
Randomized Quicksort and the Entropy of the
Random Source

Beatrice List, Markus Maucher, Uwe Schöning and Rainer Schuler

Abt. Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany

Abstract. The worst-case complexity of an implementation of Quick-
sort depends on the random number generator that is used to select the
pivot elements. In this paper we estimate the expected number of com-
parisons of Quicksort as a function in the entropy of the random source.
We give upper and lower bounds and show that the expected number of
comparisons increases from n log n to n2, if the entropy of the random
source is bounded. As examples we show explicit bounds for distributions
with bounded min-entropy and the geometrical distribution.

Keywords. QuickSort, Randomized Algorithms, Entropy.

1 Introduction

Randomized QuickSort is the well known version of QuickSort (invented by
Hoare [1]) where the array element for splitting the array in two parts (the
”pivot” element) is selected at random. It is also well known that the expected
number of comparisons (for every input permutation of the array elements)
is (2 ln 2) · n log2 n − Θ(n). Here, the expectation is taken over the random
choices done in the algorithm. This analysis assumes random numbers which are
independent and uniformly distributed.

Here we analyze randomized QuickSort without assuming such an ”high en-
tropy” of the underlying random source. Using a random number generator with
a low entropy can result in a worst-case behavior that can go up to Θ(n2). An
extreme example is a ”very bad” random number generator that produces only
”1” as output. That is, in each recursive call of QuickSort the first array element
is selected as pivot element. A worst case input in this case is the already sorted
array.

Related work has been done by Karloff and Raghavan [2] (see also [3]) where
the special case of a linear congruence generator is considered and a worst-case
behavior of Ω(n2) is shown.

Recursion for expected number of comparisons

Let Tπ(n) be the expected number of comparisons done by randomized Quick-
Sort, when operating on an input array (a[1], . . . , a[n]) whose elements are per-
muted according to π ∈ Sn, that is,

a[π(1)] < a[π(2)] < · · · < a[π(n)],

Dagstuhl Seminar Proceedings 04421
Algebraic Methods in Computational Complexity
http://drops.dagstuhl.de/opus/volltexte/2005/105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62910915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 B. List, M. Maucher, U. Schöning and R. Schuler

where Sn is the set of all permutations on {1, . . . , n}.
Let X be a random variable taking values between 1 and n (not necessarily

under uniform distribution) which models the random number generator that is
used to pick out a pivot element a[X].

We obtain the following recursion for the expected complexity (i.e. number
of comparisons) T (n) = maxπ∈Sn

Tπ(n). We have T (n) = 0 for n ≤ 1; and for
n > 1 we get

T (n) = max
π∈Sn

Tπ(n)

= (n− 1) + max
π∈Sn

n∑
i=1

pi · (Tπ(i− 1) + Tπ(n− i))

≤ (n− 1) + max
π∈Sn

n∑
i=1

pi ·
(

max
Φ∈Si−1

TΦ(i− 1) + max
Ψ∈Sn−i

TΨ (n− i)
)

= (n− 1) + max
π∈Sn

n∑
i=1

pi · (T (i− 1) + T (n− i))

That is, there are n − 1 comparisons with the selected pivot element, and
depending on the rank i of the pivot element within the array, there are T (i−1)
and T (n − i) additional comparisons. Here pi is the probability that the pivot
element has rank i within the ordering of the array, that is, pi = Pr(π(X) = i).
If the rank is not uniformly distributed among the numbers 1 to n, a worst
case input permutation can be constructed such that the middle ranks receive
relatively low probability and the extreme ranks (close to 1 or close to n) get
relatively high probability, resulting in a large expected number of comparisons.

We give upper and lower bounds on the expected number T (n) of compar-
isons. Lower bounds are given with respect to a fixed input sequence (the already
sorted list of elements).

We can show (see Theorem 1) that T (n) ≤ g(n) · n · log2 n for any function
g(n) greater than 1/ (minπ

∑n
i=1 piH (i/n)), where H (i/n) is the binary entropy

function. Note that minπ

∑n
i=1 piH (i/n) is independent of the permutation of

the elements, i.e. is identical for all distributions p and q such that pi = qπ(i) for
all i and some permutation π.

