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Preferen
es and DominationJudy GoldsmithUniversity of Kentu
ky, Dept. of Computer S
ien
e773 Anderson Hall, Lexington, KY, 40506-0046, USAgoldsmit�
s.uky.eduAbstra
t. We show that the dominan
e problem for CP-nets is P-hard,and that the dominan
e problem for the more general 
ase of 
y
li
 CP-nets is PSPACE 
omplete.Keywords. Qualitative preferen
es, CP-nets, 
omplexity, PSPACE 
om-pleteness1 Introdu
tionThe problems of representing and eli
iting user preferen
es over a multi-attributedomain arise in e-
ommer
e, planning, and a host of other �elds. Preferen
es 
anbe represented expli
itly by a ranked ordering of domain instan
es, but this listwill be of length exponential in the number of attributes. Preferen
es 
an some-times be represented logarithmi
ally more su

in
tly by des
ribing preferen
eson individual attributes, or on small sets of attributes.CP-nets [1℄ provide a qualitative representation of preferen
es. They allow auser to order values of an attribute, all other things being equal (
eteris paribus),or to spe
ify the attributes on whi
h preferen
e for a parti
ular attribute's valuesdepends. CP-nets (formal de�nitions given in Se
tion 3) are attra
tive be
ausethey allow for su

in
t representations, and be
ause they suggest a simple andeasily-understood eli
itation pro
ess. A
y
li
 CP-nets are seemingly 
omputa-tionally easy to reason with.Unfortunately, many preferen
es about whi
h we would like to reason 
anonly be expressed in a way that 
reates a 
y
le of attribute dependen
ies. It ispossible to have a 
y
li
 CP-net that is 
onsistent (i.e., no instan
e is preferableto itself), but it seems that 
onsisten
y is 
omputationally diÆ
ult to 
he
k.Another 
omputational question of interest in CP-nets is, given two instan
es� and �, whi
h one is preferred. This is 
alled the dominan
e problem. It ispossible to show that � is preferred to � (� � �) by exhibiting a sequen
e ofinstan
es �i with � = �0 and �T = �, and ea
h �i � �i+1 expli
itly from theCP-net. Then ea
h pair �i; �i+1 di�ers in exa
tly one attribute. The sequen
eh�iii�T is 
alled an improving 
ipping sequen
e.If it 
an be shown that all improving 
ipping sequen
es have length polyno-mial in the number of attributes, then the dominan
e problem is in NP. Boutilier,et al. [1℄ showed that the dominan
e problem for a
y
li
 CP-nets is in P for



Preferen
es and Domination 3some very restri
ted 
lasses of CP-nets, and is NP-
omplete for other restri
ted
lasses. However, the 
omplexity of the general problem, either for a
y
li
 or
y
li
 CP-nets, was only 
onje
tured to be PSPACE-
omplete.We show here that the dominan
e problem for 
y
li
 CP-nets with in
om-plete tables is indeed PSPACE-
omplete. This work was done independently andsimultaneously by J�erôme Lang [2℄. Lang's original proof used in
onsistent pref-eren
es; Ni
 Wilson showed that there was a redu
tion to CP-nets with 
onsistentpreferen
es [3℄. The problem of in
omplete tables was resolved by Trusz
zynski[4℄: For any 
y
li
 CP-net with in
omplete tables, there is an equivalent one with
omplete tables. In parti
ular, there is a dominan
e-preserving redu
tion fromthe dominan
e problem for CP-nets with in
omplete tables to the dominan
eproblem for CP-nets with 
omplete tables.2 Example NetworksConsider the possibility that there are many saunas available, and we wish tode
ide to whi
h sauna we should bring a guest named Bill1. We wish to representBill's preferen
es with respe
t to the attributes of restri
tions (single-sex vs.mixed), type (steam vs. dry), busyness (
rowded vs. not 
rowded).Bill tells us that he prefers un
rowded saunas to 
rowded ones; that he prefersdry to steam, and that his preferen
es with respe
t to restri
tions depend on
rowdedness: If the sauna is 
rowded or steamy, he prefers mixed-sex saunas,otherwise he prefers single-sex saunas. Figure 1 shows the underlying dependen
ygraph for Bill's sauna preferen
es. A 
omplete spe
i�
ation of the network wouldalso in
lude the (
onditional) preferen
e tables.
Type

