
LOWER BOUNDS AND NON-UNIFORM TIME DISCRETIZATION
FOR APPROXIMATION OF STOCHASTIC HEAT EQUATIONS
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Abstract. We study algorithms for approximation of the mild solution of stochastic
heat equations on the spatial domain ]0, 1[d. The error of an algorithm is defined in
L2-sense. We derive lower bounds for the error of every algorithm that uses a total
of N evaluations of one-dimensional components of the driving Wiener process W . For
equations with additive noise we derive matching upper bounds and we construct asymp-
totically optimal algorithms. The error bounds depend on N and d, and on the decay of
eigenvalues of the covariance of W in the case of nuclear noise. In the latter case the use
of non-uniform time discretizations is crucial.

1. Introduction

We study stochastic heat equations

(1.1)
dX(t) = ∆X(t) dt+B(t,X(t)) dW (t),

X(0) = ξ

on the Hilbert space L2(]0, 1[d). Here ∆ denotes the Laplace operator with Dirichlet bound-

ary conditions and W = (W (t))t∈[0,1] is a (cylindrical) Brownian motion on L2(]0, 1[d).
Under suitable assumptions on B a mild solution X = (X(t))t∈[0,1] of (1.1) exists and

is uniquely determined as a continuous process with values in L2(]0, 1[d). See, e.g., Da
Prato, Zabczyk (1992) and Kallianpur, Xiong (1995).

The construction and analysis of algorithms that approximately solve (1.1) or more
general stochastic evolution equations on Hilbert spaces H started with the work by
Grecksch, Kloeden (1996) and Gyöngy, Nualart (1997). A partial list of further contri-
butions includes Allen, Novosel, Zhang (1998), Davie, Gaines (2001), Du, Zhang (2002),
Gyöngy (1999), Hausenblas (2002, 2003), Kloeden, Shott (2001), Lord, Rougemont (2003),
Shardlow (1999), and Yan (2003a, 2003b).

The algorithms that were analyzed so far have the following property in common. For a
finite number of elements g1, . . . , gm ∈ H the one-dimensional Brownian motions 〈W, gk〉
are evaluated with the same constant step-size 1/ν. Thus N = ν ·m is the total number
of evaluations of one-dimensional components of W . Based upon this discretization of W

an approximation X̂N to X is constructed. Here finite difference or Galerkin methods are
often used, and the finite-dimensional systems of stochastic differential equations that arise
in this way are approximately solved by an implicit or explicit Euler method. Typically,

the error of X̂N is studied at the discrete time instances `/ν w.r.t. the norm ‖ · ‖ in the
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2 APPROXIMATION OF STOCHASTIC HEAT EQUATIONS

Hilbert space H, and error bounds of the form1

(1.2) sup
`=1,...,ν

(
E‖X(`/ν)− X̂N(`/ν)‖2

)1/2

� N−α

are established. See Gyöngy (1999) and Hausenblas (2002, 2003) for results involving fur-
ther (semi-)norms in suitable (function) spaces. Gyöngy, Nualart (1997), Gyöngy (1998),
Printems (2001), and Yoo (2000) focus on orders of convergence for semi-discretizations.

The discretizations ofW that are analyzed in the literature so far may be called uniform,
since a fixed step-size is used for all one-dimensional components of W that are evaluated.
More generally, one may use a non-uniform discretization: the one-dimensional Brownian
motions may be evaluated non-equidistantly, and the number of evaluations may be related
to, e.g., the variance function of 〈W, gk〉/‖gk‖. Then, for a fair comparison of algorithms,
the error criterion should not depend on the time discretization. In this paper we therefore

define the error of an approximation X̂N by

(1.3) e(X̂N) =

(
E

(∫ 1

0

‖X(t)− X̂N(t)‖2 dt

))1/2

.

Other (semi-)norms w.r.t the time variable t might be used as well.

It is natural to compare different approximations X̂N that use the same number N of
evaluations of one-dimensional Brownian motions. The Nth minimal error

(1.4) e(N) = inf
X̂N

e(X̂N)

indicates how well the solutionX can be approximated by any such algorithm X̂N , and one

is clearly interested in methods X̂N with error close to e(N). The analysis of this problem

requires an upper bound for the error of a suitable algorithm X̂N and a lower bound

that holds for the error of every algorithm X̂N . We mention that minimal errors are a
key quantity in information-based complexity, see Traub, Wasilkowski, and Woźniakowski
(1988), and, e.g., Novak (1988) and Ritter (2000).

In this paper we have H = L2(]0, 1[d), and we study equations (1.1) with B given by
pointwise multiplication

(1.5) B(t, x)h = G(t, x) · h

for x, h ∈ H and t ∈ [0, 1], where G : [0, 1]×H → H satisfies mild regularity conditions.
Operators B of that type are also considered in, e.g., Grecksch, Kloeden (1996), Gyöngy,
Nualart (1997), Gyöngy (1998, 1999), Allen, Novosel, Zhang (1998), Shardlow (1999),
Davie, Gaines (2001), Kloeden, Shott (2001), Du, Zhang (2002) and Yan (2003a).

Furthermore, we consider nuclear as well as space-time white noise, i.e., for the covari-
ance Q : H → H of W we either suppose that Q is a trace class operator or that Q = id.
In the sequel these cases are called (TC) and (ID), respectively. For (ID), d = 1 is assumed
in order to guarantee existence of the mild solution in H. Let

(1.6) hi(u) = 2d/2 ·
d∏

`=1

sin(i`πu`)

1By definition, aN � bN means supN∈N aN/bN < ∞ for sequences of positive reals aN and bN .
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with i = (i1, . . . , id) ∈ Nd. For (TC) we assume that the normalized eigenfunctions hi of
∆ are also eigenfunctions of Q with

Qhi = λ(|i|2) · hi,

where λ : [1,∞[ → ]0,∞[ is a non-increasing, regular varying function of index −γ with
γ ∈ [d,∞[ \ {2d}. Hence the smoothness of the noise and the smoothness of the solution
X(t), too, is controlled by γ, with larger values of γ leading to higher smoothness.

A stochastic basis of the (cylindrical) Brownian motion W is given by the independent
one-dimensional Brownian motions 〈W,hi〉 with i ∈ Nd. In the definition (1.4) of minimal

errors e(N) we permit arbitrary methods X̂N that use a total of N evaluations of these
processes 〈W,hi〉 at arbitrarily chosen points.

To slightly simplify the presentation we assume that

λ(|i|2) = |i|−γ
2

with

γ ∈ ]d,∞[ \ {2d}
in the case (TC) throughout the rest of the Introduction. We put γ = 0 in the case (ID).

In Theorem 1 we obtain a lower bound:

The N th minimal errors satisfy

e(N) � N−α∗ ,

where

α∗ = 1/2− d− γ/2

d+ 2

for (TC) with γ < 2d and (ID) with d = 1, and

α∗ = 1/2

for (TC) with γ > 2d.

Hence there exists a constant c > 0 such that e(X̂N) ≥ c ·N−α∗ for every algorithm that
uses a total of N evaluations of one-dimensional components 〈W,hi〉 of W . The constant
c only depends on the equation, i.e., on d, γ, G, and ξ.

A matching upper bound is provided in Theorem 2 for equations with additive noise:

Suppose that B(t, x)h = G(t) · h with G : [0, 1] → H. Then

e(X̂∗
N) � N−α∗

holds for suitable approximations X̂∗
N .

Hence the upper and lower bound are sharp, up to constants, and the approximations X̂∗
N

are asymptotically optimal for these equations, see Corollary 1.

In the case (TC) our method X̂∗
N uses a non-uniform discretization, while uniform

discretizations cannot lead to asymptotically optimal approximations in general, see Re-
mark 6. By our non-uniform discretization, the one-dimensional Brownian motions 〈W,hi〉
with i in a ball of radius N1/(d+2) are evaluated with step-size proportional to |i|γ/2

2 . These
data are used to approximate the random Fourier coefficients 〈X, hj〉 with j in a suitable
hyperbolic cross

{
j ∈ Nd : j1 · · · jd ≤ JN

}
.
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Lower bounds for stochastic evolution equations were unknown so far, except for the
heat equation

(1.7) dX(t) =
∂2

∂u2
X(t) dt+X(t) dW (t)

on the spatial domain ]0, 1[ in the case (ID), see Davie, Gaines (2001). Note that (1.7)
corresponds to the particular case G(t, x) = x in (1.5). We get α∗ = 1/6 from Theorem 1,
since d = 1 and γ = 0, in coincidence with the lower bound for equation (1.7) from Davie,
Gaines (2001, Thm. 3.1). See Problem 8 for further discussion.

We compare our results with known upper bounds from the literature, where ∆ is the
Laplace operator on a bounded domain D ⊆ Rd, which sometimes is assumed to have a
smooth boundary. In the sequel ε > 0 may be arbitrarily small.

Hausenblas (2003) studies algorithms for stochastic evolution equations with nuclear
noise in a very general approach, see also Hausenblas (2002). Her results yield an upper
bound (1.2) for stochastic heat equations in the case (TC) with

(1.8) α =
1

2
· (γ − d+ 2) · (γ − d)

4 + (2 + d) · (γ − d)
− ε

if γ ≤ d+ 2 and

(1.9) α =
1

2
·
(

1− d

γ + 2

)
− ε

if γ > d+ 2.
Yan (2003b) studies algorithms for stochastic heat equations equations (1.1) in the case

(TC), and he obtains an upper bound (1.2) with

(1.10) α =
1

d+ 2
− ε,

see also Yan (2003a).
Now we turn to stochastic heat equations in the case (ID) with d = 1. Here an upper

bound (1.2) with

α = 1/6− ε

is due to Shardlow (1999) for certain equations with additive noise and due to Yan (2003b)
for equation (1.1) in general, see also Yan (2003a). Particular cases are studied by Allen,
Novosel, Zhang (1998) and Du, Zhang (2002). Gyöngy (1999) obtains an even stronger
result, namely

sup
t∈[0,1], u∈[0,1]

(
E|X(t, u)− X̂N(t, u)|2

)1/2

� N−α

with

α = 1/6.

Recall that (1.2) is an error bound that holds at discrete time instances `/ν, while the

error e(X̂N) according to (1.3) is analyzed in this paper. Still, the algorithms X̂N studied

by Hausenblas (2003), Yan (2003b), and Shardlow (1999) satisfy e(X̂N) � N−α, too, with
the respective order α, which follows from the mean square-L2(D)-smoothness of the
solution X and from the step-sizes 1/ν involved. The analogous statement is obviously
true for Gyöngy’s estimate, where we have α = α∗.
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For those results mentioned before that deal with the case (TC) we always have α < α∗.
In the limit for a low degree of smoothness and with ε tending to zero,

lim
γ→d+

α = 0

for α according to (1.8), while α∗ > 1/(d+ 2) and

lim
γ→d+

α∗ =
1

d+ 2
.