The lower bound (see Theorem 2) is derived for a fixed permutation (the
sorted list of elements), where we can assume that the order is preserved in all
recursive calls of QuickSort. Therefore the lower bound T (n) ≥ n·g(n) (Theorem
2) is w.r.t. any function g(n) less than 1/

∑n
i=1 piH (i/(n + 1)), where pi is the

probability of selecting a[i] as a pivot element.

2 Upper bound on the number of expected comparisons

Let (Pn) denote a sequence of probability distributions where Pn = (p1,n, . . . , pn,n)
is a distribution on (1, . . . , n). In the following we use pi to denote pi,n, since n
is determined by the size of the array.



Randomized Quicksort and the Entropy of the Random Source 3

Theorem 1. We have T (n) ≤ g(n)n log2 n for any monotone increasing func-
tion g with the property

g(n) ≥

(
min
π∈Sn

n∑
i=1

pi ·H
(

i

n

))−1

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function
(Shannon entropy).

Proof. Using the above recursion for T (n) we obtain

T (n) = (n− 1) + max
π∈Sn

n∑
i=1

pi · (T (i− 1) + T (n− i))

≤ n + max
π

n∑
i=1

pi · (g(i− 1)(i− 1) log2(i− 1) + g(n− i)(n− i) log2(n− i))

≤ n + g(n)n max
π∈Sn

n∑
i=1

pi ·
(

i

n
log2 i +

(
1− i

n

)
log2(n− i)

)

= n + g(n)n max
π∈Sn

n∑
i=1

pi ·
(

i

n
log2

i

n
+
(

1− i

n

)
log2

(
1− i

n

)
+ log2 n

)

= n + g(n)n log2 n− g(n)n min
π∈Sn

n∑
i=1

pi ·H
(

i

n

)
To finish the induction proof, this last expression should be at most g(n)n log2 n.
This holds if and only if

g(n) ≥

(
min
π∈Sn

n∑
i=1

pi ·H
(

i

n

))−1

as claimed. ut

Example: In the standard case of a uniform distribution pi = 1
n we obtain:

g(n) ≥

(
1
n
·

n∑
i=1

H

(
i

n

))−1

.

This is asymptotically equal to(∫ 1

0

H(x)dx

)−1

= 2 ln 2 ≈ 1.38 .

Another Example: In the median-of-3 version of QuickSort (cf. [4,5]), 3 different
elements are picked uniformly at random and the median of the 3 is used as



4 B. List, M. Maucher, U. Schöning and R. Schuler

the pivot element. In this case pi = 6(i−1)(n−i)
n(n−1)(n−2) . Here the constant factor of the

n log n-term can be asymptotically estimated by(
6
∫ 1

0

x(1− x)H(x)dx

)−1

=
12 ln 2

7
≈ 1.18

We ignore here the additional number of comparisons between the 3 elements to
find out their median – but this does not have an influence asymptotically.

Sorting the probabilities

Using the symmetry of the function H around 1
2 and its monotonicity, we get:

min
π∈Sn

n∑
i=1

pi ·H
(

i

n

)
≥ min

π∈Sn

n−1∑
j=0

qj ·H
(

j

2n

)
.

Here, the qj are a reordering of the pi in the following way (assuming n is even):

q0 = pn q1 = p1

q2 = pn−1 q3 = p2

...
...

qn−2 = pn/2 qn−1 = pn/2−1

This new representation has the advantage that the H-values in the sum are
in increasing order, and we can determine which permutation π ∈ Sn actually
achieves the minimum. Namely, the minimum is achieved if the qj are ordered in
decreasing order. (This is in accordance with the statement in the introduction
that the worst case is associated with the situation that the extreme ranks occur
with higher probability than the middle ranks.)

Lemma 1. Given a sum of the following form
n∑

j=1

ajbπ(j), aj , bj ≥ 0

where the aj are sorted in strictly increasing order and the permutation π can be
chosen arbitrarily, the minimum value of the sum occurs when the permutation
π is such that the bπ(j) are sorted in decreasing order.

