYC in
Figure 2(a) on page 4, which is transformed into the acyclic program PAUSE ACYC
in Figure 2(c). The transformation of the program DRIVER CYC in Figure 3(a),
page 5, into DRIVER ACYC in Figure 3(b) is similar.

Step (1): PAUSE CYC is cyclic but nevertheless constructive, because a pause
statement separates the execution of both parts of the cycle.

Steps (2.2a) to (2.2e) do not apply to PAUSE CYC.
Step (3): PAUSE CYC contains one cycle. Cycle = {〈A,B〉, 〈B,A〉}.
Steps (4) and (5): To prepare the removal of the cycle, we first transform

PAUSE CYC into the equivalent program PAUSE PREP, shown in Figure 2(b).
It differs from PAUSE CYC in the introduction of state signals ST 0 to ST 2 and
that the signals carrying the cycle (A and B) have been replaced by fresh signals
A and B , which are only emitted within the cycle. All tests for A and B in the
original program are replaced by tests for [A or A] and [B or B], respectively.

Step (6.6a): The computation of replacement expressions for A and B ac-
cording to Section 3 results in:

A = ST 1 ∧ (B ∨ B) (1)
B = ST 0 ∧ (A ∨ A) (2)

The equations for each signal now refer to other cycle signals; note that we
consider A and B not cycle signals anymore, as they are not emitted within the
cycle anymore.

Step (6.6b): In PAUSE PREP, we arbitrarily select A as the signal to break
the cycle.

Step (6.6c): To replace B in Equation (1), we get by substituting (2) into (1):

A = ST 1 ∧ (B ∨ (ST 0 ∧ (A ∨ A))). (3)

This is now an equation which expresses the cycle signal A as a function of itself
and other signals that are not part of the cycle; so we have unrolled the cycle.

Step (6.6d): We could now simulate (3) using three-valued logic; however,
here we make use of the constructiveness of the program, which guarantees
monotonicity. This means that a more defined input always produces an equal or
more defined output. Hence, if the program is known to never produce undefined
outputs, we can set all unknown inputs (such as A in this case) to arbitrary,
known values without changing the meaning of the program [12]. Applying this
to Equation (3) yields, for A = false (absent):

A = ST 1 ∧ (B ∨ (ST 0 ∧ A)). (4)

Similarly, for A = true (present):

A = ST 1 ∧ (B ∨ ST 0). (5)

Removing Cycles in Esterel Programs 13

We now have derived two equally valid replacement expressions for A , which do
not involve any cycle signal.

Step (6.6e): Finally we are ready to break the cycle in PAUSE PREP. For
that, we have to replace the signal selected in Step (6b) —in the cycle—by
an expression that does not use any of the cycle signals, without changing the
meaning of the program.

Substituting (5), the simpler of these expressions, for A in PAUSE PREP
yields the now acyclic program PAUSE ACYC shown in Figure 2(c).

module TR3 ACYC:

input R1, R2, R3;
output G1, G2, G3;

signal ST 0, ST 1, ST 2, ST 3,
ST 4, ST 5, ST 6, ST 7,
ST 8, ST 9, ST 10 in

emit ST 0;
signal P2, P3,

% P1 deleted
T1, T2, T3

in
[

emit T1
||

loop % STATION1
present

[T1 or (ST 0 or ST 7)
and (T3 or (ST 0 or ST 4)

and (T2 or (ST 0 or ST 1)
and not R1)

and not R2)
and not R3] then

present R1 then
emit G1

else
emit P2

end
end;
pause; emit ST 1;

end loop
||

loop
present T1 then

pause; emit ST 2;
emit T2

else
pause; emit ST 3;

end
end

||
loop % STATION2

present [T2 or P2]
then

present R2 then
emit G2

else
emit P3

end
end;
pause; emit ST 4

end loop
||

loop
present T2 then

pause; emit ST 5;
emit T3

else
pause; emit ST 6

end
end

||
loop % STATION3

present [T3 or P3]
then

present R3 then
emit G3

% else branch
% deleted
end

end;
pause; emit ST 7

end loop
||

loop
present T3 then

pause; emit ST 8;
emit T1

else
pause; emit ST 9

end
end

]; emit ST 10
end module

Fig. 7. Non cyclic Token Ring Arbiter.

