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Abstract. We show that the dominance problem for CP-nets is P-hard,
and that the dominance problem for the more general case of cyclic CP-
nets is PSPACE complete.
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1 Introduction

The problems of representing and eliciting user preferences over a multi-attribute
domain arise in e-commerce, planning, and a host of other fields. Preferences can
be represented explicitly by a ranked ordering of domain instances, but this list
will be of length exponential in the number of attributes. Preferences can some-
times be represented logarithmically more succinctly by describing preferences
on individual attributes, or on small sets of attributes.

CP-nets [1] provide a qualitative representation of preferences. They allow a
user to order values of an attribute, all other things being equal (ceteris paribus),
or to specify the attributes on which preference for a particular attribute’s values
depends. CP-nets (formal definitions given in Section 3) are attractive because
they allow for succinct representations, and because they suggest a simple and
easily-understood elicitation process. Acyclic CP-nets are seemingly computa-
tionally easy to reason with.

Unfortunately, many preferences about which we would like to reason can
only be expressed in a way that creates a cycle of attribute dependencies. It is
possible to have a cyclic CP-net that is consistent (i.e., no instance is preferable
to itself), but it seems that consistency is computationally difficult to check.

Another computational question of interest in CP-nets is, given two instances
a and (3, which one is preferred. This is called the dominance problem. It is
possible to show that « is preferred to 8 (a > ) by exhibiting a sequence of
instances a; with = ap and ar = a, and each a; > a;y1 explicitly from the
CP-net. Then each pair a;, a;y1 differs in exactly one attribute. The sequence
(a;)i<r is called an improving flipping sequence.

If it can be shown that all improving flipping sequences have length polyno-
mial in the number of attributes, then the dominance problem is in NP. Boutilier,
et al. [1] showed that the dominance problem for acyclic CP-nets is in P for
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some very restricted classes of CP-nets, and is NP-complete for other restricted
classes. However, the complexity of the general problem, either for acyclic or
cyclic CP-nets, was only conjectured to be PSPACE-complete.

We show here that the dominance problem for cyclic CP-nets with incom-
plete tables is indeed PSPACE-complete. This work was done independently and
simultaneously by Jérome Lang [2]. Lang’s original proof used inconsistent pref-
erences; Nic Wilson showed that there was a reduction to CP-nets with consistent
preferences [3]. The problem of incomplete tables was resolved by Truszczynski
[4]: For any cyclic CP-net with incomplete tables, there is an equivalent one with
complete tables. In particular, there is a dominance-preserving reduction from
the dominance problem for CP-nets with incomplete tables to the dominance
problem for CP-nets with complete tables.

2 Example Networks

Consider the possibility that there are many saunas available, and we wish to
decide to which sauna we should bring a guest named Bill'. We wish to represent
Bill’s preferences with respect to the attributes of RESTRICTIONS (single-sex vs.
mixed), TYPE (steam vs. dry), BUSYNESS (crowded vs. not crowded).

Bill tells us that he prefers uncrowded saunas to crowded ones; that he prefers
dry to steam, and that his preferences with respect to restrictions depend on
crowdedness: If the sauna is crowded or steamy, he prefers mixed-sex saunas,
otherwise he prefers single-sex saunas. Figure 1 shows the underlying dependency
graph for Bill’s sauna preferences. A complete specification of the network would
also include the (conditional) preference tables.

Fig. 1. Sauna preferences

Next, consider Judy’s preferences about music. The attributes include GENRE,
VOCALS, MOOD, and VOLUME. We learn that she prefers to be in a good mood,

! The preferences expressed in this section are purely hypothetical, and do not repre-
sent the preferences of particular people.
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and then she prefers folk music to rock. But when she is in a bad mood, she
prefers rock to folk. Whether she prefers vocals depends on her mood and the
genre. Volume preferences depend on genre as well. Folk music is preferred soft
and rock is preferred loud.

What distinguishes this network from the sauna network is that there is a
cycle in the dependencies: The preference on volume depends on mood, yet loud
music improves a bad mood. We represent this by an arc from volume to mood
(a dotted line in Figure 2).

Note that this introduces two new features to the network: cycles in the
underlying directed graph, and an incomplete preference table. However, it can
be shown that this particular network is consistent. In other words, no instance
is preferred to itself; There are no cycles in the implicitly represented preference
graph.

Fig. 2. Music preferences

3 Definitions

Definition 1 A CP-net consists of a directed graph G = (V, E), where V is the
set of preference attributes and an edge between attributes indicates dependence,
and a set of conditional preference tables. Fach v € V has a domain D, of
possible values, and a corresponding preference table. Each row of the preference
table for v is labeled by wvalues of v’s parent attributes. Fach row specifies a
preference order on the values of D,,.

If each preference table has a row for each set of values of the parent nodes,
and if each row specifies a complete linear order on the values D,, then we say
that the CP-net has complete tables.

An instance of a CP-net is a setting of values for each node in the CP graph.
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Consider two instances o and g which differ only on attribute v. We say
that there is an improving flip from a to f if the value of v in « is preferred
to the value of v in [, given the values of the parents of v in both @ and . A
sequence qq . ..ar is an improving flipping sequence if for each i < T, there is
an improving flip from «; to a;11.