Conversely, for a high degree of smoothness,

lim
γ→∞

α = 1/2

for α according to (1.9), while α∗ = 1/2 already holds if γ > 2d. Finally, α according to
(1.10) does not take into account the smoothness; it coincides with α∗ in the limit if γ
tends to d and ε tends to zero.

For finite-dimensional systems of stochastic differential equations the minimal errors
w.r.t. the L2-norm are of the order N−1/2, see Hofmann, Müller-Gronbach, Ritter (2001)
and Müller-Gronbach (2002). Theorem 1 shows that solving a stochastic heat equation is
computationally harder than solving a finite-dimensional system if γ < 2d. In this case the
minimal errors even tend to zero arbitrarily slowly in the power scale if the smoothness
parameter γ is small compared to the dimension d. On the other hand, if γ > 2d then
solving a heat equations with additive noise is computationally as hard as solving a scalar
stochastic differential equation.

We briefly outline the content of the paper. Assumptions and basic facts about the
heat equation (1.1) are stated in Section 2. In Section 3 we formally introduce the com-
putational problem. The lower bound for minimal errors is presented in Section 4. The
matching upper bound and an asymptotically optimal algorithm for equations with ad-
ditive noise are given in Section 5. Some open problems are discussed in Section 6, and
proofs are deferred to an Appendix.

2. Assumptions and Basic Facts

Let H = L2(D) with D = ]0, 1[d, and let ‖ · ‖ denote the norm in H. Furthermore, let
|i|2 denote the euclidean norm of i ∈ Nd.

Concerning the covariance Q : H → H of the (cylindrical) Brownian motion W we
study two cases:

(TC) Q is a trace class operator with eigenfunctions hi given by (1.6) and corresponding
eigenvalues

λi = λ(|i|2),
where

λ : [1,∞[ → ]0,∞[

is a non-increasing and regularly varying function of index −γ for

γ ∈ [d,∞[ \ {2d}.

Furthermore, ∫ ∞

1

λ(r) · rd−1 dr <∞.

We add that the latter property always holds if γ > d.
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(ID) Q = id and d = 1. Here we put

λi = 1.

We refer to Bingham, Goldie, Teugels (1987) for a comprehensive study of regular vari-
ation. The simplest example of a regularly varying function λ of index −γ is given by
λ(r) = r−γ.

In this paper we consider stochastic heat equations (1.1) with mappings B of the specific
form (1.5). We assume that G satisfies the Lipschitz condition

(2.1) ‖G(t, x)−G(t, y)‖ ≤ c · ‖x− y‖
as well as

(2.2) ‖G(s, x)−G(t, x)‖ ≤ c · |s− t|η · (1 + ‖x‖)
for all s, t ∈ [0, 1] and x ∈ H with constants c ≥ 0 and

η =

{
1/2 for (TC)

1/4 for (ID).

Thus G is continuous and satisfies the linear growth condition

(2.3) ‖G(t, x)‖ ≤ c · (1 + ‖x‖)
for some constant c > 0. Finally, we suppose that

(2.4)

∫ 1

0

E‖G(t,X(t))‖2 dt > 0,

which precisely excludes deterministic heat equations.
We briefly discuss properties of the operator B, which follow from (1.5), (2.1), and

(2.2). Let 〈·, ·〉 denote the inner product in H. In the case (TC) we introduce the Hilbert
space

H0 = Q1/2(H),

equipped with the scalar product

〈Q1/2h1, Q
1/2h2〉0 = 〈h1, h2〉

for h1, h2 ∈ H. Moreover, we let
L = L2(H0, H)

denote the class of Hilbert-Schmidt operators from H0 into H, equipped with the Hilbert-
Schmidt norm ‖ · ‖L. In the case (ID) we let

L = L(H,H)

denote the class of bounded linear operators from H into H, and we use ‖ · ‖L to denote
the operator norm. Moreover, we put H0 = H.

Remark 1. In the case (TC) we have H0 ⊆ L∞(D), since

(2.5) sup
i∈Nd

‖hi‖∞ <∞,

see Manthey, Zausinger (1999, Lemma 2.2). Hence B(t, x)h ∈ H for every h ∈ H0. More-
over,

∞∑
i∈Nd

λi · ‖B(t, x)hi‖2 ≤ sup
i∈Nd

‖hi‖2
∞ ·

∞∑
i∈Nd

λi · ‖G(t, x)‖2,
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and therefore
B : [0, 1]×H → L.

Note that the eigenvalues µi of −∆ that correspond to the eigenfunctions hi are given
by

µi = π2 ·
d∑

`=1

i2`

and the associated semigroup (S(t))t≥0 in H satisfies

S(t)hi = exp(−µit) · hi.

Remark 2. Clearly (1.5) defines a mapping

B : [0, 1]×H → L(H,L1(D)).

Because of (2.5) we can extend S(t) for t > 0 to a mapping S(t) ∈ L(L1(D), H) by

S(t)h =
∑
i∈Nd

exp(−µit) ·
∫

D

hi(u) · h(u) du · hi.

It is straightforward to verify that in the case (ID), since d = 1,

S(t) ◦B(t, x) ∈ L2(H,H)

for t > 0 and
‖S(t) ◦B(t, x)‖L2(H,H) ≤ c · t−1/4 · ‖G(t, x)‖

for all t > 0 and x ∈ H with a constant c > 0.

We turn to existence and properties of a mild solution of equation (1.1). Take any ξ ∈ H.
Then, under the above assumptions, there exists a continuous process (X(t))t∈[0,1] with
values in H, which is adapted to the underlying filtration, such that, for every t ∈ [0, 1],

X(t) = S(t)ξ +

∫ t

0

S(t− s)B(s,X(s)) dW (s)

holds a.s. Moreover, this process is uniquely determined a.s., and it satisfies

(2.6) sup
t∈[0,1]

E‖X(t)‖p <∞

for every p ≥ 1.
Put

(2.7) βi(t) = λ
−1/2
i · 〈W (t), hi〉

for i ∈ Nd and t ≥ 0. Then (βi)i∈Nd is an independent family of standard one-dimensional
Brownian motions. Let

(2.8) Yj(t) = exp(−µjt) · 〈ξ, hj〉+
∑
i∈Nd

λ
1/2
i · Zi,j(t),

where

(2.9) Zi,j(t) =

∫ t

0

exp(−µj(t− s)) ·
〈
B(s,X(s))hi, hj

〉
dβi(s).

Then
X(t) =

∑
j∈Nd

Yj(t) · hj
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holds a.s. and in mean-square sense.
For (TC) we refer to Da Prato, Zabczyk (1992, Sec. 7.1), where a general existence and

uniqueness theorem as well as the bound (2.6) for the mild solution are given. These results
are applicable to our equations due to Remark 1. In the case (ID), a slight modification of
Theorem 3.2.1.(i) from Manthey, Zausinger (1999) together with Remark 2 yields existence
and uniqueness of the mild solution as well as (2.6).

3. The Computational Problem

We approximate the mild solution X of the stochastic heat equation (1.1) for every
t ∈ [0, 1]. We study methods that evaluate a finite number of Brownian motions βi at a
finite number of points and then produce a curve in H that is close to the corresponding
realization of X. The selection and evaluation of the scalar Brownian motions βi, i.e., the
discretization of the (cylindrical) Brownian motion W , is specified by a finite set

I ⊆ Nd

and knots

0 < t1,i < · · · < tni,i ≤ 1

for i ∈ I and ni ∈ N. Every Brownian motion βi with i ∈ I is evaluated at the corre-
sponding knots t`,i. Letting ni = 0 for i 6∈ I, we have n ∈ NNd

0 and the total number of
evaluations is given by

|n|1 =
∑
i∈Nd

ni.

Formally, an approximation X̂ to X is given by

X̂(t) = φ
(
t, βi1(t1,i1), . . . , βi1(tni1

,i1), . . . , βik
(t1,ik

), . . . , βik
(tnik

,ik
)
)
,

where

φ : [0, 1]× R|n|1 → H

is any measurable mapping and I = {i1, . . . , ik}. The error of X̂ is defined by

e(X̂) =

(
E

(∫ 1

0

‖X(t)− X̂(t)‖2 dt

))1/2

.

We wish to minimize the error among all methods that use a total of at most N
evaluations of the scalar Brownian motions. To this end we define

e(n) = inf{e(X̂) : X̂ uses ni evaluations of βi for every i ∈ Nd}

for n ∈ NNd

0 with |n|1 <∞ and the Nth minimal error

e(N) = inf
|n|1≤N

e(n)

for N ∈ N.



APPROXIMATION OF STOCHASTIC HEAT EQUATIONS 9

4. The Lower Bound

We establish a lower bound for the Nth minimal error e(N), which holds for every
stochastic heat equation (1.1) that satisfies the assumptions from Section 2. Henceforth
constants that are hidden in notations like2 � or � may only depend on d, (λi)i∈Nd , G,
and ξ.

By assumption (TC),

(4.1) λ(r) = r−γ · L(r)

with a slowly varying function L : [1,∞[ → ]0,∞[. We define

e∗(N) = N
−1/2+

d−γ/2
d+2 ·

(
L(N1/(d+2))

)1/2

for (TC) with γ ∈ [d, 2d[,

e∗(N) = N−1/2,

for (TC) with γ ∈ ]2d,∞[, and

e∗(N) = N−1/6

for (ID). The quantity e∗(N) provides a lower bound for e(N), which depends on N , d, γ,
and, for slowly decaying eigenvalues, on L as well. We refer to Appendix A for the proof.

Theorem 1. The N th minimal error satisfies

e(N) � e∗(N)

for (TC) and any ξ ∈ H as well as for (ID) and any ξ ∈ C1([0, 1]).

Remark 3. Regularly varying functions of index −2d are excluded by assumption (TC).
Our analysis can be generalized to partially cover this case, too. Suppose, for instance,
that λ(r) = r−2d. Then one can show that

e(N) � N−1/2 · lnN.

5. The Upper Bound and an Asymptotically Optimal Algorithm for
Equations with Additive Noise

In this section we consider stochastic heat equations with additive noise,

(5.1)
dX(t) = ∆X(t) dt+B(t) dW (t),

X(0) = ξ,

so that (1.5) now reads

B(t)h = G(t) · h
for h ∈ H and t ∈ [0, 1], where G : [0, 1] → H. We write G(t, u) = G(t)(u) for simplicity,
where t ∈ [0, 1] and u ∈ D, and we suppose that

(5.2) G ∈ C(1,1,...,1)([0, 1]×D).