14 J. Lukoschus, R. von Hanxleden

Application to the Token Ring Arbiter Before transforming program TR3 CYC
from Figure 4 into the acyclic TR3 ACYC shown in Figure 7, we can apply an
optimization. There are no tests for the cycle signals outside of the cycle, so we
do not need fresh cycle signals either. This and other optimizations are explained
further in Section 4.

We now select signal P1 to break the cycle. We can compute the expression
to replace P1 in the test in STATION1 as follows:

P2 = (ST 0 ∨ ST 1) ∧ (T1 ∨ P1) ∧ R1, (6)
P3 = (ST 0 ∨ ST 4) ∧ (T2 ∨ P2) ∧ R2

= (ST 0 ∨ ST 4) ∧ (T2 ∨ (ST 0 ∨ ST 1) ∧ (T1 ∨ P1) ∧ R1) ∧ R2, (7)
P1 = (ST 0 ∨ ST 7) ∧ (T3 ∨ P3) ∧ R3

= (ST 0 ∨ ST 7) ∧ (T3 ∨ (ST 0 ∨ ST 4) ∧ (T2 ∨ (ST 0 ∨ ST 1)
∧(T1 ∨ P1) ∧ R1) ∧ R2) ∧ R3. (8)

Equation (8) now again expresses a cycle carrying signal (P1) as a function of
itself and other signals that are outside of the cycle. Again we can employ the
constructiveness of TR3 CYC to replace P1 in this replacement expression by
either true or false. Setting P1 to false yields:

P1 = (ST 0∨ST 7)∧(T3∨(ST 0∨ST 4)∧(T2∨(ST 0∨ST 1)∧T1∧R1)∧R2)∧R3. (9)

Setting P1 to true yields:

P1 = (ST 0∨ST 7)∧ (T3∨ (ST 0∨ST 4)∧ (T2∨ (ST 0∨ST 1)∧R1)∧R2)∧R3. (10)

This is also the replacement expression applied when transforming TR3 CYC.
The other transformation steps are fairly straightforward.

The replacement expression is fairly complex, but close inspection yields an
optimization: The expression “(ST 0∨ST 7)” is contained in 10: The state signal
ST 0 is emitted in the first instant and ST 7 is emitted in all instants but the
first one. In a disjunction they will always return true. Therefore the expression
can be replaced statically by true. The same holds for “(ST 0 ∨ ST 4)” and
“(ST 0 ∨ ST 1).”

With this optimization 10 can be reduced to:

P1 = (T3 ∨ (T2 ∨ R1) ∧ R2) ∧ R3. (11)

Further optimization opportunities are discussed in Section 4.

Removing Cycles in Esterel Programs 15

emit S:

R((!S), C) = {(S, C)} (12)

C((!S), C) = C

present S then p else q end:

R((S?p,q), C) = R(p, C ∧ S) ∪R(q, C ∧ S) (13)

C((S?p,q), C) = C(p, C ∧ S) ∨ C(q, C ∧ S)

nothing:

R((0), C) = ∅ (14)

C((0), C) = C

pause; emit ST i:

R((1;!ST i), C) = ∅ (15)

C((1;!ST i), C) = ST i

exit T:

R((k), C) = {(T, C)} (16)

C((k), C) = false

trap T in p end:

R(({p}), C) = R(p, C) (17)

C(({p}), C) = C(p, C) ∨
_

(T,c)∈R(p,C)

ci

p;q:

R((p;q), C) = R(p, C) ∪R(q, C(p, C)) (18)

C((p;q), C) = C(q, C(p, C))

loop p end:

R((p*), C) = R(p, C ∨ C(p, C)) (19)

C((p*), C) = false

[p II q]; emit ST i:

R(((pIq);!ST i), C) = R(p, C) ∪R(q, C) (20)

C(((pIq);!ST i), C) = ST i

signal S in p end:

R((p\S), C) = R(p, C) (21)

C((p\S), C) = C(p, C)

Fig. 8. Equations to determine replacement expressions for signals

16 J. Lukoschus, R. von Hanxleden

present I1 then
present I2 else

emit A
end

end
II

present A then
emit B

end

(a)

present I1 then
present I2 else

emit A
end

end
II

present [I1 and not I2] then
emit B

end

(b)

Fig. 9. Replacing the signal test for A by their emission context.

3 Computing the replacement expressions

One step towards breaking cyclic dependencies in Esterel programs is to replace
within the conditions of present tests the name of a certain signal by an expression
(Step (6.6a) of the algorithm). That expression is derived from the control flow
contexts of the program where the signal is set by emit statements.

