
Monte Carlo solution for the Poisson equation
on the base of spherical processes

with shifted centres

Nina Golyandina1

St.Petersburg University, Mathematical Department
St.Petersburg, Petrodvoretz 198504, University pr. 28, Russia

nina@ng1174.spb.edu

Abstract. We consider a class of spherical processes rapidly converg-
ing to the boundary (so called Decentred Random Walks on Spheres or
spherical processes with shifted centres) in comparison with the standard
walk on spheres. The aim is to compare costs of the corresponding Monte
Carlo estimates for the Poisson equation. Generally, these costs depend
on the cost of simulation of one trajectory and on the variance of the es-
timate. It can be proved that for the Laplace equation the limit variance
of the estimation doesn’t depend on the kind of spherical processes. Thus
we have very effective estimator based on the decentred random walk on
spheres. As for the Poisson equation, it can be shown that the variance is
bounded by a constant independent of the kind of spherical processes (in
standard form or with shifted centres). We use simulation for a simple
model example to investigate variance behavior in more details.

Keywords: Poisson equation, Laplace operator, Monte Carlo solution, spherical
process, random walk on spheres, rate of convergence

1 Introduction

Consider the Poisson equation
{

∆u = −q
u|Γ = ϕ

(1)

in the bounded domain G ⊂ IRm with regular boundary Γ = ∂G. Let ϕ ∈ C(Γ )
and q satisfy Hölder condition on G.

Monte Carlo scheme of u(x) = uϕ,q(x) estimation is constructed on the base
of a Markov chain converging to the boundary.

Thus, cost of the Monte Carlo solution includes three components:
1) rate of convergence of the Markov chain to boundary;
2) cost of one step (simulation of the Markov chain and cost of calculation of
the corresponding part of the estimate)
3) variance of the estimate.
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The most known Markov chain used for solving problems related to the
Laplace operator is the spherical process, or the Random Walk on Spheres pro-
cess (RWS).

We construct the Monte Carlo solution on the base of so called spherical
process with shifted centres (Decentred Random Walk on Spheres, DRWS), since
this process converges to boundary very fast. The aim of this paper is to describe
the corresponding estimate and to investigate its cost.

2 General construction of the estimate

Let {ws,Px, θs,Ft = σ(ws, s ≤ t)} be the Wiener family, τ = inf{t ≥ 0 : wt ∈
Γ}.

Consider a sequence of increasing Markov moments {τi}∞i=0 with respect to
filtration Ft, τ0 = 0, τi → τ Px-a.s. Let each point y ∈ G be corresponded
to a domain Gy ⊂ G with regular boundary. Suppose that the Markov moment
τ1 is the exit moment: τ1 = inf{t ≥ 0 : wt ∈ ∂Gξ0}. Put τn+1 = τ1(θτn

) + τn,
ξn = wτn

, Fn = σ(ξ0, . . . , ξn), and

F (y) =
1
2
Ey

τ1∫

0

q(ws)ds. (2)

Denote ξ∞ = lim
n→∞

ξn = wτ , Γε = {y ∈ G : dist(y, Γ ) < ε}, and νε = min{n :

ξn ∈ Γε}. Thus, ξ0, ξ1, ξ2, . . . is a Markov chain embedded into the Brownian
motion and νε is the number of its steps before hitting the ε-boundary Γε.

It can be shown that the random variable

ζ̃ε =
νε−1∑
n=0

F (ξn) + u(ξνε
) (3)

is an unbiased estimate of u(x). Denote ξ∗νε
∈ Γ the point of boundary nearest

to ξνε . Then

ζε =
νε−1∑
n=0

F (ξn) + ϕ(ξ∗νε
) (4)

is a ω(ε)-biased estimate of u(x), where ω(ε) is a modulus of continuity of the
solution u(x) of the problem (1). Its variance Dxζε is bounded by constant not
depending on choice of the sequence of Markov moments {τi}∞i=0.