In the case of additive noise the processes βi, Yj , and Zi,j , form a Gaussian system, see

(2.7), (2.8), and (2.9). Hence the conditional expectations Ŷj(t) and Ẑi,j(t) of Yj(t) and

2By definition, aN � bN means aN � bN and bN � aN for sequences of positive reals aN and bN .
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Zi,j(t), respectively, given the data βi(t`,i) with i ∈ I and ` = 1, . . . , ni, can be computed
explicitly. We have

Ŷj(t) = exp(−µjt) · 〈ξ, hj〉+
∑
i∈I

λ
1/2
i · Ẑi,j(t),

and Ẑi,j depends linearly on the data. For approximation of X it suffices to study methods
of the form

(5.3) X̂(t) =
∑
j∈J

Ŷj(t) · hj

with a finite set

J ⊆ Nd.

Let N ∈ N be given as an upper bound for the total number of evaluations of the scalar
Brownian motions. We determine sets I = IN and J = JN , numbers ni = ni,N ∈ N
with

∑
i∈I ni � N , and knots t`,i = t`,i,N such that the corresponding method X̂ = X̂∗

N

is asymptotically optimal, i.e., e(X̂∗
N) � e(N). In fact, we show that the lower bound for

the minimal error e(N) from Theorem 1 is an upper bound (up to constants) for the error

of our method X̂∗
N , see Theorem 2 below.

We take

IN =
{
i ∈ Nd : |i|2 ≤ N1/(d+2)

}
,

and we put ni,N = 0 if i 6∈ IN . Otherwise ni,N is defined by

ni,N =

⌈
λ

1/2
i ·N1−

d−γ/2
d+2 ·

(
L(N1/(d+2))

)−1/2
⌉

for (TC) with γ ∈ [d, 2d[ and L denoting the slowly varying function in (4.1),

ni,N =
⌈
λ

1/2
i ·N

⌉
for (TC) with γ ∈ ]2d,∞[, and

ni,N =
⌈
N2/3

⌉
for (ID). We obtain

|nN |1 =
∑
i∈IN

ni,N � N,

which obviously holds in the case (ID), and which follows from
∑

i∈Nd λ
1/2
i < ∞ in the

case (TC) with γ > 2d. In the case (TC) with γ < 2d this bound is a consequence of
(A.15) in Appendix A.2. The scalar Brownian motions βi with i ∈ IN are evaluated at
the points

t`,i,N = `/ni,N , ` = 1, . . . , ni,N .

It remains to specify the set JN . In the case (ID) we take

JN = IN .

In the case (TC) we use a so-called hyperbolic cross

JN =
{

j ∈ Nd :
d∏

`=1

j` ≤ JN

}
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with

JN =

{
Nd/(d+2) · (lnN)d(d−1)/(γ−d+2) ·

(
1 +

(
L(N1/(d+2))

)−d/(γ−d+2)
)

if γ ∈ [d, 2d[

Nd/(d+2) · (lnN)d(d−1)/(d+2) if γ ∈ ]2d,∞[ .

In this way we have constructed a method X̂ = X̂∗
N , which yields a process with values

in span{hj : j ∈ JN}. See, e.g., Temlyakov (1994) and Ritter (2000) for results and
references concerning approximation based on hyperbolic crosses, either for deterministic
functions or for random fields.

Recall the definition of e∗(N) from Section 4. We refer to Appendix B for the proof of
the following result.

Theorem 2. The error of the algorithm X̂N satisfies

e(X̂∗
N) � e∗(N)

for (TC) and any ξ ∈ C(1,...,1)(D) as well as for (ID) and any ξ ∈ H.

Remark 4. As in Theorem 1 regular varying functions λ of index γ = −2d are not
covered by Theorem 2. However, by a slight extension of our methods of proof we are able
to treat this case if, e.g., λ(r) = r−2d.

Use the same set IN as above and define

ni,N =
⌈
λ

1/2
i ·N/ lnN

⌉
for i ∈ IN . Furthermore, take JN to be the hyperbolic cross determined by

JN = Nd/(d+2) · (lnN)
d(d−3)

d+2 .

Then X̂∗
N satisfies

e(X̂∗
N) � N−1/2 · lnN.

Remark 5. We discuss the size of the hyperbolic cross JN , i.e., the number of random

Fourier coefficients that are approximated by X̂∗
N . Clearly, in the case (ID)

#JN = #IN � N1/3.

For the trace class case we use

#JN � JN · (ln JN)d−1,

see Papageorgiou, Wasilkowski (1990, Lemma A.1). Consequently,

#JN � Nd/(d+2) · (lnN)
2(d2−1)

d+2

for (TC) with γ > 2d, and

#JN � Nd/(d+2) · (lnN)
(γ+2)(d−1)

γ−d+2 ·
(
1 +

(
L(N1/(d+2))

)−d/(γ−d+2)
)

in the case (TC) with γ < 2d. Summarizing, for (ID) as well as for (TC) the size of the
set JN is essentially given by the size of IN , since

lim
N→∞

N−ε · #JN

Nd/(d+2)
= 0
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for every ε > 0. We add that the latter property together with an upper bound e∗(N)
cannot be achieved in general, if a ball is used instead of a hyperbolic cross. The same
conclusions hold true in the case λ(r) = r−2d, see Remark 4, where

#JN � Nd/(d+2) · (lnN)
2(d2−d−1)

d+2 .

The lower and upper bound from Theorems 1 and 2, respectively, coincide, up to con-
stants. Furthermore, the lower bound from Remark 3 matches the upper bound from

Remark 4. Therefore the algorithm X̂∗
N is asymptotically optimal for equations with ad-

ditive noise under the appropriate assumptions.

Corollary 1. Consider the stochastic heat equation (5.1) with additive noise, and suppose
that ξ ∈ C(1,...,1)(D) and G ∈ C(1,1,...,1)([0, 1]×D). Then, for (TC) and (ID),

e(X̂∗
N) � e(N) � e∗(N).

Furthermore, if λi = |i|−2d
2 then

e(X̂∗
N) � e(N) � N−1/2 · lnN.

Remark 6. In the case (TC) the lower bound from Theorem 1 can be improved for the
class of algorithms that use the same number ν ∈ N of evaluations for every Brownian
motion βi with i ∈ I, i.e., n ∈ {0, ν}Nd

. We illustrate this fact for the simple equation

dX(t) = ∆X(t) dt+ dW (t),

X(0) = 0,

i.e., for G = 1 or, equivalently, for B(t, x) = id. Recall the definition of e(n) from Section 3.
The mild solution is given by

X(t) =
∑
i∈Nd

λ
1/2
i ·

∫ t

0

exp(−µi(t− s)) dβi(s) · hi,

and Lemma 6 immediately yields

e2(n) �
∑
i∈Nd

λi ·min(1/ni, 1/µi).

Assume that λi = |i|−γ
2 with γ ∈ ]d,∞[ \ {2d}. Then

e(n) � |n|
−1/2+

d
2(γ+2)

1

follows in a straightforward manner.
To achieve an error e(n) � ε we therefore need at total of

N(ε) ≥ ε
−

2(γ+2)
γ−d+2

evaluation, if we discretize the (cylindrical) Brownian motion W in this way. On the other
hand,

N∗(ε) = ε
−

2(d+2)
γ−d+2

if γ < 2d and

N∗(ε) = ε−2
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if γ > 2d suffices to achieve the accuracy ε with the algorithm X̂∗
N and N = N∗(ε). We

always have

lim
ε→0

N(ε)

N∗(ε)
= ∞.

Moreover, N(ε)/N∗(ε) increases if γ approaches 2d, and this ratio tends to one if γ tends
to d or ∞. Formally, for γ = 2d

N(ε)

N∗(ε)
≥ ε

− 2d
d+2 .

For the moderate accuracy ε = 10−3 the right-hand side takes the values 100, 3981, and
105 for d = 1, 3, and 10, respectively.

Thus one always benefits from adjusting the number of evaluations of the scalar Brow-
nian motions βi to the eigenvalues λi. Sometimes the benefit is extremely large.

6. Outlook and Discussion

Remark 7. We have presented an asymptotically optimal algorithm only in the case of
stochastic heat equations with additive noise. For general equations with multiplication
operators, see (1.5), upper bounds are available in the literature, as discussed in Section 1.
However, these upper bounds and the lower bound from Theorem 1 do not coincide in the
case (TC), and it remains to determine the order of the minimal error and to construct
asymptotically optimal algorithms for general equations with multiplication operators.

We conjecture that the lower bound from Theorem 1 is sharp, i.e.,

e(N) � e∗(N)

also holds in this general case, cf. Corollary 1. Furthermore, we conjecture that an asymp-
totically optimal algorithm may be based on the discretization of W that is used by the

algorithm X̂∗
N for equations with additive noise. Of course, conditional expectations are

infeasible in the general case.

Remark 8. We have analyzed arbitrary approximations X̂ to X of the form

X̂(t) = φ(t, χ1, . . . , χN),

where φ : [0, 1]× RN → H is any measurable mapping and χ1, . . . , χN with

χi ∈ W0 = {W (t, hi) : t ∈ [0, 1], i ∈ Nd}
can be selected in any way. Hence the essential restriction is: only those one-dimensional
components of the (cylindrical) Brownian motion W that correspond to an eigenfunction

of the Laplacian L may be evaluated. More generally, algorithms X̂ with

χi ∈ W1 = {W (t, g) : t ∈ [0, 1], g ∈ H}
are studied by, e.g., Allen, Novosel, Zhang (1998), Davie, Gaines (2001), Du, Zhang (2002),
Gyöngy (1999), Hausenblas (2002, 2003), and Yan (2003a, 2003b). Here any one-dimen-
sional component of W may be evaluated. For instance, in the case (ID), the random field
(W (t, gx)t,x∈[0,1]) with gx = 1[0,x] defines a Brownian sheet, and evaluation of this random

field on a grid is used in several papers. Finally, algorithms X̂ with

χi ∈ W2 = span W1

are studied by Davie, Gaines (2001). The closure is considered in the space of square-
integrable random variables, and W2 is called the Hilbert space generated by W .
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Associated with every class Wi we have the minimal errors ei(N), and obviously

e2(N) ≤ e1(N) ≤ e0(N) = e(N).

We conjecture that these minimal errors coincide, up to constants, i.e.,

e(N) � e2(N),

so that W0 is essentially as powerful as W2.
Due to the upper bound from Gyöngy (1999) and the lower bound from Davie, Gaines

(2001) at least e1(N) � e2(N) holds for the particular equation

dX(t) =
∂2

∂u2
X(t) dt+X(t) dW (t)

in the case (ID).