The Logical Behavioral Semantics rules [3] serve as a base to derive the
control flow context for a given Esterel program. Our rules are direct derivations
from those rules with the aim of an easy implementation.

The main objective of the rules is to get replacement expressions for all
signals. The replacement expression describes the signal context of each emis-
sion for that signal. Therefore as a prerequisite the signal context reaching emit
statements is needed.

The rules to implement both tasks operate on an Esterel Program P and two
sets:

– C : Current signal context expression;
– R : Accumulation of replacement expressions for signals.

The rules are implemented in two functions:

– R: P × C → R
This function returns a mapping of signal names to their signal contexts at
the point of their emission.

– C: P × C → C
C takes the signal context delivered by previous statements and computes
the signal context for sub statements and returns the signal context for
following statements.

These functions are computed by structural induction over their first argu-
ment (an Esterel program); the corresponding definitions for each kernel state-
ment are given in Figure 8. To determine the replacement expressions for all

Removing Cycles in Esterel Programs 17

signals in a program P , we compute R := R(P, false), where the false indicates
that at the top-level, the signal context is empty. The result of R will be a set
of pairs. Each pair consists of a signal name and a signal expression (condition).
The expressions describe for their associated signal in which signal context it is
emitted. Now the expressions for the same respective signals can be conjuncted
to yield a single replacement expression for the emission of each signal.

As an example to illustrate how the definitions of R and C correspond to the
behavioral semantics, consider the present statement.

s+∈E p
E′,k−−→

E
p′

s?p,q
E′,k−−→

E
p′

(a) present+

s−∈E q
E′,k−−→

E
q′

s?p,q
E′,k−−→

E
q′

(b) present-

Fig. 10. Logical Behavioral Semantics of the present statement

The two SOS rules from the Logical Behavioral Semantics for the present
statement, given in Figure 10 [3], select the rule to apply based on the presence
of the condition signal s and the resulting control flow. The selected rule will
add signal emissions etc. to the resulting context. The corresponding equations
for R and C(13) consider both possible control flow paths, and both paths may
add signal emissions to R; however, each signal emission is tied to the condition
for that part, thus reflecting the original semantics.

4 Optimizations

The application of the algorithm in Figure 6 exposes opportunities for further
optimizations. For example, the program PAUSE ACYC can be optimized into
the program PAUSE OPT shown in Figure 2(d) on page 4.

Replacing state signal tests by constants The replacement expression GExp∗i
(Step (6.6e) of the algorithm) may reference some state signal STj ∈ STs that
can be shown to be always present or absent:

1. If GExp∗i replaces GSig′i in GExpk, and we know that at this location in
the program, STj must always be present, then we can replace STj by the
constant true in GExp∗i .
In the program PAUSE ACYC, this applies to the state signal ST 0 in the
replacement expression “(ST 1 and (B or ST 0)),” which we therefore can
simplify to “(ST 1 and B).”
More generally, we could replace a state signal by the constant true if we
knew that it must be emitted in every instant. As it turns out, there cannot
be any state signals that fulfill this condition by themselves; the boot state

18 J. Lukoschus, R. von Hanxleden

signal ST 0 is only present in the initial instant, and all other state signals
are emitted only after a pause statement, and hence cannot be emitted in
the initial instant. However, another optimization is possible:

2. If a state signal is emitted in every instant except for the initial instant, we
can replace it with pre(tick).
In the Arbiter, for example, the state signals ST 1, ST 4, and ST 7 are the
only state signals emitted in a loop that runs concurrently to the rest of the
program—hence, as loops must not be instantaneous, they must be emitted
at every iteration and are present at every instant except the initial one.

3. Tests for “ST 0 or pre(tick)” can be replaced by true.
This applies for example to the Token Ring Arbiter, where we know that
all guarded emits that constitute the cycle are evaluated in every instant of
the program. Hence this rule, together with the previous rule, leads to the
simplified replacement expression already stated in Equation 11.

4. Correspondingly, it may also be the case that a state signal is always absent
when tested in some replacement expression GExp∗i . In particular, this is
the case when we have a false cycle.
In the program PAUSE ACYC, this applies to the state signal ST 1; due to the
pause statement between the evaluation of the replacement expression and
the emission of ST 1, we can set ST 1 to false in the replacement expression.
In this case, this reduces the whole replacement expression to false; therefore,
the “[A or (ST 1 and (B or ST 0))]” from PAUSE ACYC gets reduced to just
“A” in PAUSE OPT.