Rest

Busy

r.Fig. 1. Sauna preferen
esNext, 
onsider Judy's preferen
es about musi
. The attributes in
lude genre,vo
als, mood, and volume. We learn that she prefers to be in a good mood,1 The preferen
es expressed in this se
tion are purely hypotheti
al, and do not repre-sent the preferen
es of parti
ular people.



4 J. Goldsmithand then she prefers folk musi
 to ro
k. But when she is in a bad mood, sheprefers ro
k to folk. Whether she prefers vo
als depends on her mood and thegenre. Volume preferen
es depend on genre as well. Folk musi
 is preferred softand ro
k is preferred loud.What distinguishes this network from the sauna network is that there is a
y
le in the dependen
ies: The preferen
e on volume depends on mood, yet loudmusi
 improves a bad mood. We represent this by an ar
 from volume to mood(a dotted line in Figure 2).Note that this introdu
es two new features to the network: 
y
les in theunderlying dire
ted graph, and an in
omplete preferen
e table. However, it 
anbe shown that this parti
ular network is 
onsistent. In other words, no instan
eis preferred to itself; There are no 
y
les in the impli
itly represented preferen
egraph.
Mood

Genre

Volume

Vocals

Fig. 2. Musi
 preferen
es3 De�nitionsDe�nition 1 A CP-net 
onsists of a dire
ted graph G = hV;Ei, where V is theset of preferen
e attributes and an edge between attributes indi
ates dependen
e,and a set of 
onditional preferen
e tables. Ea
h v 2 V has a domain Dv ofpossible values, and a 
orresponding preferen
e table. Ea
h row of the preferen
etable for v is labeled by values of v's parent attributes. Ea
h row spe
i�es apreferen
e order on the values of Dv.If ea
h preferen
e table has a row for ea
h set of values of the parent nodes,and if ea
h row spe
i�es a 
omplete linear order on the values Dv, then we saythat the CP-net has 
omplete tables.An instan
e of a CP-net is a setting of values for ea
h node in the CP graph.



Preferen
es and Domination 5Consider two instan
es � and � whi
h di�er only on attribute v. We saythat there is an improving 
ip from � to � if the value of v in � is preferredto the value of v in �, given the values of the parents of v in both � and �. Asequen
e �0 : : : �T is an improving 
ipping sequen
e if for ea
h i < T , there isan improving 
ip from �i to �i+1.We say that � is preferred to � (� � �) if there is an improving 
ippingsequen
e � = �0 : : : �T = �.Note that a self loop on a node in the CP graph makes the de�nition of animproving 
ip un
lear. If v is parent to itself, then two instan
es that di�er onlyon v do not agree on the parents of v. Therefore, we disallow self loops in ourde�nition of CP-nets.The CP-net spe
i�es an ordering on instan
es. This 
an be expanded to thepreferen
e graph. The nodes of the preferen
e graph are instan
es, and thereis a dire
ted edge from � to � if and only if there is an improving 
ip from� to �. Note that the number of nodes in the preferen
e graph is exponentialin the number of attributes (with base depending on the size of the attributedomains). Thus, it is 
on
eivable that there 
ould be exponentially long paths inthe graph. In parti
ular, it is 
on
eivable that there may be exponentially longminimum-length paths between nodes. The rami�
ations of this observation are
onsidered in Se
tion 4.2.4 Complexity ResultsWe begin with a proof that the dominan
e problem is P-hard for CP-nets. Thisholds even for the resti
ted 
lass of a
y
li
 CP-nets. The result is not surprising,but the proof sets up the proof that the dominan
e problem for 
y
li
 CP-netsis PSPACE hard.4.1 P-HardnessTheorem 1. The dominan
e problem for CP-nets is P-hard.Note that the 
onstru
tion that follows des
ribes a CP-net with in
ompletetables. By Trusz
zynski's result [4℄, the CP-net des
ribed in the proof 
an betransformed into a CP-net with 
omplete tables, without loss of generality.The table in
ompleteness arises be
ause we spe
ify, for multi-valued at-tributes, a single value that is preferred to all others. We do not spe
ify anorder on the less-preferred values.Proof. Let M be a polynomial time bounded Turing ma
hine with time boundp(n). Without loss of generality, we assume that M a single-tape, single-headTuring ma
hine that starts in state s0, with the read/write head at the left endof the tape. We further assume that there is a unique a