Moreover, for the Laplace equation with q ≡ 0 the asymptotic by ε → 0 vari-
ance is the same for any sequence of Markov moments and equal to Dxϕ(wτ ) =
Dxϕ(ξ∞).
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3 Markov chains for estimate construction and their
rates of convergence

Consider two kinds of Markov chains embedded to the Brownian motion. Since
the corresponding Markov moments are moments of exits on some spheres, these
processes can be called spherical processes or random walks on spheres. The
question under interest is their rate of convergence to the boundary Γ .

The standard spherical process (RWS) corresponds to the case when Gy ∈ G
is the sphere with center at the point y and maximal radius.

As for the spherical process with shifted centres (DRWS), the center y′ of the
sphere Gy is k = k(y) ≥ 1 times shifted inside away from the boundary (for the
formal description see [5, 6]). Radius of the shifted sphere is equal to k(y)d(y),
where d(y) = dist(y, Γ ). Note that the spherical process with shifted centres
coincides with the standard spherical process for k ≡ 1.

Let’s consider their rates of convergence.
Define f(ε) = sup

x∈G
Exνε. Rate of convergence is determined by behaviour of

f(ε) in ε as ε → 0.
It is well known (e.g. see [1, 2]) that for the spherical process (k ≡ 1) the

inequality

f(ε) ≤ C1| ln ε|+ C2 (5)

is valid for different kinds of G.
If we take a bounded shift function k(x) ≥ 1, then the order of the upper

bound is the same, but the constant before the logarithm will be asymptotically
in k smaller [4].

The idea is arose to take the shift function as large as possible.
Let any point of the boundary Γ can be touched by the ball with radius

R > 0, inside and outside. In addition, suppose that the balls touching the
boundary inside lie in G. We call such domains G R-regular.

Let us take

k(y) = max(R/d(y), 1). (6)

This shift function is infinite as d(y) → 0 (y → Γ ). The corresponding spherical
process is called R-spherical with shifted centres and reduced (near the boundary)
to a random walk on shifted spheres with the same radius R. (Note that the case
R = 0 formally corresponds to the standard spherical process (RWS).)

For such a shift function we obtain the much better rate of convergence.

Theorem 1 ([6, Th.3.1]). The inequality

f(ε) ≤ C1 ln | ln ε|+ C2 (7)

holds for R-spherical family with shifted centres in R-regular domain G.
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4 Variance of the estimate based on R-spherical processes

Now turn back to variance investigation. Unfortunately, F (y) in (3) and (4) can
not be calculated directly. Therefore, we should suggest an unbiased estimator
of F (y) and then to consider variance of the final realizable estimate. Let the ξn

be a R-spherical process with the shift function (6).
It is known that F can be expressed through integral of a Green function g

for the corresponding domain:

F (y) =
∫

Gy

g(y, z)q(z)dz,

where Gy is the k(y)-shifted ball with centre y′. If d(y) < R, then radius of the
ball Gy is equal to R and

g(y, z) =
1

σm

(
1

|y − z|m−2
−

(
R

|y − y′|
1

|y∗ − z|
)m−2

)
,

where

y∗ = y′ +
R

|y − y′|2 (y − y′)

and σm is the area of a sphere with unit radius in IRm. If d(y) ≥ R, then

g(y, z) =
1

σm

(
1

|y − z|m−2
− 1

dm−2(y)

)
.

Let us take an unbiased estimate of F (y) instead of its exact value. Define
a(y) = (R2 − |y − y′|2)/2m for d(y) < R and a(y) = d2(y)/2m for d(y) ≥ R.
Let the random variable λn has the distribution density π(y, z) = g(y, z)/a(y)
under the condition ξn = y . It can be shown that

ζε =
νε−1∑
n=0

a(ξn)q(λn) + ϕ(ξ∗νε
), (8)

is a realizable ω(ε)-biased estimate of u(x).
Denote

ζ∞ =
∞∑

n=0

a(ξn)q(λn) + ϕ(ξ∞). (9)

The following proposition can be proved analogously to [3, Th. 2.5.1].