Remark 9. We say that the cylindrical Brownian motion W is uniformly discretized, if

N = ν ·m and X̂ is based on

{χ1, . . . , χN} = {W (`/ν, gk) : ` = 1, . . . , ν, k = 1, . . . ,m}

for any choice of g1, . . . , gm ∈ H, i.e., a finite number of one-dimensional components of W
are evaluated with constant step-size 1/ν. It seems that all algorithms that were considered
in the literature use a uniform discretization. According to Remark 6 a uniform discretiza-
tion cannot be asymptotically optimal for that particular equation, as long as g1, . . . , gm

are actually eigenfunctions of L. It would be interesting to know, whether this extends to
stochastic heat equations in general for the case (TC) and arbitrary g1, . . . , gm ∈ H.

Appendix A. Proof of Theorem 1

Put

Λ1(R) =
∑
|i|2≥R

λi �
∫ ∞

R

λ(r) · rd−1 dr

for R ≥ 1 in the trace class case.

Proposition 1. For (TC) there exist constants c ≥ 0 and m0, R0 ≥ 1 such that

e(N) � sup
m≥m0

sup
R≥R0

(
inf

|n|1≤N

∑
|i|2≥R

λi ·min(1/ni, 1/µi, 1/m)− c · Λ1(R)/m2

)1/2

.

For (ID) with ξ ∈ C1([0, 1]) there exist constants c ≥ 0 and m0, R0 ≥ 1 such that

e(N) � sup
m≥m0

(
inf

|n|1≤N

∑
|i|2≥R0

min(1/ni, 1/µi, 1/m)− c · 1/m

)1/2

.

See Section A.1 for the proof of Proposition 1. A crude application of Proposition 1
immediately yields Theorem 1 in the trace class case with a high degree of smoothness.

Proof of Theorem 1 in the case (TC) with γ > 2d. Take R = R0, m = N2/3 and fix any
i∗ ∈ Nd with |i∗|2 ≥ R0. Then∑

|i|2≥R0

λi ·min(1/ni, 1/µi, 1/m) ≥ λi∗ ·min(1/N, 1/µi∗ , 1/m)



APPROXIMATION OF STOCHASTIC HEAT EQUATIONS 15

if |n|1 ≤ N , which yields

(A.1) e(N) �
(
λi∗/N − c · Λ1(R0)/N

4/3
)1/2 � N−1/2.

�

The proofs of Theorem 1 for the cases (ID) and (TC) with γ < 2d are given in Section
A.2. Clearly (A.1) is valid in the latter case, too, but a proper application of Proposition 1
yields a larger lower bound as stated in Theorem 1.

A.1. Proof of Proposition 1. First, we provide an upper bound for the mean-square
smoothness of the mild solution X, cf. Da Prato, Zabczyk (1992, Thm. 9.1).

Lemma 1. The mild solution is continuous in mean-square sense. For (TC)

E‖X(s)−X(t)‖2 � |t− s| · (1 + ψ(min(s, t))),

where ψ ∈ L1([0, 1]), and for (ID)

E‖X(s)−X(t)‖2 � |s− t|1/2.

Proof. Clearly

E‖X(s)−X(t)‖2 =
∑
j∈Nd

E(Yj(s)− Yj(t))
2.

Suppose that s < t. Then

Yj(t)− Yj(s) = (exp(−µj(t− s))− 1) · Yj(s)(A.2)

+
∑
i∈Nd

λ
1/2
i ·

∫ t

s

exp(−µj(t− r)) · 〈B(r,X(r))hi, hj〉 dβi(r),

which implies

E(Yj(s)− Yj(t))
2 = (exp(−µj(t− s))− 1)2 · E(Y 2

j (s))

+

∫ t

s

exp(−2µj(t− r)) · E‖B∗(r,X(r))hj‖2
H0
dr.

Analogously,

E(Yj(s))
2 = exp(−2µjs) · 〈ξ, hj〉2 +

∫ s

0

exp(−2µj(s− r)) · E‖B∗(r,X(r))hj‖2
H0
dr.

Put
Γ1 =

∑
j∈Nd

(exp(−µj(t− s))− 1)2 · E(Y 2
j (s))

and

Γ2 =
∑
j∈Nd

∫ t

s

exp(−2µj(t− r)) · E‖B∗(r,X(r))hj‖2
H0
dr.

We use (2.6) and the linear growth condition (2.3) to obtain

Γ2 ≤ E

(∫ t

s

∑
j∈Nd

‖B∗(r,X(r))hj‖2
H0
dr

)
= E

(∫ t

s

‖B∗(r,X(r))‖2
L2(H,H0) dr

)
� t− s

for (TC) and

Γ2 ≤
∑
j∈Nd

∫ t

s

exp(−2µj(t− r)) · E‖B∗(r,X(r))‖2
L(H,H) dr �

∑
j∈Nd

min(t− s, 1/µj)
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for (ID). Note that 1− exp(−x) � min(1, x) for x > 0, and therefore

Γ1 �
∑
j∈Nd

min(1, µj(t− s)) · E(Y 2
j (s))

holds in both cases, (TC) and (ID).
Mean-square continuity for (TC) follows from

∑
j∈Nd E(Y 2

j (s)) = E‖X(s)‖2 < ∞.
Obviously

Γ1 � (t− s) · ψ(s)

for

ψ(s) =
∑
j∈Nd

µj · E(Y 2
j (s)).

Since

µj ·
∫ 1

0

E(Y 2
j (s)) ds � 〈ξ, hj〉2 +

∫ 1

0

E‖B∗(r,X(r))hj‖2
H0
dr,

we get ψ ∈ L1([0, 1]). This completes the proof in the case (TC).
For (ID) we use ξ ∈ C1([0, 1]) and again the linear growth condition and (2.6) to obtain

E(Y 2
j (s)) � 1/µj

and therefore

Γ1 �
∑
j∈Nd

min(t− s, 1/µj).

Finally, observe that

(A.3)
∑
j∈N

min(t− s, 1/µj) � (t− s)1/2,

since µj � j2 for d = 1. �

Now we split the solution X into two parts X(1) and X(2), and we approximate both
parts separately. The construction and the estimates are slightly different in the two cases,
(TC) and (ID).

In the trace class case we take R ≥ 1 and m ∈ N, and we choose points

τ` ∈ [(`− 1)/m, `/m]

with

1/m · ψ(τ`) ≤
∫ `/m

(`−1)/m

ψ(s) ds

for ` = 1, . . . ,m. Here ψ denotes the integrable function from Lemma 1. Put τ0 = 0 and

τm+1 = 1. Define processes Y
(1)
j and Y

(2)
j by Y

(1)
j (0) = 0 and Y

(2)
j (0) = 〈ξ, hj〉 as well as

Y
(1)
j (t) =

∑
|i|2≥R

λ
1/2
i ·

∫ t

τ`

exp(−µj(t− s)) · 〈B(s,X(s))hi, hj〉 dβi(s)

and

Y
(2)
j (t) = exp(−µj(t−τ`))·Yj(τ`)+

∑
|i|2<R

λ
1/2
i ·
∫ t

τ`

exp(−µj(t−s))·〈B(s,X(s))hi, hj〉 dβi(s)

for t ∈ ]τ`, τ`+1]. Clearly, by (A.2),

X(t) = X(1)(t) +X(2)(t)
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for

X(ν)(t) =
∑
j∈Nd

Y
(ν)
j (t) · hj .

A simple approximation of X(1) is given by

X
(1)

(t) =
∑
j∈Nd

Y
(1)

j (t) · hj ,

where Y
(1)

j (0) = 0 and

Y
(1)

j (t) =
∑
|i|2≥R

λ
1/2
i · 〈B(τ`, X(τ`))hi, hj〉 ·

∫ t

τ`

exp(−µj(t− s)) dβi(s)

for t ∈ ]τ`, τ`+1]. Thus, on each subinterval [τ`, τ`+1[, the process X
(1)

follows a simplified
evolution equation: the initial value is zero, B(s,X(s)) is replaced by B(τ`, X(τ`)), and
only the Brownian motions βi with |i|2 ≥ R are relevant.

Lemma 2. For (TC) ∫ 1

0

E‖X(1)(t)−X
(1)

(t)‖2 dt � Λ1(R)/m2

and ∫ τ`+1

τ`

E‖X(1)(t)‖2 dt � Λ1(R)/m2.

Proof. For t ∈ ]τ`, τ`+1] and ` = 0, . . . ,m we have

(A.4) E‖X(1)(t)−X
(1)

(t)‖2

=
∑
j∈Nd

∑
|i|2≥R

λi ·
∫ t

τ`

exp(−2µj(t− s)) · E
〈(
B(s,X(s))−B(τ`, X(τ`))

)
hi, hj

〉2
ds

Thus, since supi∈Nd ‖hi‖∞ <∞,

E‖X(1)(t)−X
(1)

(t)‖2 �
∑
|i|2≥R

λi ·
∫ t

τ`

E‖G(s,X(s))−G(τ`, X(τ`))‖2 ds.

From (2.1), (2.2) with η = 1/2, (2.6), and Lemma 1 we get

E‖G(s,X(s))−G(τ`, X(τ`))‖2 � (s− τ`) · (1 + E‖X(s)‖2) + E‖X(s)−X(τ`)‖2

� (s− τ`) · (1 + ψ(τ`)).

Due to the properties of the points τ` we obtain

E‖X(1)(t)−X
(1)

(t)‖2 � 1/m2 · (1 + ψ(τ`)) ·
∑
|i|2≥R

λi

� Λ1(R)/m ·
∫ `/m

(`−1)/m

(1 + ψ(s)) ds,

if ` ≥ 1, which implies ∫ 1

τ1

E‖X(1)(t)−X
(1)

(t)‖2 dt � Λ1(R)/m2.
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For ` = 0 we use

E‖G(s,X(s))−G(0, ξ)‖2 � 1,

which follows from (2.3) and (2.6), to obtain∫ τ1

0

E‖X(1)(t)−X
(1)

(t)‖2 dt � Λ1(R)/m2.