Proof. Suppose that two elements b, b′ are in the ”wrong” order, i.e. b < b′. We
compare the situation before and after exchanging b and b′:

(aib + ajb
′)− (aib

′ + ajb) = (ai − aj)(b− b′) < 0

This means, interchanging b and b′ this way strictly decreases the value of the
sum. Furthermore, it is easy to see that the decreasingly sorted order can always
be achieved by swapping two elements which are in the ”wrong” order (e.g. like
in the BubbleSort algorithm). ut



Randomized Quicksort and the Entropy of the Random Source 5

3 A lower bound

As we saw in Section 1, the running time of QuickSort is given by the recursion

T (n) = n− 1 +
n∑

i=1

pi · (T (i− 1) + T (n− i)),

where pi is the probability of choosing the element with rank i as pivot element.
To estimate a lower bound for the worst-case running time of QuickSort, we

consider as input the already sorted array of numbers. Further we assume that
the partitioning step of QuickSort leaves the elements of the two sub-arrays in
the same relative order as in the input array.

Recall that pivot-elements are chosen according to a sequence of probability
distributions (Pi), where distribution Pi defines the probabilities on arrays of size
i, i.e. Pi = (pi,1, . . . , pi,i). Note that if the pi,j are sorted in decreasing order,
then a worst-case input is the already sorted sequence of numbers. In fact, if
the sequence of probability distributions (Pi) is sufficiently uniform, it should
be possible to construct a worst-case input by sorting probabilities as described
in Section 2.

Theorem 2. (i) For any sequence of probability distributions (Pn) it holds that
T (n) ≥ c · g(n) · n − n, for some constants c > 0 and n0, if for all n > n0, g
satisfies the two conditions

g(n) ≤

(
n∑

i=1

pi,n

(
1− (i− 1)2

n2
− (n− i)2

n2

))−1

and

g(i)
g(n)

≥ i

n
for all 0 ≤ i ≤ n.

(ii) Furthermore, Part (i) still holds if we replace the two conditions by the
following ones:

g(n) ≤

(
n∑

i=1

pi,nH

(
i

n + 1

))−1

and
g(i)
g(n)

≥ i

n
for 0 ≤ i ≤ n.

Proof. We prove (i) first, by induction. For n ≤ n0, just set the constant c ≤ 1
small enough.

Now we look at the case n > n0. Let P = (p1, . . . , pn) be a distribution where
pi is the probability that we choose as a pivot element the element with rank i.
Using the induction hypothesis, it holds that

T (i− 1) + T (n− i)
≥ c · (i− 1) · g(i− 1) + c · (n− i) · g(n− i)− (n− 1)



6 B. List, M. Maucher, U. Schöning and R. Schuler

= c · n · g(n) ·
(

(i− 1) · g(i− 1)
n · g(n)

+
(n− i) · g(n− i)

n · g(n)

)
− (n− 1)

≥ c · n · g(n) ·
(

(i− 1)2

n2
+

(n− i)2

n2

)
− (n− 1)

= c · n · g(n)− c · n · g(n) ·
(

1− (i− 1)2

n2
− (n− i)2

n2

)
− (n− 1).

Therefore,

T (n) = n− 1 +
n∑

i=1

pi(T (i− 1) + T (n− i))

≥ c · n · g(n)− c · n · g(n) ·
n∑

i=1

pi

(
1− (i− 1)2

n2
− (n− i)2

n2

)
.

Since c ≤ 1, the induction hypothesis follows if

g(n) ≤

(
n∑

i=1

pi

(
1− (i− 1)2

n2
− (n− i)2

n2

))−1

.

The proof of part (ii) is quite similar: For n ≥ n0,

T (i− 1) + T (n− i)

≥ c · n · g(n) ·
(

(i− 1)2

n2
+

(n− i)2

n2

)
− (n− 1)

= c · n · g(n) ·
(

(i− 1)2

n2
+

(n− i)2

n2
+ H

(
i

n + 1

))
−n · g(n) ·H

(
i

n + 1

)
− (n− 1)

≥ c · n · g(n)− c · n · g(n) ·H
(

i

n + 1

)
− (n− 1).