Proposition 1. Under the conditions of Theorem 1 variance of the estimate ζε

is bounded by a constant not depending on choice of admissible R in (6):

Dxζε ≤ Dxζ∞ + O(ω(ε)),

where

Dxζ∞ ≤ uϕ2,0(x) + ||a||u0,q2(x) + 2||uϕ,q||u0,q(x)− u2
ϕ,q.
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Let’s decompose the estimates (8) and (9): ζε = ζε
1 + ζε

2 and correspondingly
ζ∞ = ζ∞1 +ζ∞2 . Here ζε

1 (and ζ∞1 ) is an estimate of the solution of (1) with ϕ ≡ 0
and ζε

2 (and ζ∞2 ) is an estimate of the solution of (1) with q ≡ 0. Denote Dζ∞1 =
VARq(R), Dζ∞2 = VARϕ(R) and the resultant variance Dζ∞ = VAR(R).

Evidently, for the Laplace equation with q ≡ 0 the asymptotic by ε → 0
variance VARϕ(R) is the same for any admissible value of R and equal to
Dxϕ(ξ∞) = uϕ2,0 − u2

ϕ,0.
For the case q 6= 0 the situation is not so evident. Numerical experiments

show that variance for some R > 0 can be either smaller or bigger than one for
RWS (i.e. R = 0). Moreover, VARq(R) can be bigger and the resultant variance
VAR(R) can be smaller because of different correlations between ζε

1 and ζε
2 (ζ∞1

and ζ∞2 ) for different values of R.

5 Cost of simulation for R-spherical processes

Consider the three-dimensional case (m = 3).
We should compare costs of simulation of random variables entering to the

estimation formula (8), i.e., distributions on the (de)centred sphere (ξn+1 ∼
p(y, z)) and in the (de)centred ball (λn ∼ π(y, z)) under the condition ξn = y.
Certainly, these costs depend on the way of simulation. Therefore, we consider
only one of possible variants.

For the Random Walk on Spheres process (R = 0), the exit point of the
Wiener process has uniform distribution on the centred sphere, i.e., p(y, z) = 1
in respect to the uniform distribution on the sphere. Therefore, we can simulate
the uniform distribution on a diameter of the sphere and then the uniform dis-
tribution on the corresponding circle. To obtain realization of λn in the centred
ball, we can simulate radius value with density 6σ(d(y)− σ)/d3(y) and then the
uniform distribution on the sphere with the obtained radius.

For Decentred Random Walk on Spheres process (R > 0), the exit point of
the Wiener process from the decentred sphere has density

p(y, z) =
k(y)(2k(y)− 1)d3(y)

|z − y|3 (10)

with respect to the uniform distribution on the sphere with k(y)-shifted centre y′,
where k(y) is the shift coefficient, d(y) = dist(y, Γ ). Therefore, we can simulate
the distribution with density

1
2d(y)

2k(y)− 1
(1 + 2(k(y)− 1)v/d(y))3/2

on the diameter that contains y and then simulate the uniform distribution on
the corresponding circle.

Simulation of the distribution with density π in the decentred ball of radius
R is more complicated. Let d(y) < R (otherwise the ball is centred and this case
is described above).
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Let us introduce new coordinates for z: ω = |y − z|, σ = |y′ − z|, θ denotes
the angle between some fixed plane containing the axe (y, y′) and the plane
containing points y, y′, z (g(y, z) doesn’t depend on θ). In new coordinates
(θ, σ, ω), σ ∈ [0, R], ω ∈ [|r− σ|, r + σ], θ ∈ [0, 2π), where r = ||y− y′||, we have

π(y, (θ, σ, ω)) =
(

1
2π

)
×

(
6σ

r(R2 − r2)
(min(r, σ)− σr/R)

)
×

×
((

2(min(r, σ)− σr/R)
)−1(

1−
(
1 +

R2 − r2

ω2

(
1− σ2

R2

))− 1
2
))

=

= π1(θ)× π2(σ)× π3(ω|σ).