The second statement in the Lemma is verified analogously. �

We proceed with an approximation of X(2) in the trace class case. Put

m′ = dm/Λ1(R)e

and

∆` = (τ`+1 − τ`)/m
′,

so that ∆` ≤ Λ1(R)/m2. Choose points

σ`,k ∈ [τ` + (k − 1) ·∆`, τ` + k ·∆`]

with

∆` · ψ(σ`,k) ≤
∫ τ`+k·∆`

τ`+(k−1)·∆`

ψ(s) ds

for k = 1, . . . ,m′ and ` = 0, . . . ,m. Furthermore, put σ`,0 = τ` and σ`,m′+1 = τ`+1. Define

X
(2)

(t) =
∑
j∈Nd

Y
(2)

j (t) · hj ,

where Y
(2)

j (τ`) = Yj(τ`) for ` = 0, . . . ,m+ 1 and

Y
(2)

j (t) = exp(−µj(t− σ`,k)) · Y
(2)

j (σ`,k)

+
∑
|i|2<R

λ
1/2
i · 〈B(σ`,k, X

(2)
(σ`,k))hi, hj〉 ·

∫ t

σ`,k

exp(−µj(t− s)) · dβi(s)

for t ∈ ]σ`,k, σ`,k+1]\{τ`+1} with ` = 0, . . . ,m and k = 0, . . . ,m′. Thus, on each subinterval

[τ`, τ`+1[, the process X
(2)

only depends on its initial value X(τ`) and on the Brownian
motions βi with |i|2 < R.

Lemma 3. For (TC) ∫ 1

0

E‖X(2)(t)−X
(2)

(t)‖2 dt � Λ1(R)/m2.

Proof. We fix `, and we consider t ∈ [τ`, τ`+1[. Put

ζ(t) = sup
τ`≤r≤t

E‖X(2)(r)−X
(2)

(r)‖2

and

G(t) =
m′∑
k=0

G(σ`,k, X
(2)

(σ`,k)) · 1]σ`,k,σ`,k+1](t).

Note that

Y
(2)

j (t) = exp(−µj(t− τ`)) · Yj(τ`) +
∑
|i|2<R

λ
1/2
i ·

∫ t

τ`

exp(−µj(t− r)) · 〈G(r) · hi, hj〉 dβi(r).



APPROXIMATION OF STOCHASTIC HEAT EQUATIONS 19

Suppose that s ∈ ]σ`,k, σ`,k+1] in the sequel. As in the proof of Lemma 2 we derive

E‖X(2)(t)−X
(2)

(t)‖2 �
∫ t

τ`

E‖G(r,X(r))−G(r)‖2 dr,

and

E‖G(s,X(s))−G(s)‖2 � E‖X(1)(s)‖2 + (s− σ`,k) · (1 + E‖X(2)(s)‖2)

+ E‖X(2)(s)−X(2)(σ`,k)‖2 + E‖X(2)(σ`,k)−X
(2)

(σ`,k)‖2.

By a similar argument

E‖X(2)
(s)‖2 � 1 + E‖X(2)

(σ`,k)‖2 � m′ + E‖X(2)(τ`)‖2.

Since E(〈X(1)(r), X(2)(v)〉) = 0 for r, v ∈ [0, 1], we have

E‖X(2)(r)‖2 ≤ E‖X(r)‖2

and

E‖X(2)(r)−X(2)(v)‖2 ≤ E‖X(r)−X(v)‖2.

Thus ζ is bounded and

E‖G(s,X(s))−G(s)‖2 � E‖X(1)(s)‖2 + ∆` · (1 + ψ(σ`,k)) + ζ(s)

follows from Lemma 1. The properties of the points σ`,k and Lemma 2 imply∫ t

σ`,1

E‖G(r,X(r))−G(r)‖2 dr

�
∫ τ`+1

τ`

E‖X(1)(r)‖2 dr + ∆` · (τ`+1 − τ`) +
m′∑
k=1

∆2
` · ψ(σ`,k) +

∫ t

σ`,1

ζ(r) dr

� Λ1(R)/m2 +

∫ t

τ`

ζ(s) ds,

if t ≥ σ`,1. On the other hand, if t < σ`,1, then∫ t

τ`

E‖G(r,X(r))−G(r)‖2 dr � ∆` ≤ Λ1(R)/m2,

since

E‖G(s,X(s))−G(s)‖2 = E‖G(s,X(s))−G(τ`, X(τ`))‖2 � 1.

Consequently,

ζ(t) � Λ1(R)/m2 +

∫ t

τ`

ζ(r) dr,

and

sup
τ`≤r<τ`+1

E‖X(2)(r)−X
(2)

(r)‖2 � Λ1(R)/m2

by Gronwall’s Lemma. �

For Q = id and d = 1 we define X(1), X(2), and X
(1)

as previously, with the specific

choice R = 1 and τ` = `/m. Thus, in particular, Y
(2)
j (0) = 〈ξ, hj〉 and

Y
(2)
j (t) = exp(−µj(t− τ`)) · Yj(τ`)

for t ∈ ]τ`, τ`+1]. Moreover, we take X
(2)

= X(2).
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Lemma 4. For (ID) ∫ 1

0

E‖X(1)(t)−X
(1)

(t)‖2 dt � 1/m.

Proof. Note that (A.4) is valid in the case (ID), too. Thus, for t ∈ ]τ`, τ`+1],

E‖X(1)(t)−X
(1)

(t)‖2 ≤
∑
j∈Nd

∫ t

τ`

exp(−2µj(t− s)) · E‖G(s,X(s))−G(τ`, X(τ`))‖2 ds.

From (2.1), (2.2) with η = 1/4, (2.6), and Lemma 1 we get

E‖G(s,X(s))−G(τ`, X(τ`))‖2 � (s− τ`)
1/2 · (1 + E‖X(s)‖2) + E‖X(s)−X(τ`)‖2

� 1/m1/2.

Hence

E‖X(1)(t)−X
(1)

(t)‖2 � 1/m1/2 ·
∑
j∈Nd

min(1/m, 1/µj) � 1/m,

see (A.3). �

The error of approximating X by X = X
(1)

+X
(2)

is therefore bounded as follows,

(A.5)

∫ 1

0

E‖X(t)−X(t)‖2 dt �

{
Λ1(R) · 1/m2 for (TC)

1/m for (ID).

The second ingredient to the proof of Proposition 1 is a lower bound for the error of ap-

proximating X
(1)

by any method X̂. This bound is a consequence of Lemma 6, which deals
with approximation of Ornstein-Uhlenbeck processes, and of the fact that the numbers

bi,j(t) =
(
E〈B(t,X(t))hi, hj〉2

)1/2

with t = τ` are not too small along a diagonal in a set Jr × Jr, where

Jr = {r, r + 1, . . . }d.

Put

bi,j =

∫ 1

0

bi,j(t) dt.

Lemma 5. For (TC) and (ID)∣∣∣∣∣
m∑

`=0

(τ`+1 − τ`) · bi,j(τ`)− bi,j

∣∣∣∣∣ � 1/m1/4.

Furthermore, there exist k ∈ Nd
0 and r ∈ N such that

inf
j∈Jr

bj+k,j > 0.

Proof. We have∣∣∣∣∣
m∑

`=0

(τ`+1 − τ`) · bi,j(τ`)− bi,j

∣∣∣∣∣ ≤
m∑

`=0

∫ τ`+1

τ`

|bi,j(t)− bi,j(τ`)| dt

≤
m∑

`=0

∫ τ`+1

τ`

(
E
〈(
B(t,X(t))−B(τ`, X(τ`))

)
hi, hj

〉2)1/2

dt.
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According to the proofs of Lemma 4 and Lemma 2 we get∣∣∣∣∣
m∑

`=0

(τ`+1 − τ`) · bi,j(τ`)− bi,j

∣∣∣∣∣ � 1/m1/4.

for (ID) and∣∣∣∣∣
m∑

`=0

(τ`+1 − τ`) · bi,j(τ`)− bi,j

∣∣∣∣∣ � τ1 +
m∑

`=1

∫ τ`+1

τ`

(
(t− τ`) · (1 + ψ(τ`))

)1/2
dt

for (TC). In the latter case it remains to observe that

m∑
`=1

∫ τ`+1

τ`

(
(t− τ`) · (1+ψ(τ`))

)1/2
dt � 1/m1/2 +1/m ·

m∑
`=1

(∫ `/m

(`−1)/m

ψ(s) ds

)1/2

� 1/m1/2.

Let m ∈ Nd
0 and define

fm(u) =
d∏

`=1

cos(m`πu`).

Moreover, let | · |∞ denote the sup-norm on Rd. For j ∈ Jr and k ∈ Nd
0

〈B(t, x)hj+k, hj〉 =

∫
D

d∏
`=1

(
cos(k`πu`)− cos((2j` + k`)πu`)

)
·G(t, x)(u) du

≥ 〈G(t, x), fk〉 − sup
|m|∞≥2r

〈G(t, x), fm〉.

Hence

bj+k,j ≥
∫ 1

0

(
E
(
〈G(t,X(t)), fk〉2

))1/2
dt−

∫ 1

0

(
E

(
sup

|m|∞≥2r

〈G(t,X(t)), fm〉2
))1/2

dt,

and the linear growth condition together with (2.6) yields

lim
r→∞

inf
j∈Jr

bj+k,j ≥
∫ 1

0

(
E
(
〈G(t,X(t)), fk〉2

))1/2
dt.

By (2.4), the right-hand side is non-zero for some k ∈ Nd
0. �

For t ≥ a, µ > 0, and a standard one-dimensional Brownian motion β we define an
Ornstein-Uhlenbeck process by

Z(t) =

∫ t

a

exp(−µ(t− s)) dβ(s).

Lemma 6. For every µ > 0, n ∈ N, and all 0 ≤ a < s1 < · · · < sn = b <∞∫ b

a

E
(
Z(t)− E(Z(t) | β(s1), . . . , β(sn))

)2
dt � (b− a) ·min((b− a)/n, 1/µ).

Proof. Note that

Z(t) = β(t)− β(a)− µ ·
∫ t

a

exp(−µ(t− s)) · (β(s)− β(a)) ds.

Put s0 = a and

ε(t) =
(
E
(
Z(t)− E(Z(t) | β(s1), . . . , β(sn))

)2)1/2
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for t ∈ [a, b]. We turn to the reproducing kernel Hilbert space corresponding to the
Brownian motion (β(s)− β(a))s∈[a,b] and obtain

ε(t) = sup
v

(
v(t)− µ ·

∫ t

a

exp(−µ(t− s)) · v(s) ds
)
,

where

v′ ∈ L2([a, b]),

∫ b

a

(v′(s))
2
ds ≤ 1, v(s0) = · · · = v(sn) = 0.

See, e.g., Ritter (2000, p. 58). Integration by parts yields

ε(t) = sup
ϕ

∫ t

a

exp(−µ(t− s)) · ϕ(s) ds,

where

(A.6) ϕ ∈ L2([a, b]),

∫ b

a

ϕ2(s) ds ≤ 1,

∫ s`

s`−1

ϕ(s) ds = 0 for ` = 1, . . . , n.

Assume that t ∈ ]s`−1, s`[. Let 0 < δ < t− s`−1, and define ρ > 0 by

ρ2 =
s` − t

δ · (s` − t+ δ)
.