Eliminating emission of state signals If all tests for a state signal are replaced
by constants, the state signal is no longer needed and therefore does not need
to be emitted any more.

In the program PAUSE ACYC, this applies to both ST 0 and ST 1, we can
therefore drop the corresponding emit in the optimized PAUSE OPT.

Absence of External Emissions of Cycle Signals If a cycle signal GSigi is not
emitted outside of the cycle, we do not need to generate a fresh signal GSig′i,
but can instead just use GSigi. In this case, one may skip Step (5).

This is the case in the Arbiter, where the signals carrying the cycle (P1/P2/P3)
are not emitted outside of the cycle.

Absence of External Tests of Cycle Breaking Signal If the signal GSig′i that
is selected in Step (6b) to break the cycle is not tested outside of the cycle,
this means that after replacing the tests for GSig′i within the cycle (Step 6e)
by GExp∗i , the signal GSig′i is not tested anywhere in the program. One can
therefore eliminate its emission.

This also applies to the Arbiter, where signal P1, which we replaced within
the cycle, becomes superfluous. We can therefore eliminate the ”‘emit P1,”’ and
the enclosing else branch.

Removing Cycles in Esterel Programs 19

Simplification of External Tests Depending on how often one must replace a
particular signal GSigi in Step (5c) by the expression “(GSigi or GSig′i),” it
may be beneficial to introduce another fresh signal GSig′′i . This signal must be
emitted whenever GSigi or GSig′i are present, for example using a new globally
parallel statement of the form “every [GSigi or GSig′i] do emit GSig′′i end.” Then
it suffices to replace tests for GSigi by tests for GSig′′i .

module SUSP CYC:
output A,B;

pause;
suspend

pause;
emit A

when B
||

suspend
pause;
emit B

when A
end module

module SUSP PREP:
output A,B;

signal ST 0, ST 1,
ST 2, ST 3, ST 4 in

emit ST 0;
[

pause; emit ST 1;
trap T1 in

loop
pause; emit ST 2;
present B else

exit T1
end

end;
end;
emit A

||
trap T2 in

loop
pause; emit ST 3;
present A else

exit T2
end

end;
end;
emit B

]; emit ST 4
end signal
end module

module SUSP ACYC:
output A,B;

signal ST 0, ST 1,
ST 2, ST 3, ST 4 in

emit ST 0;
[

pause; emit ST 1;
trap T1 in

loop
pause; emit ST 2;
present B else

exit T1
end

end;
end;
emit A

||
trap T2 in

loop
pause; emit ST 3;
present

[ST 2 and not ST 3]
else

exit T2
end

end;
end;
emit B

]; emit ST 4
end signal
end module

(a) (b) (c)

Fig. 11. Simple cyclic program with suspend.

20 J. Lukoschus, R. von Hanxleden

5 Further Example Transformations

5.1 Suspend

So far we presented only cycles with a present test as a guard for an emit state-
ment. Another way to influence the execution of emit is the suspend statement.
A complication with suspend is that, unlike with present, one cannot easily gen-
erate a signal that is emitted unconditionally whenever the guard of a suspend is
evaluated. The transformation algorithm therefore first transforms the suspend
statements into equivalent present/trap statements, in Step (2.2d).

As an example, consider the program SUSP CYC in Figure 11(a). The pro-
gram again contains a cyclic dependency on the signals A and B, the emission
of each signal is inhibited by the presence of the other signal.

Applying Steps (2.2d), (4.4b) results in the preprocessed program SUSP PREP
shown in Figure 11(b). The end result, after applying the whole transformation
algorithm, is SUSP ACYC in Figure 11(c).

module VALUE CYC:

input S;
input A : integer , B : integer ;
output X : integer , Y : integer ;

present S then
present A then

emit B(?A)
end

else
present B then

emit A(?B)
end

end;

present A then emit X(?A) end;
present B then emit Y(?B) end
end module

module VALUE ACYC:

input S;
input A : integer , B : integer ;
output X : integer , Y : integer ;

signal B :integer, B :integer in

present S then
present A then

emit B (?A)
end

else
present B then

emit A(?B)
end

end;

present A then emit X(?A) end;
present B then emit Y(?B) end

II
every B do emit B (?B) end

II
every B do emit B (?B) end

end signal

end module

(a) (b)

Fig. 12. Esterel program with a cycle on valued signals.