epting state, and thatM a

epts with an empty tape and the read-write head ba
k in the �rst square.In other words, there is a unique a

epting 
on�guration that depends only onthe length of the input.



6 J. GoldsmithLet T (x) be the tableau of the 
omputation M(x). In other words, T (x) is a(p(jxj) + 1) � (p(jxj) + 1) table, where the ith row represents the 
on�gurationof M at step i of the 
omputation. Cell j of row i represents either{ the state M at step i, written immediately to the left of the tape squarebeing s
anned by M(x) at step i, or{ the 
ontents of tape square j of M(x) at step i, if the read/write head is tothe right of tape square j in the 
on�guration, or{ the 
ontents of tape square j � 1 of M(x) at step i, if the read/write headis to the left of or at tape square j in the 
on�guration.Most of the preferen
e attributes in the CP-net that we 
onstru
t representthe 
ells in the tableau T (x). There are O(p(jxj)2) many su
h attributes. Inaddition, there are \gate-keeper" attributes g0 to gp(jxj). The tableau attributestake on values from the tape alphabet of M , plus blank (B), and the set ofstates. The gate-keepers are binary.The initial row of tableau attributes, t(0; j), have un
onditionally preferredvalues that re
e
t the initial 
on�guration of M(x). The initial value (in the �of our redu
tion output) of g0 is 1.The eventual dominan
e question, whose answer is equivalent to M(x) a
-
epting, is whether � � �, where � re
e
ts the input 
on�guration of M(x)and the rest of the tableau attributes set to B. In �, all of the gi have value0 ex
ept g0 = 1. The instan
e � has B for all tableau attribute values ex
eptt(p(jxj); 0) = qa

ept, and all gi = 1.Ea
h tableau attribute t(i + 1; j) depends on four tableau attributes in theprevious row (from t(i; j � 1) to t(i; j + 2)), to guarantee that it \sees" anymovement of the read-write head into its pla
e in the step i + 1 
on�guration,or any lo
al 
hange from the previous 
on�guration due to the proximity of theread-write head.In addition, the tableau attribute t(i+1; j) depends on gjp(x)j, gi and gi+1: Ifgjp(x)j = 0, gi = 1 and gi+1 = 0 then a preferen
e is spe
i�ed for t(i+ 1; j) thatguarantees that the preferred value a

urately re
e
ts step i of the 
omputationM(x).If i < p(jxj) and gp(jxj) = 1, then the preferred value for t(i; j) is B.Ea
h gi+1 depends on gi:{ If gi = 0 then gi+1 = 0 � gi+1 = 1;{ If gi = 1 then gi+1 = 1 � gi+1 = 0.Suppose that M has the following transition: Æ(s; q) = (s0; R; q0). Considerthe following rows of the preferen
e tables for t(i+1; j) and t(i+1; j+1). (Alsosee Figure 4.1.)Note that a transition of the form Æ(s; q) = (s0; L; q0) would require that we
onsider attributes t(i+1; j+1) = q and t(i+1; j+2) = s, in order for t(i+1; j)to take the value q0.{ If gi = 1 and gi+1 = 0, t(i; j) = q and t(i; j+1) = s then the preferred valuefor t(i+ 1; j) is s0.