The last inequality follows from Lemma 3 in the Appendix. Now

T (n) = n− 1 + c ·
n∑

i=1

pi,n(T (i− 1) + T (n− i))

≥ c · n · g(n)− c · n · g(n) ·
n∑

i=1

pi,nH

(
i

n + 1

)
.

Again using that c ≤ 1, the induction hypothesis follows if

g(n) ≤

(
n∑

i=1

pi,nH

(
i

n + 1

))−1

.

ut



Randomized Quicksort and the Entropy of the Random Source 7

In the second part of Theorem 2 the lower bound is given using the entropy
function, similar to the upper bound in Theorem 1. This shows that up to a
logarithmic factor we yield matching upper and lower bounds.

4 Distributions with bounded entropy

The uniform distribution on [1, n] = {1, . . . , n} has maximal entropy. In this
section we consider distributions which have bounded entropy.

Uniform distributions on a subset of {1, . . . , n}

First we consider distributions with positive probability on subsets of [1, n]. Let
t(n) = o(n) be a time constructible monotone (increasing) function. Define a
distribution P = (p1, . . . , pn) such that

pi =


1/t(n), if rank ai ≤ t(n)/2
1/t(n), if rank ai > n− t(n)/2
0, otherwise

That is, we choose the pivot element randomly using a uniform distribution
among only the worst t(n) array elements.
Now

∑n
i=1 piH (i/(n + 1)) resp.

∑n
i=1 pi ·H(i/n) are bounded as follows:

n∑
i=1

piH

(
i

n + 1

)
≤ t(n)

2n
log (n + 1) ,

n∑
i=1

piH

(
i

n

)
≥ t(n)

4n
log
(

2n

t(n)

)

This gives T (n) ≤ n log(n) · 4n
t(n) as an upper bound and T (n) ≥ cn2

t(n) log n − n as
a lower bound, for some constant c.

Proof. An upper bound T (n) ≤ g(n) · n · log2 n can be estimated as follows.

n∑
i=1

pi ·H
(

i

n

)
= 2

t(n)/2∑
i=1

1
t(n)

·H
(

i

n

)
=

2
t(n)

t(n)/2∑
i=1

H

(
i

n

)

=
2

t(n)

t(n)/2∑
i=1

−
(

i

n
log
(

i

n

)
+

n− i

n
log
(

n− i

n

))

≥ 2
t(n)

t(n)/2∑
i=1

i

n
log
(n

i

)

≥ 2
n · t(n)

log
(

2n

t(n)

) t(n)/2∑
i=1

i



8 B. List, M. Maucher, U. Schöning and R. Schuler

≥ 2
n · t(n)

log
(

2n

t(n)

)
(t(n)/2) · (t(n)/2 + 1)

2

≥ t(n)
4n

log
(

2n

t(n)

)
.

With

g(n) =
4n

t(n) log(2n/t(n))

it follows from Theorem 1 that

T (n) ≤ 4n2

t(n)
· log2 n

log2(2n/t(n))
.

In the same way the lower bound can be calculated:

n∑
i=1

pi ·H
(

i

n + 1

)
= 2

t(n)/2∑
i=1

1
t(n)

·H
(

i

n + 1

)

=
2

t(n)

t(n)/2∑
i=1

−
(

i

n + 1
log
(

i

n + 1

)
+

n− i + 1
n + 1

log
(

n− i + 1
n + 1

))

≤ 2
t(n)

t(n)/2∑
i=1

2 · i

n + 1
log
(

n + 1
i

)

=
4

(n + 1)t(n)

t(n)/2∑
i=1

i log
(

n + 1
i

)

=
4

(n + 1)t(n)

t(n)/2∑
i=1

i log (n + 1)−
t(n)/2∑

i=1

i log i


≤ 4

(n + 1)t(n)

t(n)/2∑
i=1

i log (n + 1)−
t(n)/2∑

i=1

i(log(t(n)/2)− 1)


≤ t(n) + 1

2(n + 1)
(log (n + 1)− log t(n) + 2))