Moreover, define ϕ by

ϕ(s) =


ρ if t− δ ≤ s ≤ t

−ρ · δ/(s` − t) if t < s ≤ s`

0 otherwise.

Then (A.6) is satisfied, and therefore

ε(t) ≥
∫ t

a

exp(−µ(t− s)) · ϕ(s) ds =
(s` − t)1/2

µ
· 1− exp(−µδ)
(δ · (s` − t+ δ))1/2

.

Assume that t is near the center of the `-th subinterval, i.e.,

|t− (s` + s`−1)/2| ≤ (s` − s`−1)/3,

and let x∗ denote the positive solution of 1 + 2x∗ = exp(x∗). Take

δ =

{
t− s`−1 if (t− s`−1) · µ < x∗

x∗/µ if (t− s`−1) · µ ≥ x∗

to obtain

ε(t) ≥ c · (s` − s`−1)
1/2

in the first case and

ε(t) ≥ c · µ−1/2

in the second case for some constant c > 0.
Thus ∫ b

a

ε2(t) dt ≥ c · 2/3 ·
n∑

`=1

(s` − s`−1) ·min((s` − s`−1), 1/µ)

≥ c/3 · (b− a) ·min ((b− a)/n, 1/µ) .

�
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Now we use the assumption that λi = λ(|i|2) with a non-increasing regularly varying
function λ of negative index (in the trace class case). Actually, for Proposition 1 to hold
only the following consequence of this property is needed.

Lemma 7. For every c1 > 0 there exist R0, c2 > 0 such that

λ(R) ≤ c2 · λ(R̃)

if R0 ≤ R ≤ R̃ ≤ c1 ·R.

Proof. See Bingham, Goldie, Teugels (1987, Thm. 1.5.6). �

Proof of Proposition 1. Let n ∈ NNd

0 with |n|1 ≤ N , and consider any method X̂ that uses
ni evaluations of βi for i ∈ Nd. Let Ti ⊆ [0, 1] denote the corresponding sets of knots.

Clearly

e(X̂) ≥
(∫ 1

0

E‖X(t)− X̂(t)‖2 dt

)1/2

−
(∫ 1

0

E‖X(t)−X(t)‖2 dt

)1/2

,

so that, because of (A.5), we only have to provide a suitable lower bound for the error of

approximating X by X̂.
Let R ≥ 1 and m ∈ N. We introduce the σ-algebras

A` = σ
(
Fτ`

∪ σ({βi(s)− βi(τ`) : |i|2 < R, s ∈ ]τ`, 1]})
)

and

B` = σ
({
βi(s)− βi(τ`) : |i|2 ≥ R, s ∈ (Ti ∩ ]τ`, τ`+1]) ∪ [τ`+1, 1]

})
for ` = 0, . . . ,m. Let t ∈ [τ`, τ`+1] in the sequel, put Y j(t) = Y

(1)

j (t) + Y
(2)

j (t), and define

Ui,j,`(t) =

∫ t

τ`

exp(−µj(t− s)) dβi(s)

In both cases, (TC) and (ID), we have

(a) X
(2)

(t) is measurable w.r.t. A`,
(b) βi(s) is measurable w.r.t. σ(A` ∪B`) for all i ∈ Nd and s ∈ Ti,
(c) A` and B` ∪ σ(Ui,j,`(t)) are independent if |i|2 ≥ R.

By (a) and (b)

E‖X(t)−X̂(t)‖2 =
∑
j∈Nd

E
(
Y j(t)−

〈
X̂(t), hj

〉)2 ≥ ∑
j∈Nd

E
(
Y

(1)

j (t)−E
(
Y

(1)

j |σ(A`∪B`)
))2

.

Furthermore, by (c),

E
(
Y

(1)

j (t) |σ(A` ∪B`)
)

=
∑
|i|2≥R

λ
1/2
i ·

〈
B(τ`, X(τ`))hi, hj

〉
· E(Ui,j,`(t) |B`)

and

E
(
Y

(1)

j (t)−E
(
Y

(1)

j (t) |σ(A` ∪B`)
))2

=
∑
|i|2≥R

λi · b2i,j(τ`) ·E (Ui,j,`(t)− E(Ui,j,`(t) |B`))
2 .

Let

ni,` = #
(
(Ti ∩ ]τ`, τ`+1]) ∪ {τ`+1}

)
and

δ` = τ`+1 − τ`.
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By Lemma 6∫ τ`+1

τ`

E (Ui,j,`(t)− E(Ui,j,`(t) |B`))
2 dt � δ` ·min(δ`/ni,`, 1/µj).

We therefore conclude that

(A.7)

∫ 1

0

E‖X(t)− X̂(t)‖2 dt �
∑
|i|2≥R

∑
j∈Nd

m∑
`=0

λi · b2i,j(τ`) · δ` ·min(δ`/ni,`, 1/µj).

Fix i and j, put

L1 = {` : 1/µj > δ`/ni,`}, L2 = {` : 1/µj ≤ δ`/ni,`},

and note that
∑m

`=0 ni,` � ni +m. Moreover,

∑
`∈L1

b2i,j(τ`) · δ2
`/ni,` � 1/(ni +m) ·

(∑
`∈L1

δ` · bi,j(τ`)
)2

and ∑
`∈L2

b2i,j(τ`) · δ`M �
(∑

`∈L2

δ` · bi,j(τ`)
)2

.

Thus

(A.8)
m∑

`=0

b2i,j(τ`) · δ` ·min(δ`/ni,`, 1/µj) � min(1/ni, 1/µj , 1/m) ·
( m∑

`=0

δ` · bi,j(τ`)
)2

.

Due to Lemma 5 there exist k ∈ Nd
0 and m0, r ∈ N such that

(A.9) inf
j∈Jr

inf
m≥m0

m∑
`=0

δ` · bj+k,j(τ`) > 0.

Put R∗ = R · (r + max(k1, . . . , kd)). Combining (A.7), (A.8), and (A.9) we obtain∫ 1

0

E‖X(t)− X̂(t)‖2 dt �
∑

i∈JR∗

λi ·min(1/ni, 1/µi−k, 1/m)

for m ≥ m0.
Let i(R∗) = (R∗, . . . , R∗) ∈ Nd and i ∈ Nd with |i|2 ≥ R. Clearly i + i(R∗) ∈ JR∗ and

|i + i(R∗)− k|22 � |i + i(R∗)|22 � |i|22.

Therefore µi+i(R∗)−k � µi and λi+i(R∗) � λi if R ≥ R0 according to Lemma 7. Hence∫ 1

0

E‖X(t)− X̂(t)‖2 dt �
∑
|i|2≥R

λi ·min(1/ni+i(R∗), 1/µi, 1/m)

for m ≥ m0 and R ≥ R0. It remains to observe that |ñ|1 ≤ N for ñ ∈ NNd

0 given by
ñi = ni+i(R∗). �
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A.2. Proof of Theorem 1 in the cases (TC) with γ ∈ [d, 2d[ and (ID). The lower
bounds from Proposition 1 involve an optimization problem, and for the analysis of the
latter we introduce the nonlinear scalar equation

(A.10) 1/N · Λ2(RN) = Λ3(RN)

with N ∈ N, where

(A.11) Λ2(R) =

(∫ R

1

λ1/2(r) · rd−1 dr

)2

and

(A.12) Λ3(R) =

∫ ∞

R

λ(r) · rd−3 dr

for R ≥ 1. Clearly Λ3(R) < ∞. Hence (A.10) is uniquely solvable for every N ∈ N.
Furthermore, RN < RN+1 and (RN)N converges to infinity.

Note that

(A.13) Λ3(R) � Rd−2 · λ(R)

for γ ∈ [d,∞[. Moreover, if γ > d,

(A.14) Λ1(R) � Rd · λ(R)

and, if γ < 2d,

(A.15) Λ2(R) � R2d · λ(R).

See Bingham, Goldie, Teugels (1987, Thm. 1.5.11).
First we study the case (TC) with γ ∈ [d, 2d[. We show that

(A.16) e(N) � (Λ3(RN))1/2 ,

and then we determine the asymptotic behaviour of Λ3(RN).

Lemma 8. There exists a sequence (R̃N)N that converges to infinity and moreover satisfies

lim
N→∞

Λ2(R̃N)

Λ2(RN)
= 0

and

lim
N→∞

Λ1(R̃N)

R̃4
N · Λ3(RN)

= 0.

Proof. Let 0 < ε < 1 and 0 < δ < 2d− γ. Then, if R is sufficiently large,

λ(R1−ε)

λ(R)
� Rε(γ+δ)

see Bingham, Goldie, Teugels (1987, Thm. 1.5.6). Hence, by (A.15),

Λ2(R
1−ε)

Λ2(R)
� R−ε(2d−γ−δ)

which implies

lim
R→∞

Λ2(R
1−ε)

Λ2(R)
= 0.
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Now we specifically take

ε =
1

γ − d+ 4
,

and we claim that the conclusions of the lemma hold for R̃N = R1−ε
N .

We first consider the case γ = d. Then

λ(R) � R−γ−δ,

see Bingham, Goldie, Teugels (1987, Thm. 1.5.6), so that, by (A.13),

Λ1(R
1−ε)

R4(1−ε) · Λ3(R)
� Λ1(R

1−ε)

Rd+1 · λ(R)
� Rδ−1 · Λ1(R

1−ε).

Take δ < 1 to obtain

lim
R→∞

Λ1(R
1−ε)

R4(1−ε) · Λ3(R)
= 0.

In the case d < γ < 2d we assume

δ < γ − d+ 4,

additionally. Then, by (A.14) and (A.13),

Λ1(R
1−ε)

R4(1−ε) · Λ3(R)
� Rε(4−d)−2 · λ(R1−ε)

λ(R)
� Rε(4−d+γ+δ)−2,

which implies

lim
R→∞

Λ1(R
1−ε)

R4(1−ε) · Λ3(R)
= 0.

�

Proof of Theorem 1 in the case (TC) with γ ∈ [d, 2d[. In order to establish the estimate
(A.16) we apply Proposition 1 and Lemma 8 with

R = R̃N

and

m = R̃2
N ≥ m0,

which holds if N is sufficiently large. For n ∈ NNd

0 we define

f(n) =
∑
|i|2≥R

λi ·min(1/ni, 1/µi, 1/m) =
∑
|i|2≥R

λi ·min(1/ni, 1/µi),

and we claim that

(A.17) inf
|n|1≤N

f(n) � inf
K≥R

(
1/N ·

(
Λ

1/2
2 (K)− Λ

1/2
2 (R)

)2

+ Λ3(K)

)
.