Removing Cycles in Esterel Programs 21

5.2 Valued Signals

Figure 12(a) contains an Esterel program VALUE CYC with a (false) cycle on
the signals A and B. Both signals carry values of type integer. The pure signal
S is used to select one of two data flows: from A to B or vice versa. This results
in two guarded emits with reversed signal use. Therefore both guarded emits
constitute a cycle. The cycle is false, because signal S ensures that only one of
both emits is active in an instant. After the guarded emits are evaluated, two
additional guarded emits copy the values from A and B to the outputs X and Y,
respectively.

Figure 12(b) contains the program VALUE ACYC, an acyclic transformation
of VALUE CYC. Two additional signals are introduced: B and B . B is the
replacement for B to break the cycle, and B is used to represent the state of
B outside the cycle. Two additional parallel statements forward the values of B
(from the module interface) and B (from the cycle) to the signal B .

There are two emit statements for the same signal B . Both are executed
in the same instant if B is emitted on the module interface and B is emitted in
the cycle. Therefore we need a combine function if we cannot exclude this case.
However, this problem is not introduced by the transformation of the cycle. The
original VALUE CYC contains needs a combine function, too. Consider S, A and
B being present at the module interface. Then the first guarded emit will be
executed and B will be emitted in the same instant a second time. The same
holds for S absent, then A will be emitted twice. We can compile the program
without a combine function if we assert that A and B are not both present in
the same instant. This resolves the problem for VALUE ACYC, too.

6 Experimental Results

The proposed algorithm has been implemented in its basic form, so far without
the optimizations mentioned in Section 4 and without support for valued signals,
as an extension of the Columbia Esterel Compiler (CEC). For a first experimental
evaluation, we have defined several variants of the Token Ring Arbiter:

TR3: This is the Token Ring Arbiter with three network stations. The im-
plementation is as in Figure 4.

TR10: This is an extension of tr3 from three to ten network stations. The
aim is to test the scaling of the algorithm for code size and runtime.

TR10p: While the former test cases implemented only the arbiter part of the
network without any local activity on the network stations, this test program
adds some simple concurrent “payload” activity to each network station to simu-
late a CPU performing some computations with occasional access to the network
bus.

All programs are tested in the originally cyclic and in the transformed acyclic
version.

22 J. Lukoschus, R. von Hanxleden

6.1 Synthesizing Software

To evaluate the transformation in the realm of generating software, we used six
different compilation techniques:

v5-L: The publicly available Esterel compiler v5.92 [6,15]. It is used in this
case with option -L to produce code based on the circuit representation of Es-
terel. The code is organized as a list of equations ordered by dependencies. This
results in a fairly compact code, but with a comparatively slow execution speed.
This compiler is able to handle constructive Esterel programs with cyclic depen-
dencies.

v5-A: The same compiler, but with the option -A, produces code based on a
flat automaton. This code is very fast, but prohibitively big for programs with
many weakly synchronized parallel activities. This option is available for cyclic
programs, too.

v7: The Esterel v7 compiler (available at Esterel Technologies) is used here
in version v7 10i8 to compile acyclic code based on sorted equations, like the v5
compiler.

v7-O: The former compiler, but with option -O, applies some circuit opti-
mizations to reduce program size and runtime.

CEC: The Columbia Esterel Compiler (available with source code [9]) pro-
duces event driven C code, which is fast with small code size. However, this
compiler cannot handle cyclic dependencies. Thus it can only be applied to the
transformed cyclic programs.

CEC-g: The CEC with -g produces code using computed goto targets (an
extension to ANSI-C offered by GCC-3.3 [16]) to reduce the runtime even further.

A simple C back-end is provided for each Esterel program to produce input
signals and accept output signals to and from the Esterel part. The back-end
iterates over the first three token ring examples 10,000,000 times and 30,000,000
times for the last (simpler) valued signal example. These iteration counts result
in handy execution times in the range of about 0.8 to 18 seconds. These times
where obtained on a desktop PC (AMD Athlon XP 2400+, 2.0 GHz).

Table 1(a) compares the execution speed of the example programs for the v5,
v7, and CEC compilers with their respective options. The v5 compiler is applied
both to the original cyclic programs and the transformed acyclic programs. The
CEC and v7 compiler can handle only acyclic code.