Preferen
es and Domination 7{ If gi = 1 and gi+1 = 0, t(i; j) = q and t(i; j+1) = s then the preferred valuefor t(i+ 1; j + 1) is q0. j j + 1� � � q s � � �� � � s0 q0 � � �Fig. 3. A Turing ma
hine transitionLet CM;x be the CP-net 
onstru
ted thusly, with attributes t(i; j) and gi, 0 �i; j � p(jxj). Let � be the instan
e of CM;x that re
e
ts the initial 
on�gurationof M(x) and has t(i+ 1; j) = B for all i; j < p(jxj), g0 = 1 and gi+1 = 0. Let �be the instan
e where t(p(jxj); 0) = qa

ept and all the other t(i; j) = B, and allgi = 1.The ith row of a 
onsistent tableau represents the ith 
on�guration of the
omputation of M(x). The 
onstru
tion of CM;x guarantees that there is animproving 
ipping sequen
e that sets the attributes of the CP-net a

ording tothe values of a 
onsistent tableau, and then sets all but the last row of t(i; j)attributes to B. And the only way to set t(p(jxj); 0) = qa

ept, is to simulate the
omputation of M(x) for p(jxj) steps. Thus, we get the following 
laim.Claim. M(x) a

epts if and only if � � � in CM;x.If the deterministi
 
omputation M(x) a

epts, then, by our assumptions onM , there is a unique �nal 
on�guration of M(x), represented by the last row ofattributes in �. On
e the �nal row of attributes has been evaluated, gp(jxj) willbe 1, and by preferen
e, all other t(i; j) will be set to B.There may be many other possible improving 
ipping sequen
es, but noothers will prove that � � �.To �nish the proof of the theorem, we observe that CM;x 
an be 
omputedin time polynomial in the representation of M and the length of x.4.2 Flipping Sequen
e Lengths and Membership in PSPACEIf we 
ould show that all improving 
ipping sequen
es have length polynomialin the number of attributes of the CP-net, then the dominan
e problem wouldat least be in NP: Guess a polynomial-length 
ipping sequen
e, and verify thatea
h 
ip is an improving 
ip.However, without a polynomial-length guarantee, we 
an only show that thedominan
e problem is in PSPACE. The following is a sket
h of a nondeterministi
linear spa
e algorithm for dominan
e.Given � and � on tape 1 and 2, respe
tively, repeat until the string on tape1 is the same as that on tape 2: Perform an improving 
ip on the string on tape1.



8 J. GoldsmithIf there is an improving 
ipping sequen
e from � to �, some nondeterministi

omputation will �nd it. Sin
e NPSPACE = PSPACE, this is suÆ
ient to showthat the dominan
e problem for CP-nets is in PSPACE.It is not known whether there are exponentially long improving 
ipping se-quen
es for a
y
li
 CP-nets. However, it is possible to build a 
y
li
 CP-net withan exponential-length improving 
ipping sequen
e [5℄.To show that the dominan
e problem for 
y
li
 CP-nets is PSPACE hard,it would be ni
e to use a redu
tion like that given in the proof of Theorem1. However, a generi
 PSPACE Turing ma
hine must be assumed to run inexponential time. Thus, enumerating attributes for ea
h time step would extendthe redu
tion beyond polynomial time. The modi�
ation to that 
onstru
tion isto use (and reuse) only two rows of the tableau: \now" and \next step". On
e\next step" is updated, the values of that row are 
opied to the \now" row, and\next step" is rewritten with blanks. The two phases, update and 
opy, aregoverned by gate-keeper variables g0 through gp(jxj), where p is now the spa
ebound of the Turing ma
hine.Note that the reuse of attributes over time implies an essential 
y
li
ity inthis 
onstru
tion.4.3 PSPACE-HardnessTheorem 2. The dominan
e problem for 
y
li
 CP-nets is PSPACE-
omplete.Proof. We have argued in the previous subse
tion that the dominan
e problemfor 
y
li
 CP-nets is in PSPACE. We now sket
h a polynomial-time 
omputableredu
tion from a PSPACE Turing ma
hine M and input x to a CP-net and twoinstan
es, � and �, su
h that � � � if and only if M(x) a

epts.We make the same assumptions about M as in the proof of Theorem 1,in
luding that it has a unique a