≤ t(n) + 2
2(n + 1)

log
(

4(n + 1)
t(n)

)

where we use that
∑t(n)/2

i=1 i log i ≤
∑t(n)/2

i=1 i(log(t(n)/2) − 1) (see Appendix,
Lemma 2).
With the function

g(n) =
2(n + 1)

(t(n) + 1) log
(

4(n+1)
t(n)

) ,



Randomized Quicksort and the Entropy of the Random Source 9

we receive a lower bound of

T (n) ≥ 2cn(n + 1)

(t(n) + 1) log
(

4(n+1)
t(n)

) − n = Ω

 n2

t(n) log
(

4n
t(n)

) − n

 .

ut

Min-Entropy

A distribution (p1, . . . , pn) has min-entropy k (cf. [6]) if maxi pi = 2−k. Let
P = (p1, . . . , pn) be a distribution with min-entropy k. Then we get T (n) ≤ 4n2

2k

as an upper bound and T (n) ≥ cn2

2k log n
− n as a lower bound, for a constant c.

Proof.

n∑
i=1

pi ·H(i/n) ≥ 2
2k/2∑
i=1

1
2k

·H(i/n)

≥ . . . (same as above, with t(n) = 2k)

≥ 2k

4n
log
(

2n

2k

)
,

and
n∑

i=1

pi ·H
(

i

n + 1

)
≤ 2

2k/2∑
i=1

1
2k

·H
(

i

n + 1

)
≤ 2k + 1

2(n + 1)
log
(

2(n + 1)
2k

)
and thus

T (n) ≤ 4n2

2k
· log2 n

log2(2n/2k)
and

T (n) ≥ 2cn(n + 1)

(2k + 1) log
(

2(n+1)
2k

) − n

ut
So, for min-entropy 0 (this includes the deterministic case) we get

T (n) ≤ 4n2

1
· log2 n

log2(2n)
= 4n2 log2 n

log2 n + 1
≤ 4n2

and

T (n) ≥ cn(n + 1)
log (2(n + 1))

− n ≥ cn2

log (n + 1) + 1
− n = θ

(
n2

log n

)
and for min-entropy log2 n (all pivot elements are equally distributed), we have

T (n) ≤ 4n2

n
· log2 n

log2 2
= 4n log2 n .



10 B. List, M. Maucher, U. Schöning and R. Schuler

Bounds for geometric distributions

We consider the case that pivot elements are selected using a geometric distri-
bution. The probability of picking an element with rank i as pivot is given by
pi = qi−1(1− q). More generally, we allow the geometric distribution to depend
on the size n of the array, i.e., we define (Pi) using q := 1− 1

f(i) for some (time
constructible monotone) function f = o(n). An additional probability of qn is
assigned to the best resp. worst pivot element (depending on if we consider a
lower or upper bound), so that all pi sum up to 1.

To estimate a lower bound on the number of comparisons, we use Theorem 2

and estimate
n∑

i=1

pi

(
1− (i−1)2

n2 − (n−i)2

n2

)
≤ cf(n)

n , for a constant c.

Proof. Using the fact that

qi =
(

1− 1
f(n)

)i

=
(

1− 1
f(n)

)f(n)· i
f(n)

≤ e−
i

f(n) ,

it follows that

n∑
i=1

pi

(
1− (i− 1)2

n2
− (n− i)2

n2

)

≤ qn

(
1− (n− 1)2

n2
− n2

n2

)
+

1
q

n∑
i=1

qi(1− q)
(

1− (i− 1)2

n2
− (n− i)2

n2

)

= qn

(
1
2

+
1
n
− 1

n2

)
+

1
qn2

n∑
i=1

qi(1− q)
(
2ni + 2i− 2i2 − 1

)
≤ qn +

1
qn2

n∑
i=1

qi(1− q) (2ni + 2i)

=
(

1− 1
f(n)

)n

+
2n + 2(

1− 1
f(n)

)
n2

n∑
i=1

(
1− 1

f(n)

)i
i

f(n)

=
(

1− 1
f(n)

)n

+
(2n + 2)f(n)
(f(n)− 1)n2

n∑
i=1

(
1− 1

f(n)

)i
i

f(n)
.