Fix n ∈ NNd

0 with |n|1 ≤ N . If ni ≤ µi for every i ∈ Nd with |i|2 ≥ R then

f(n) =
∑
|i|2≥R

λi/µi � Λ3(R).

Otherwise we may assume ni > µi for every i with |i|2 ≥ R and ni > 0. Observing the
monotonicity properties of µi and λi we may further assume that

{i ∈ Nd : R ≤ |i|2 < K} ⊆ {i ∈ Nd : ni > µi} ⊆ {i ∈ Nd : R ≤ |i|2 ≤ K + 1}
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for some K ≥ R. In this case

f(n) ≥
∑

R≤|i|2<K

λi/ni +
∑

|i|2>K+1

λi/µi ≥ 1/N ·

( ∑
R≤|i|2<K

λ
1/2
i

)2

+
∑

|i|2>K+1

λi/µi.

Furthermore, ∑
|i|2>K+1

λi/µi � Λ3(K).

For K ≤ R +
√
d+ 1 it suffices to use f(n) � Λ3(K) � Λ3(R). Otherwise we have∑

R≤|i|2<K

λ
1/2
i ≥

∫ K−1

R+
√

d

λ1/2(r) · rd−1 dr � Λ
1/2
2 (K − 1)− Λ

1/2
2 (R).

This completes the proof of (A.17).
We provide a lower bound for the right-hand side in (A.17). For every K ≥ R

1/N ·
(
Λ

1/2
2 (K)− Λ

1/2
2 (R)

)2

+ Λ3(K) � 1/(2N) · Λ2(K)− 1/N · Λ2(R) + Λ3(K)

≥ 1/2 · (1/N · Λ2(K) + Λ3(K))− 1/N · Λ2(R).

Note that

1/N · Λ2(K) + Λ3(K) ≥ Λ3(RN)

for every K ≥ 1. Hence

inf
K≥R

(
1/N ·

(
Λ

1/2
2 (K)− Λ

1/2
2 (R)

)2

+ Λ3(K)

)
� 1/2 · Λ3(RN)− 1/N · Λ2(R̃N).

Now Proposition 1 and (A.17) yield

e2(N) � 1/2 · Λ3(RN)− 1/N · Λ2(R̃N)− c · Λ1(R̃N)/R̃4
N

� Λ3(RN) ·

(
1− 2 · Λ2(R̃N)

Λ2(RN)
− 2c · Λ1(R̃N)

R̃4
N · Λ3(RN)

)
.

Use Lemma 8 to complete the proof of (A.16).
It remains to determine the asymptotic behaviour of Λ3(RN). By (A.13) and (A.15)

1 =
N · Λ3(RN)

Λ2(RN)
� N

Rd+2
N

.

Thus RN � N1/(d+2) and

Λ3(RN) � Rd−γ−2
N · L(RN) � N

−1+
2d−γ
d+2 · L(N1/(d+2)) = e2∗(N),

which finishes the proof. �

Proof of Theorem 1 in the case (ID). We proceed similar to the case (TC) with γ < 2d.
We apply Proposition 1 with R0 ∈ N and

m = N2/3.

It suffices to show that

(A.18) inf
|n|1≤N

f(n) � N−1/3
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for N ≥ max(m
3/2
0 , µR0), where

f(n) =
∞∑

i=R0

·min(1/ni, 1/µi, 1/m).

Let n ∈ NN
0 with |n|1 ≤ N . Without loss of generality we may assume

{i ∈ N : ni > max(µi,m)} = {i ∈ N : ni > 0} = {R0, . . . , K}

for some K ∈ N with K ≥ R0. In this case

f(n) ≥
K∑

i=R0

1/ni +
∞∑

i=K+1

1/max(µi,m) � K2/N +
∞∑

i=K+1

1/max(i2,m).

For (K + 1)2 ≥ m we get

f(n) � K2/N + 1/K � N−1/3.

For (K + 1)2 < m we get

f(n) � K2/N −K/N2/3 +N−1/3 ≥ 3/4 ·N−1/3.

This completes the proof of (A.18). �

Appendix B. Proof of Theorem 2

Throughout this section we consider a stochastic heat equation (5.1) with additive

noise that satisfies the smoothness assumption (5.2). Furthermore, X̂ is an algorithm of
the form (5.3) and based on the knots

t`,i = `/ni, ` = 1, . . . , ni, i ∈ I.

In the case (ID) we take

J = I.
In the case (TC) we use the hyperbolic cross

J =
{

j ∈ Nd :
d∏

`=1

j` ≤ J
}
,

where J ≥ 1 is chosen in such a way that

I ⊆ J

and

(B.1) (ln J)d−1 · J−
min(γ,2d)−d+2

d �
∑
i∈I

λi/ni +
∑
i 6∈I

λi/µi.

We provide an upper bound for the error of X̂, see Appendix B.1 for the proof. In Appendix
B.2 we derive Theorem 2 from this upper bound.

Proposition 2. For (TC) with ξ ∈ C(1,...,1)(D) and for (ID) with ξ ∈ H

e(X̂) �

(∑
i∈I

λi/ni +
∑
i 6∈I

λi/µi

)1/2

.
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B.1. Proof of Proposition 2. Clearly, the error of X̂ satisfies

(B.2) e2(X̂) =
∑
j∈J

∫ 1

0

E
(
Yj(t)− Ŷj(t)

)2

dt+
∑
j 6∈J

∫ 1

0

E (Yj(t))
2 dt

with

(B.3) E
(
Yj(t)− Ŷj(t)

)2

=
∑
i∈I

λi · E
(
Zi,j(t)− Ẑi,j(t)

)2

+
∑
i 6∈I

λi · E (Zi,j(t))
2

and

(B.4) E (Yj(t))
2 = exp(−2µjt) · 〈ξ, hj〉2 +

∑
i∈Nd

λi · E (Zi,j(t))
2 .

Put

Bi,j(t) = 〈B(t)hi, hj〉 =

∫
D

hi(u) · hj(u) · G(t, u) du,

and note that Bi,j ∈ C1([0, 1]) due to (5.2). For i ∈ I we let β̂i denote the piecewise linear
interpolation of βi at the knots t`,i. We have

(B.5) Ẑi,j(t) = Bi,j(t) · β̂i(t)−
∫ t

0

∂

∂s

(
exp(−µj(t− s)) ·Bi,j(s)

)
· β̂i(s) ds.

Decay properties of Bi,j and B′
i,j are crucial in our analysis. Put

(B.6) δi,j =
d∏

`=1
i` 6=j`

1/|i` − j`|,

such that δi,i = 1 in particular.

Lemma 9. For i, j ∈ Nd

sup
s∈[0,1]

(
|Bi,j(s)|

∣∣+B′
i,j(s)

∣∣) � δi,j

Proof. For simplicity assume that i` 6= j` iff 1 ≤ ` ≤ k, where 0 ≤ k ≤ d. By partial
integration∫

[0,1]k

k∏
`=1

sin(i`πu`) · sin(j`πu`) · G(s, u) d(u1, . . . , uk)

=

∫
[0,1]k

k∏
`=1

(
sin((i` + j`)πu`)

(i` + j`) · π
− sin((i` − j`)πu`)

(i` − j`) · π

)
· ∂

∂u1

· · · ∂

∂uk

G(s, u) d(u1, . . . , uk).

Hence ∣∣∣∣∫
D

hi(u) · hj(u) · G(s, u) du

∣∣∣∣ ≤ 2d

πk
· δi,j ·

∫
D

∣∣∣∣ ∂∂u1

· · · ∂

∂uk

G(s, u)

∣∣∣∣ du.
Clearly, the same estimate holds with ∂

∂s
G(s, u) in place of G(s, u). �

Lemma 10. For i ∈ Nd ∑
j∈Nd

δ2
i,j � 1
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and ∑
j∈Nd

1/µj · δ2
i,j � 1/µi.

Proof. The first estimate holds, since∑
j∈Nd

δ2
i,j ≤

(
2 ·

∞∑
j=1

1/j2

)d

.

Furthermore, for every ` ∈ {1, . . . , d},∑
j∈Nd

i2`
µj

· δ2
i,j �

∞∑
j=1
j 6=i`

i2`
j2
· 1

(i` − j)2
≤

di`/2e∑
j=1

j−2 +

i`−1∑
j=di`/2e+1

(i` − j)−2 +
∞∑

j=i`+1

(i` − j)−2 � 1,

and hereby the second estimate follows. �

Lemma 11. Let j ∈ Nd. In the case (TC) with γ ∈ [d, 2d[∑
i∈Nd

λi · δ2
i,j � λj +

d∏
`=1

j
−γ/d
` .

In the case (TC) with γ ∈ ]2d,∞[∑
i∈Nd

λi · δ2
i,j �

d∏
`=1

j−2
` .

Proof. Fix j ∈ Nd. First, we assume that γ < 2d. Let

AS = {i ∈ Nd : i` = j` iff ` 6∈ S}

for S ⊆ {1, . . . , d}. It suffices to show that

(B.7)
∑
i∈AS

λi ·
∏
`∈S

(i` − j`)
−2 � λj +

d∏
`=1

j
−γ/d
`

for every S. Obviously, (B.7) holds if S = ∅. Inductively, we proceed as follows. Assume
that #S = s ≥ 1 and that (B.7) holds for every proper subset of S. Without loss of
generality we may assume that S = {1, . . . , s}. Put

a =

(
d∑

`=s+1

j2
`

)1/2

,

and let

B = {(i2, . . . , is) ∈ Ns−1 : i` 6= j` for every `}
if s ≥ 2 and B = {0} otherwise. Then∑

i∈AS

λi ·
∏
`∈S

(i` − j`)
−2 = Σ≤ + Σ>,

where

Σ≤ =
∑
i∈B

∑
i1≤j1/2

λ
(
(i21 + |i|22 + a2)1/2

)
·

s∏
`=1

(i` − j`)
−2
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and

Σ> =
∑
i∈B

∑
i1>j1/2
i1 6=j1

λ
(
(i21 + |i|22 + a2)1/2

)
·

s∏
`=1

(i` − j`)
−2.

To derive an upper bound for Σ≤ we distinguish the cases

|i|22 + a2 ≥ j2
1

and

|i|22 + a2 < j2
1 .