When comparing the runtime results of the v5 compiler (with sorted equa-
tions) for the cyclic and acyclic versions of the token ring arbiter, there is a no-
ticeable reduction in runtime for the transformed acyclic programs. This came
as a bit of a surprise. It seems that the v5 compiler is a little bit less efficient in
resolving cyclic dependencies in sorted equations. For the automaton code there
are only minor differences in runtime.

For the two token ring arbiter variants without payload, the v7 compiler
produces the fastest code. The third token ring example with payload is executed
fastest with the CEC compiler, but only slightly better than the v5 compiler in
automata mode.

Removing Cycles in Esterel Programs 23

Table 1(b) compares the fastest code for our cyclic programs to the fastest
code for the transformed acyclic programs. For each test program the relative
reduction in runtime is listed.

Table 2(a) lists the sizes of the compiled binaries. All compilers produce
code of similar sizes, but with one exception: the v5 compiler produces a very
big automaton code for the third token ring example. That program contains
several parallel threads which are only loosely related. If someone tries to map
such a program on a flat automaton, it is well known that such a structure results
in a “state explosion.” Actually, we had to limit the number of parallel tasks in
this example to get the program to compile in reasonable time.

Table 2(b) contains the compilation times for the different Esterel compilers
to compile the various test programs. The v5 compiler for sorted equations code
needs only little time to compile the acyclic versions of the test programs. In
fact, it is among the fastest compilers in all four acyclic test cases. When this
compiler is applied to cyclic programs, the compilation times are several times
slower but within reasonable limits. When compiling for automaton code with
the v5 compiler, then the compilation time is mostly independent of cyclic and
acyclic properties of the compiled program. The compilation times are low for
small programs with few states, but drastically higher for programs with many
independent, parallel states. The CEC compiler is comparatively slow for small
acyclic programs, but the compilation time does not rise that much for more
complex programs. The v7 compiler behaves similarly.

Variant Compiler TR3 TR10 TR10p
cyclic v5-L 1.58 5.45 17.19

(original) v5-A 0.91 2.59 5.28
v5-L 1.47 5.16 12.20

acyclic v5-A 0.92 2.59 5.27
(trans- v7 1.72 6.04 12.43
formed) v7-O 0.44 1.87 6.02

CEC 1.96 7.92 12.58
CEC-g 1.03 3.71 5.49

(a)

TR3 TR10 TR10p
min(Tcyclic) 0.91 2.59 5.28
min(Tacyclic) 0.44 1.87 5.27

reduction 52% 28% 0.2%
(b)

Table 1. (a) Run times (in seconds) of cyclic and acyclic Esterel programs
compiled with the v5, v7, and CEC compiler. (b) Relative runtime reduction from
the fastest cyclic version to the fastest version for the acyclic transformation,
with reduction = 100% ∗ (1−min(Tacyclic)/min(Tcyclic)).

As an indication of the cost of the transformation algorithm in terms of
processing time and source code increase, Table 3 lists transformation times and
program sizes before and after the transformation of the token ring arbiter with
3, 10, 50, and 100 nodes. The size of the transformed code is nearly proportional
with respect to the arbiter network size. The current run times show a sub-
quadratic effort for the transformation. It should also be noted that at this

24 J. Lukoschus, R. von Hanxleden

Variant Compiler TR3 TR10 TR10p
cyclic v5-L 14273 21530 32244

(original) v5-A 13041 16091 304095
v5-L 14083 20220 29142

acyclic v5-A 13043 16093 304097
(trans- v7 14526 20271 27369
formed) v7-O 13435 16315 21121

CEC 14276 21924 28683
CEC-g 13630 19710 24565

(a)

Variant Compiler TR3 TR10 TR10p
cyclic v5-L 0.09 0.27 1.37

(original) v5-A 0.02 0.05 10.85
v5-L 0.03 0.07 0.07

acyclic v5-A 0.04 0.05 10.42
(trans- v7 0.10 0.19 0.37
formed) v7-O 0.19 0.54 1.06

CEC 0.15 0.30 0.69
CEC-g 0.14 0.28 0.68

(b)
Table 2. (a) Size of compiled Esterel programs (in bytes) using the v5, v7,
and CEC compiler. (b) Run times of the Esterel v5, v7, and CEC compilers (in
seconds).

Transformation TR3 TR10 TR50 TR100
original size 1565 3705 16348 32159

module expansion 1370 4391 22031 44092
cycle transformation 2033 6526 32765 65778
transformation time 0.62 2.3 19.2 63.5

Table 3. Transformation times (in seconds) and resulting program sizes (in
bytes) for token ring arbiters with 3 to 100 nodes.

point the run times are dominated by lots of system I/O for debugging output.
In a release version the transformation should be much faster.