epting 
on�guration for ea
h input length.Given M and x and polynomial bound p(n), we 
onstru
t a CP-net CM;xwith 3p(jxj) + 3 attributes and 
onstru
t instan
es � and �.The attributes of CM;x represent two 
on�gurations, \now" (attributes 
0through 
p) and \next" (attributes d0 through dp), and gate-keepers g0 throughgp. Here \p" is short for p(jxj). The gate-keepers are used to for
e ea
h 
ell ofthe 
on�guration to be updated in ea
h phase.The two phases, update and 
opy, are regulated by the gp gate-keeper:When gp = 0, we are in an update phase, and when gp = 1 we are in a 
opyphase. Ea
h 
on�guration attribute dj depends on 
j�1; 
j ; 
j+1 and 
j+2, andon gj�1, gj , and gp.Suppose that M has the following transition: Æ(s; q) = (s0; R; q0). Considerthe following rows of the preferen
e table for dj .{ If gp = 0, gj�1 = 1, gj = 0, and if 
j�1 = q and 
j = s, then the preferredvalue for dj is q0.{ If gp = 0, gj�1 = 1, gj = 0, and if 
j = q and 
j+1 = s, then the preferredvalue for dj is s0.



Preferen
es and Domination 9{ If gp = 1, and gj�1 = 1 = gj then the preferred value for dj is B.The 
opy phase a�e
ts the 
js as follows: If gp = 1, gj�1 = 0, and gj = 1,then the preferred value for 
j is the value of dj . (Note that there is a distin
trow in the preferen
e table for dj for ea
h possible value of 
j .)Finally, and 
y
li
ally, we de�ne the preferen
es for the gjs. Ea
h gj dependson gj�1, 
j�1 to 
j+2, dj , and on gp.{ If gp = 0, gj�1 = 1, and dj has been updated a

ording to the transitions ofM and the values of 
j�1 to 
j+2, then the preferred value for dj is 1.{ If gp = 1, gj�1 = 0, and 
j = dj , then the preferred value for dj is 0.For g0, if gp = 1 and 
p = dp, then the preferred value for g0 is 1. If gp = 0and dp has been updated a

ording to the transitions of M and the values of
p�1 and 
p, then the preferred value for g0 is 0.Thus, the \updating" of the gjs a

ording to improving 
ips is interla
ed withthe updating of the 
js and djs. In the update phase, when djs are updatedto re
e
t the next 
on�guration after that represented by the 
js, the gjs are
ipped to 1. In the 
opy phase, they are 
ipped one by one to 0.Claim. In this 
onstru
tion of CM;x, any improving 
ipping sequen
e that startswith g0 = 1 and the other gjs set to 0 will �rst alternate updates of the djs andgjs, and then alternate updates of the 
js and gjs. This two-phase updating maybe repeated as many times as there are steps in the 
omputation of M(x), andea
h two-phase set of updates, or improving 
ips, will 
orrespond to one step ofthat 
omputation. Note that the number of two-phase sets of updates may beexponential in the number of nodes in the CP-net CM;x.Using Claim 4.3, we 
an show the following.Claim. Let CM;x be 
onstru
ted as des
ribed in this proof. Let � be the instan
efor CM;x with 
0 = qa

ept, all other 
j and dj are B, and all the gj are 0. Let �be the instan
e for CM;x where the 
js re
e
t the initial 
on�guration of M(x),all the djs are B, g0 = 1, and all gj+1 = 0. Then � � � if and only if M(x)a

epts.We observe that the 
onstru
tion of CM;x and of � and � 
an be done intime polynomial in the des
ription of M and in the length of x.5 Con
lusionsWe have shown that the dominan
e problem for 
y
li
 CP-nets is PSPACE-
omplete. While this does not prove that the 
omplexity of a
y
li
 CP-net dom-inan
e is high, it does indi
ate that the general model of CP-nets might be abad 
hoi
e for a 
omputational model of preferen
es. We 
onje
ture that manynatural preferen
es are inherently 
y
li
.
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