In the first case we use Lemma 7 to obtain

λ
(
(i21 + |i|22 + a2)1/2

)
� λ

(
(j2

1 + |i|22 + a2)1/2
)

for every i1 ∈ N. In the second case we take ε = 1− γ/(2d) and use (4.1) to obtain

λ
(
(i21 + |i|22 + a2)1/2

)
= L

(
(i21 + |i|22 + a2)1/2

)
· (i21 + |i|22 + a2)−γ/2

� (i21 + |i|22 + a2)ε/2 ·
s∏

`=1

i
−γ/d
` ·

d∏
`=s+1

j
−γ/d
`

� jε
1 ·

s∏
`=1

i
−γ/d
` ·

d∏
`=s+1

j
−γ/d
`

for every i1 ≤ j1/2 since ε > 0, see Bingham, Goldie, Teugels (1987, Thm. 1.5.6). Hence

(B.8) λ
(
(i21 + |i|22 + a2)1/2

)
� λ

(
(j2

1 + |i|22 + a2)1/2
)

+ jε
1 ·

s∏
`=1

i
−γ/d
` ·

d∏
`=s+1

j
−γ/d
`

for all i ∈ B and i1 ≤ j1/2. Furthermore, by hypothesis,∑
i∈B

∑
i1≤j1/2

λ
(
(j2

1 + |i|22 + a2)1/2
)
·

s∏
`=1

(i` − j`)
−2(B.9)

�
∑
i∈B

λ
(
(j2

1 + |i|22 + a2)1/2
)
·

s∏
`=2

(i` − j`)
−2 � λj +

d∏
`=1

j
−γ/d
` .

On the other hand

(B.10)
∑
i∈B

∑
i1≤j1/2

jε
1 ·

s∏
`=1

i
−γ/d
`

d∏
`=s+1

j
−γ/d
` ·

s∏
`=1

(i` − j`)
−2 � ln j1 · j−2+ε

1 ·
d∏

`=2

j
−γ/d
` ,

where the logarithmic term is needed to cover the case γ = d. Note that −2 + ε < −γ/d.
Combining (B.8), (B.9), and (B.10) we therefore get

Σ≤ � λj +
d∏

`=1

j
−γ/d
` .

The sum Σ> can be bounded as follows. By Lemma 7

λ
(
(i21 + |i|22 + a2)1/2

)
� λ

(
(j2

1 + |i|22 + a2)1/2
)
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for every i1 > j1/2. Thus, by hypothesis, we get

Σ> � λj +
d∏

`=1

j
−γ/d
`

analogously to (B.9), which completes the proof of (B.7).
Now we turn to the case γ > 2d, and we put ε = γ/2 − d. Since ε > 0, the slowly

varying function L in (4.1) satisfies

L(|i|2) � |i|ε2
for every i ∈ Nd, see Bingham, Goldie, Teugels (1987, Thm. 1.5.6). Hence∑

i∈Nd

λi · δ2
i,j �

∑
i∈Nd

|i|−(γ−ε)
2 · δ2

i,j

�
∑
i∈Nd

d∏
`=1

i
−(γ−ε)/d
` · δ2

i,j

=
d∏

`=1

(∑
i`∈N

i
−(γ−ε)/d
` ·max(|i` − j`|−2, 1)

)
.

Observe that (γ − ε)/d > 2. Thus∑
i`∈N

i
−(γ−ε)/d
` ·max(|i` − j`|−2, 1)

� j
−(γ−ε)/d
` +

∑
i`≤j`/2

j−2
` · i−(γ−ε)/d

` +
∑

i`>j`/2
i` 6=j`

j
−(γ−ε)/d
` · (i` − j`)

−2

� j−2
` ,

which finishes the proof. �

Now we provide an estimate for approximation of Zi,j(t) by its conditional expectation

Ẑi,j(t). Put
∆i = max

`=1,...,ni

(t`,i − t`−1,i)

for i ∈ I, where t0,i = 0, and note that Ẑi,j = 0 if i 6∈ I.

Lemma 12. For i, j ∈ Nd

sup
t∈[0,1]

E
(
Z2

i,j(t)
)
� 1/µj · δ2

i,j .

For i ∈ I and j ∈ Nd

sup
t∈[0,1]

E
(
Zi,j(t)− Ẑi,j(t)

)2

� ∆i · δ2
i,j .

Proof. Use

E
(
Z2

i,j(t)
)

=

∫ t

0

exp(−2µj(t− s)) ·B2
i,j(s) ds � 1/µj · sup

s∈[0,t]

B2
i,j(s)

and Lemma 9 to derive the first estimate.
Put

f(s) = exp(−µj(t− s)) ·Bi,j(s).
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Use (B.5) and the analogous formula for Zi,j to obtain

E
(
Zi,j(t)− Ẑi,j(t)

)2

� B2
i,j(t) ·E

(
βi(t)− β̂i(t)

)2

+E

(∫ t

0

f ′(s) ·
(
βi(s)− β̂i(s)

)
ds

)2

.

Recall that βi and β̂i are Gaussian. Moreover,

E
(
βi(t)− β̂i(t)

)2

� ∆i.

Therefore

E

(∫ t

0

f ′(s) ·
(
βi(s)− β̂i(s)

)
ds

)2

� ∆i ·
(∫ t

0

|f ′(s)| ds
)2

,

and hereby

E
(
Zi,j(t)− Ẑi,j(t)

)2

� ∆i ·

(
B2

i,j(t) +

(∫ t

0

|f ′(s)| ds
)2
)
.

Clearly, ∫ t

0

|f ′(s)| ds ≤ sup
s∈[0,1]

(
|Bi,j(s)|+

∣∣B′
i,j(s)

∣∣) .
Use Lemma 9 to complete the proof of the second estimate. �

Proof of Proposition 2. Lemma 12 together with (B.2), (B.3), and (B.4) yields

e2(X̂) � Σ1 + Σ2,

where

Σ1 =
∑
j∈J

(∑
i∈I

λi/ni · δ2
i,j +

∑
i 6∈I

λi/µj · δ2
i,j

)
and

Σ2 =
∑
j 6∈J

(
1/µj · 〈ξ, hj〉2 +

∑
i∈Nd

λi/µj · δ2
i,j

)
.

By Lemma 10

Σ1 �
∑
i∈I

λi/ni +
∑
i 6∈I

λi/µi,

and it remains to establish the analogous estimate for Σ2.
In the case (ID)

Σ2 �
∑
j 6∈I

1/µj ≤
∑
i∈I

λi/ni +
∑
i 6∈I

λi/µi

by means of the first estimate from Lemma 10 and I = J .
In the case (TC), by assumption on ξ,

〈ξ, hj〉2 �
d∏

`=1

j−2
` .

Put θ = (min(γ, 2d)− d+ 2)/d. Then∑
j 6∈J

1/µj · 〈ξ, hj〉2 �
∑
j 6∈J

|j|22 ·
d∏

`=1

j−2
` �

∑
j 6∈J

d∏
`=1

j
−2−2/d
` �

∑
j 6∈J

d∏
`=1

j
−(θ+1)
` .
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Lemma 11 yields∑
j 6∈J

∑
i∈Nd

λi/µj · δ2
i,j �

∑
i 6∈J

λi/µi +
∑
j 6∈J

|j|−2
2 ·

d∏
`=1

j
−(θ−2/d+1)
`

�
∑
i6∈J

λi/µi +
∑
j 6∈J

d∏
`=1

j
−(θ+1)
`

if γ < 2d and ∑
j 6∈J

∑
i∈Nd

λi/µj · δ2
i,j �

∑
j 6∈J

d∏
`=1

j
−(θ+1)
`

if γ > 2d. Since I ⊆ J , we conclude that

Σ2 �
∑
i 6∈I

λi/µi +
∑
j 6∈J

d∏
`=1

j
−(θ+1)
`

in both cases. Furthermore, ∑
j 6∈J

d∏
`=1

j
−(θ+1)
` � (ln J)d−1

Jθ
,

see Papageorgiou, Wasilkowski (1990, Section 2.2). Thus by property (B.1) of J

Σ2 �
∑
i∈I

λi/ni +
∑
i 6∈I

λi/µi,

which completes the proof. �

B.2. Proof of Theorem 2. Now we suppose that I = IN and n = nN as defined in
Section 5. Recall the definition of e∗(N) from Section 4.

Lemma 13. For (TC) and (ID)∑
i∈IN

λi/ni,N +
∑
i 6∈IN

λi/µi � e2∗(N).

Proof. For (ID) the lemma trivially holds. In the case (TC) with γ < 2d we have∑
i∈IN

λi/ni,N � N
−1+

d−γ/2
d+2 ·

(
L(N1/(d+2))

)1/2 ·
∑

|i|2≤N1/(d+2)

λ
1/2
i

� N
−1+

d−γ/2
d+2 ·

(
L(N1/(d+2))

)1/2 ·
(
Λ2(N

1/(d+2))
)1/2

= e2∗(N) ·N
γ/2−d
d+2 ·

(
L(N1/(d+2))

)−1/2 ·
(
Λ2(N

1/(d+2))
)1/2

and ∑
i 6∈IN

λi/µi =
∑

|i|2>N1/(d+2)

λi/µi � Λ3(N
1/(d+2))

with Λ2 and Λ3 according to (A.11) and (A.12). Moreover,(
Λ2(N

1/(d+2))
)1/2 � N

d−γ/2
d+2 ·

(
L(N1/(d+2))

)1/2
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by (A.15) and

Λ3(N
1/(d+2)) � N

−1+
2d−γ
d+2 · L(N1/(d+2)) = e2∗(N)

by (A.13). This completes the proof in the case γ < 2d.
In the case (TC) with γ > 2d∑

i∈IN

λi/ni,N +
∑
i 6∈IN

λi/µi � 1/N ·
∑

|i|2≤N1/(d+2)

λ
1/2
i +

∑
|i|2>N1/(d+2)

λi/µi

� e2∗(N) ·
(
Λ2(N

1/(d+2))
)1/2

+ Λ3(N
1/(d+2))

� e2∗(N) + Λ3(N
1/(d+2)),

since supR≥1 Λ2(R) <∞. Furthermore, by (A.13) and since L is slowly varying,

Λ3(N
1/(d+2)) � N

d−2−γ
d+2 · L(N1/(d+2)) = e2∗(N) ·N

−(γ−2d)
d+2 · L(N1/(d+2)) � e2∗(N).

On the other hand ∑
i∈IN

λi/ni,N ≥ λi∗/ni∗,N � 1/N � e2∗(N)

for i∗ = (1, . . . , 1). �

Finally, we suppose that J = JN and J = Jn as defined in Section 5. Then IN ⊆ JN .
Moreover, ln JN � lnN , and it is straightforward to verify that

J
−min(γ,2d)−d+2

d
N ≤ e2∗(N) · (lnN)−(d−1).

Hence Lemma 13 yields (B.1).
We thus obtain Theorem 2 from Proposition 2 and Lemma 13.
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Gyöngy, I. (1999), Lattice approximations for stochastic quasi-linear parabolic partial differential
equations driven by space-time white noise II, Potential Analysis 11, 1–37.



36 APPROXIMATION OF STOCHASTIC HEAT EQUATIONS
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