The distribution with density π1(θ) is uniform on [0, 2π). Two other den-
sity can be simulated by the rejection method with appropriate constants, for
example.

Thus, simulation of the corresponding random variables for DRWS has more
cost in comparison with RWS. However, the difference isn’t too big.

6 Numerical results

6.1 Comparison by convergence rate

Consider the Poisson equation (1), where G ∈ IR3 is the sphere with centre
at (0, 0.2, 0) and unit radius, q(y) = 20||y||2, ϕ(y) = (1 − ||y||4) |Γ . Then the
solution is u(x) = 1− ||x||4.

We take 1000000 realizations, x = (0, 0.8, 0). Then consider the standard
spherical process (RWS) and R-spherical processes with R = 0.5 and R = 1. Ev-
idently, the case R = 1 corresponds to just one step before hitting the boundary
of the chosen G due to its spherical shape.

To illustrate the advantage of R-spherical process with shifted centres from
the viewpoint of convergence rate, Fig. 1 is represented. The figure shows that the
RWS process needs to do approximately 60 steps before hitting 10−9-boundary
whereas the R-spherical process with R = 0.5 needs just 6 steps.

6.2 Comparison by simulation cost

It follows from Sect. 5 that simulation of one step of the R-spherical process
is generally more complex in comparison with RWS; this difference is constant
and doesn’t depend on ε. Fast convergence of the R-spherical process to the
boundary overcomes this shortcoming as ε → 0. For the given realization (not
optimal) of the simulation procedure the time for simulation of one trajectory
of R-spherical process with R = 0.5 becomes smaller for ε ≤ 10−3.

It should be mentioned that additional difficulties can be caused by the form
of the domain G, since we need to know value of R such that G is R-regular. As
for the example under consideration this problem is trivial.
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Fig. 1. Rates of convergence for RWS and DRWS

6.3 Comparison by variance

Unfortunately, there are no theoretical results for dependence on R of variances
of estimates based on R-spherical processes except the facts formulated in Sect. 4.

Numerical results for the considered example are represented in Table 1.
Indeed, the estimate of VARϕ doesn’t depend on kind of the process and equal
to 3.8. For this example, the bigger R is the smaller VARq(R) (for several other
examples with positive functions q the dependence VARq(R) of R is the same;
however, for q changing its sign on G this dependence isn’t confirmed).

Table 1. Estimates of variance

R = 0 (RWS) R = 0.5 R = 1

VARq 2.6 2.1 1.1
VARϕ 3.8 3.8 3.8

VAR 2.3 2.0 4.9

The smallest value of VARq(R) is reached at R = 1. Recall that for the
considered example the case R = 1 corresponds to just one step of the Markov
chain before hitting the boundary; therefore ζε

1 and ζε
2 are uncorrelated and the

resultant variance VAR of ζε is equal to sum of VARq and VARϕ. On the other
side, for R < 1 the random variables ζε

1 and ζε
2 (ζ∞1 and ζ∞2 ) have positive

correlation and the resultant variance VAR(1) is biggest.

7 Conclusions

Thus, theoretical results confirm that for small ε the estimate of the solution of
the Poisson equation (1) based on the R-spherical process with shifted centres
is better in comparison with the conventional Monte Carlo estimate.



8 N. Golyandina

Smallness of the threshold depends on efficiency of simulation procedures
and also on functions q and ϕ. Numerical experiments show that there are no
clear results related to dependence on R of the variance of the estimate based
on the R-spherical process with shifted centres. Still there is a chance to obtain
the result under some limitations on q and ϕ.
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