6.2 Synthesizing Hardware

To evaluate the effect of our transformation on hardware synthesis, we com-
pared again the results of the v5, v7, and CEC compilers, for the same set of
benchmarks as for the software synthesis. Again only v5 can handle the un-
transformed, cyclic code version; furthermore, v5 is the only compiler that can
generate hardware for valued signals. The compilers differ in which hardware
description languages they can produce, but a common format supported by all
of them is the Berkeley Logic Interchange Format (BLIF), therefore we base our
comparisons on this output format.

Table 4(a) compares the number of nodes synthesized. Considering the v5
compiler, there is a noticeable reduction in the number of nodes generated for the
Arbiter. When considering the synthesis results of v7 and CEC for the acyclic
version of the Arbiter, v7 produces the best overall results, with the node count
less than half of v5’s synthesis results for the cyclic variants.

Table 4(b) compares the number of latches needed by the synthesization
results. Here the CEC is able to reduce the number of latches considerably.

Table 4(c) compares the number of literals generated. The overall results are
similar to the ones for the node count; the transformation has been lowered the
literal count for the arbiter.

Removing Cycles in Esterel Programs 25

Variant Compiler TR3 TR10 TR10p
cyclic v5 112 357 759

v5 108 346 748
acyclic v7 52 171 351

CEC 146 468 756
(a)

Variant Compiler TR3 TR10 TR10p
cyclic v5 10 31 55

v5 10 31 55
acyclic v7 10 31 55

CEC 4 11 47
(b)

Variant Compiler TR3 TR10 TR10p
cyclic v5 208 745 1551

v5 197 645 1377
acyclic v7 108 360 702

CEC 221 725 1301
(c)

Variant Compiler TR3 TR10 TR10p
cyclic v5 82 266 539

v5 89 299 524
acyclic v7 91 315 591

CEC 89 313 679
(d)

Table 4. Comparison of: (a) node count for BLIF output, (b) latch count for
BLIF output. (c) sum-of-product (lits(sop)) count for BLIF output. (d) sum-of-
product (lits(sop)) - optimized by SIS

Table 4(c) compares the number of literals which remain after a SIS [19]
optimization.

7 Conclusions and future work

We have presented an algorithm for transforming cyclic Esterel programs into
acyclic programs. This expands the range of available compilation techniques,
and, as to be expected, some of the techniques that are restricted to acyclic
programs produce faster and/or smaller code than is possible with the compilers
that can handle cyclic codes as well. Furthermore, the experiments showed that
the code transformation proposed here can even improve code quality produced
by the same compiler.

We have presented the transformation for Esterel programs; however, as men-
tioned in the introduction, this transformation should also be applicable to other
synchronous languages, such as Lustre. Lustre is also a synchronous language,
but data-flow oriented, as opposed to the control-oriented nature of Esterel. To
our knowledge, none of the compilers available for Lustre can handle cyclic pro-
grams, even though valid cyclic programs (such as the Token Ring Arbiter) can
be expressed in the language. Hence in the case of Lustre, applying the source-
level transformation proposed here is not only a question of efficiency, but a
question of translatability in the first place.

Regarding future work, the transformation algorithm spells out only how to
handle cycles carried by pure signals. We have presented an example for removing
a cycle involving a valued signal, but this still has to be generalized. There are
also numerous optimizations possible, some of which presented in Section 4,
which we plan to implement and evaluate; in particular, we are interested in the
extent to which these optimizations might be helpful for Esterel programs in
general, not just as a post-processing step to the transformation proposed here.

26 J. Lukoschus, R. von Hanxleden

Finally, as we have observed earlier, the concept of constructiveness is a
fundamental building block for the transformation presented here; constructive-
ness allows us to ultimately break a cycle by replacing the occurrence of a self-
dependent signal in a replacement expression for that signal by an arbitrary value
(true or false). However, if we would like to determine in the first place whether
a program is constructive or not, the transformation proposed here might be
employed to accelerate this analysis; by replacing signal occurrences by expres-
sions as computed by the algorithm (including possible self-references), one may
replace a generally computationally expensive iterative procedure, which is a
classical approach to analyze constructiveness, by a more efficient analysis.