We split the sum and see that for k = 0, 1, 2, . . .

(k+1)f(n)∑
i=kf(n)+1

(
1− 1

f(n)

)i
i

f(n)

≤
(k+1)f(n)∑
i=kf(n)+1

e−
i

f(n)+ln i
f(n) =

f(n)∑
j=1

e−
kf(n)+j

f(n) +ln
kf(n)+j

f(n)



Randomized Quicksort and the Entropy of the Random Source 11

≤
f(n)∑
j=1

e−k− j
f(n)+ln(k+1) = e−k+ln(k+1)

f(n)∑
j=1

e−
j

f(n)

≤ e−k+ln(k+1) · f(n) .

Then we get(
1− 1

f(n)

)n

+
(2n + 2)f(n)
n2(f(n)− 1)

n∑
i=1

(
1− 1

f(n)

)i
i

f(n)

=
(

1− 1
f(n)

)n

+
(2n + 2)f(n)
n2(f(n)− 1)

dn/f(n)e∑
k=0

(k+1)f(n)∑
i=kf(n)+1

(
1 +

1
f(n)

)i

· i

f(n)

≤ e−
n

f(n) +
(2n + 2)f(n)
n2(f(n)− 1)

dn/f(n)e∑
k=0

e−k+ln(k+1) · f(n)

≤ e−
n

f(n) +
(2n + 2)f(n)2

n2(f(n)− 1)

∞∑
k=0

k + 1
ek

≤ cf(n)
n

for a constant c.

For the last inequality, note that f(n) = o(n), so that e−
n

f(n) = o
(

f(n)
n

)
.

Using Theorem 2, we get a lower bound of c′n2/f(n) for the running time of
the QuickSort algorithm, for some constant c′. ut

To get an upper bound for geometric distributions we estimate

n∑
i=1

piH

(
i

n

)
≥ log n · (f(n)− n · e−n/f(n))

n

which gives T (n) ≤ n2

f(n) as upper bound, if f(n) = o(n).

Proof.

n∑
i=1

piH

(
i

n

)
=

1− q

q

n∑
i=1

qiH

(
i

n

)

≥ 1− q

q

n∑
i=1

qi

(
i

n
log

n

i
+

n− i

n
log

n

n− i

)

≥ 1− q

q

n∑
i=1

qi

(
i

n
log

n

i

)

≥ 1− q

qn
log n

n−1∑
i=1

qi · i



12 B. List, M. Maucher, U. Schöning and R. Schuler

=
1− q

qn
log n

(
qn(nq − n− q)

(1− q)2
+

q

(1− q)2

)
=

log n

n

(
qn−1(nq − n− q)

1− q
+

1
1− q

)

We again set q := 1− 1
f(n) to obtain

n∑
i=1

piH

(
i

n

)
=

log n

n


(
1− 1

f(n)

)n−1 (
n
(
1− 1

f(n)

)
− n− 1 + 1

f(n)

)
1

f(n)

+
1
1

f(n)


=

log nf(n)
n

(
(n− 1)

(
1− 1

f(n)

)n

− n

(
1− 1

f(n)

)n−1

+ 1

)

=
log nf(n)

n

((
1− 1

f(n)

)n−1(
(n− 1)

(
1− 1

f(n)

)
− n

)
+ 1

)

=
log nf(n)

n

((
1− 1

f(n)

)n−1(
−1− n− 1

f(n)

)
+ 1

)

=
log nf(n)

n

(
1−

(
1− 1

f(n)

)n−1(
1 +

n− 1
f(n)

))

≥ log nf(n)
n

(
1− e−

n−1
f(n) · 2n

f(n)

)
≥ c log nf(n)

n
for some constant c > 0 if f(n) = o(n)

So we have an upper bound for the worst-case running time of T (n) ≤ cn2

f(n)

for some constant c > 0.

References

1. Hoare, C.: Quicksort. Computer Journal 5(1) (1962) 10–15
2. Karloff, H., Raghavan, P.: Randomized algorithms and pseudorandom numbers.

Journal of the Association for Computing Machinery 40 (1993) 454–476
3. Tompa, M.: Probabilistic algorithms and pseudorandom generators. Lecture Notes

(1991)
4. Knuth, D.: The Art of Computer Programming. Volume Vol 3: Sorting and Search-

ing. Addison-Wesley (1973)
5. Sedgewick, R., Flajolet, P.: Analysis of Algorithms. Addison-Wesley (1996)
6. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-

sity Press (1996)
7. Alon, N., Rabin, M.O.: Biased coins and randomized algorithms. In Preparata,

F., Micali, S., eds.: Advances in Computing Research 5, JAI Press (1989) 499–507
8. Ash, R.: Information Theory. Dover (1965)



Randomized Quicksort and the Entropy of the Random Source 13

9. List, B.: Probabilistische Algorithmen und schlechte Zufallszahlen. PhD thesis,
Universität Ulm (1999)

10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)



14 B. List, M. Maucher, U. Schöning and R. Schuler

Appendix

Lemma 2. For 0 ≤ i ≤ n

n∑
i=1

i log2 i ≥
n∑

i=1

i(log2 n− 1) .

Proof. Let S(n) :=
∑n

i=1 i log1 i. We prove the lemma by induction.

S(n) =
n/2∑
i=1

i log2 i +
n∑

i=n/2+1

i(log2 n− 1 + 1 + log2 (i/n))

≥
n/2∑
i=1

i(log2(n/2)− 1) +
n∑

i=n/2+1

i(log2 n− 1) +
n∑

i=n/2+1

i(1 + log2 (i/n))

=
n∑

i=1

i(log2 n− 1)−
n/2∑
i=1

i +
n∑

i=n/2+1

i(1 + log2 (i/n))

≥
n∑

i=1

i(log2 n− 1)−
n/2∑
i=1

i +
n∑

i=n/2+1

i(2i/n− 1)

=
n∑

i=1

i(log2 n− 1)−
n∑

i=1

i + 2
n∑

i=n/2+1

i2/n

=
n∑

i=1

i(log2 n− 1) +
1
n

n/2∑
i=1

(
2(n/2 + i)2 − ni− n(n/2 + i)

)
=

n∑
i=1

i(log2 n− 1) +
1
n

n/2∑
i=1

2i2

≥
n∑

i=1

i(log2 n− 1)

ut

Lemma 3. For integers n ≥ 1 and i with 0 ≤ i ≤ n,

(i− 1)2

n2
+

(n− i)2

n2
+ H

(
i

n + 1

)
≥ 1.

Proof. We use the known inequalities − ln(1− x) ≥ x resp. − log2(1− x) ≥ x
ln 2 ,

that hold for 0 ≤ x ≤ 1. So we get

(i− 1)2

n2
+

(n− i)2

n2
+ H

(
i

n + 1

)
=

i2 − 2i + 1 + n2 − 2in + i2

n2



Randomized Quicksort and the Entropy of the Random Source 15

− i

n + 1
log2

i

n + 1
−
(

1− i

n + 1

)
log2

(
1− i

n + 1

)
=

2i2 − 2i + 1 + n2 − 2in

n2

− i

n + 1
log2

(
1− n− i + 1

n + 1

)
− n− i + 1

n + 1
log2

(
1− i

n + 1

)
≥ 2i2 − 2i + 1 + n2 − 2in

n2
+
(

i

n + 1
· n− i + 1

n + 1
+

n− i + 1
n + 1

· i

n + 1

)
/ ln 2

≥ 2i2 − 2i + 1 + n2 − 2in + 2in− 2i2 + 2i

n2
=

n2 + 1
n2

≥ 1

For the second last inequality, we use that (n + 1)2 ln 2 ≤ n2 for n ≥ 5. The
remaining 14 cases (n, i) = (1, 0), (1, 1), . . . , (4, 4) can be checked by computer.

ut


	Randomized Quicksort and the Entropy of the Random Source
	Beatrice List, Markus Maucher, Uwe Schöning and Rainer Schuler