Acknowledgments

We would like to thank Stephen Edwards for several fruitful discussions about
different types of cyclic dependencies and for providing his CEC compiler as a
solid foundation to build upon.

Klaus Schneider was the first to note that this transformation might also be
helpful for constructiveness analysis, as after the transformation there would be
no need to perform fix-point iterations.

Finally, we thank Xin Li for conducting the hardware synthesis experiments.

References

1. Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L.,
Sangiovanni-Vincentelli, A., Sentovich, E. M., and Suzuki, K. Sythesis of
Software Programs for Embedded Control Applications. In IEEE Transactions of
Computer-Aided Design of Integrated Circuits and System (June 1999), vol. 18,
pp. 834–849.

2. Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Guernic, P. L.,
and de Simone, R. The Synchronous Languages Twelve Years Later. In Pro-
ceedings of the IEEE, Special Issue on Embedded Systems (Jan. 2003), vol. 91,
pp. 64–83.

3. Berry, G. The Constructive Semantics of Pure Esterel. Draft Book, 1999.
4. Berry, G. The foundations of Esterel. Proof, Language and Interaction: Essays

in Honour of Robin Milner (2000). Editors: G. Plotkin, C. Stirling and M. Tofte.
5. Berry, G., and Gonthier, G. The Esterel synchronous programming lan-

guage: Design, semantics, implementation. Science of Computer Programming 19,
2 (1992), 87–152.

6. Berry, G., and the Esterel Team. The Esterel v5 91 System Manual. INRIA,
June 2000.

7. Bourdoncle, F. Efficient chaotic iteration strategies with widenings. In For-
mal Methods in Programming and Their Applications: International Conference
Proceedings (June 1993), vol. 735 of Lecture Notes in Computer Science, Springer.

8. Castelluccia, C., Dabbous, W., and O’Malley, S. Generating efficient pro-
tocol code from an abstract specification. IEEE/ACM Transactions on Networking
5, 4 (1997), 514–524.

9. CEC: The Columbia Esterel Compiler. http://www1.cs.columbia.edu/~sedwards/cec/.

Removing Cycles in Esterel Programs 27

10. Closse, E., Poize, M., Pulou, J., Venier, P., and Weil, D. SAXO-RT:
Interpreting Esterel semantic on a sequential execution structure. In Electronic
Notes in Theoretical Computer Science (July 2002), F. Maraninchi, A. Girault,
and E. Rutten, Eds., vol. 65, Elsevier.

11. Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K.
Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems 13, 4 (October
1991), 451–490.

12. Edwards, S. A. An Esterel compiler for large control-dominated systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21, 2
(Feb. 2002).

13. Edwards, S. A. Making Cyclic Circuits Acyclic. In Proceedings of the 40th
conference on Design automation (June 2003).

14. Edwards, S. A., and Lee, E. A. The Semantics and Execution of a Synchronous
Block-Diagram Language. In Science of Computer Programming (July 2003),
vol. 48, Elsevier.

15. Esterel web. http://www-sop.inria.fr/esterel.org/.
16. The GNU compiler collection. http://gcc.gnu.org/.
17. Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. The synchronous

data-flow programming language LUSTRE. Proceedings of the IEEE 79, 9 (Septem-
ber 1991), 1305–1320.

18. Pandya, P. The saga of synchronous bus arbiter: On model checking quantita-
tive timing properties of synchronous programs. In Electronic Notes in Theoret-
ical Computer Science (2002), F. Maraninchi, A. Girault, and Éric Rutten, Eds.,
vol. 65, Elsevier.

19. Sentovich, E. M., Singh, K. J., Lavagno, L., Moon, C., Murgai, R., Sal-
danha, A., Savoj, H., Stephan, P. R., Brayton, R. K., and Sangiovanni-
Vincentelli, A. SIS: A System for Sequential Circuit Synthesis. Tech. Rep.
UCB/ERL M92/41, University of California at Berkeley, May 1992.

20. Shiple, T. R., Berry, G., and Toutati, H. Constructive Analysis of Cyclic
Circuits. In Proc. International Design and Test Conference ITDC 98, Paris,
France (Mar. 1996).

21. Tardieu, O. Goto and Concurrency - Introducing Safe Jumps in Esterel. In Pro-
ceedings of Synchronous Languages, Applications, and Programming, Barcelona,
Spain (Mar. 2004).

	Removing Cycles in Esterel Programs
	Jan Lukoschus, Reinhard von Hanxleden