We say that « is preferred to § (a > () if there is an improving flipping
sequence 8 = aq...ar = .

Note that a self loop on a node in the CP graph makes the definition of an
improving flip unclear. If v is parent to itself, then two instances that differ only
on v do not agree on the parents of v. Therefore, we disallow self loops in our
definition of CP-nets.

The CP-net specifies an ordering on instances. This can be expanded to the
preference graph. The nodes of the preference graph are instances, and there
is a directed edge from  to « if and only if there is an improving flip from
B to a. Note that the number of nodes in the preference graph is exponential
in the number of attributes (with base depending on the size of the attribute
domains). Thus, it is conceivable that there could be exponentially long paths in
the graph. In particular, it is conceivable that there may be exponentially long
minimum-length paths between nodes. The ramifications of this observation are
considered in Section 4.2.

4 Complexity Results

We begin with a proof that the dominance problem is P-hard for CP-nets. This
holds even for the resticted class of acyclic CP-nets. The result is not surprising,
but the proof sets up the proof that the dominance problem for cyclic CP-nets
is PSPACE hard.

4.1 P-Hardness
Theorem 1. The dominance problem for CP-nets is P-hard.

Note that the construction that follows describes a CP-net with incomplete
tables. By Truszczynski’s result [4], the CP-net described in the proof can be
transformed into a CP-net with complete tables, without loss of generality.

The table incompleteness arises because we specify, for multi-valued at-
tributes, a single value that is preferred to all others. We do not specify an
order on the less-preferred values.

Proof. Let M be a polynomial time bounded Turing machine with time bound
p(n). Without loss of generality, we assume that M a single-tape, single-head
Turing machine that starts in state sg, with the read/write head at the left end
of the tape. We further assume that there is a unique accepting state, and that
M accepts with an empty tape and the read-write head back in the first square.
In other words, there is a unique accepting configuration that depends only on
the length of the input.
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Let T'(z) be the tableau of the computation M (z). In other words, T'(z) is a
(p(|z|) + 1) x (p(Jz]) + 1) table, where the i** row represents the configuration
of M at step i of the computation. Cell j of row i represents either

— the state M at step 4, written immediately to the left of the tape square
being scanned by M (z) at step i, or

— the contents of tape square j of M (z) at step i, if the read/write head is to
the right of tape square 7 in the configuration, or

— the contents of tape square j — 1 of M(z) at step 4, if the read/write head
is to the left of or at tape square j in the configuration.

Most of the preference attributes in the CP-net that we construct represent
the cells in the tableau T'(z). There are O(p(|z|)?) many such attributes. In
addition, there are “gate-keeper” attributes go to g,(|.|). The tableau attributes
take on values from the tape alphabet of M, plus blank (B), and the set of
states. The gate-keepers are binary.

The initial row of tableau attributes, #(0, 7), have unconditionally preferred
values that reflect the initial configuration of M (z). The initial value (in the
of our reduction output) of gq is 1.

The eventual dominance question, whose answer is equivalent to M (z) ac-
cepting, is whether a = (3, where 8 reflects the input configuration of M (z)
and the rest of the tableau attributes set to B. In [, all of the g; have value
0 except go = 1. The instance o has B for all tableau attribute values except
t(p(|%]),0) = Gaceept, and all g; = 1.

Each tableau attribute ¢(i + 1,7) depends on four tableau attributes in the
previous row (from ¢(i,j — 1) to ¢(i,j + 2)), to guarantee that it “sees” any
movement of the read-write head into its place in the step i + 1 configuration,
or any local change from the previous configuration due to the proximity of the
read-write head.

In addition, the tableau attribute #(i + 1, j) depends on g|,(,)|, g; and g;11: If
9ip(z)] = 0, gi = 1 and giy1 = 0 then a preference is specified for ¢(i + 1, 7) that
guarantees that the preferred value accurately reflects step i of the computation

If i < p(|z]) and gp(z|) = 1, then the preferred value for #(i, j) is B.

Each g;41 depends on g;:

— Ifgl = 0 then Gi+1 =0 >'gi+1 = 1;
— If g =1then g;31 =1 % g;41 = 0.

Suppose that M has the following transition: §(s,q) = (s', R,q’). Consider
the following rows of the preference tables for £(i +1,7) and ¢(i + 1,5+ 1). (Also
see Figure 4.1.)

Note that a transition of the form d(s,q) = (s', L, ¢') would require that we
consider attributes t(i+1,j+1) = qand t(i+1,5+2) = s, in order for £(i + 1, j)
to take the value ¢'.

— Ifgi=1and g;11 =0, t(i,j) = q and £(i,j + 1) = s then the preferred value
for t(i +1,7) is s'.



Preferences and Domination 7

— Ifg; =1and giy1 =0, t(i,j) = g and £(i,j + 1) = s then the preferred value
fort(i+1,7+1)is ¢,

Fig. 3. A Turing machine transition

Let Chr,» be the CP-net constructed thusly, with attributes ¢(i, j) and g;, 0 <
i,7 < p(|z|). Let 8 be the instance of Cys . that reflects the initial configuration
of M(z) and has (i + 1,7) = B for all 4,5 < p(|z|), go = 1 and g;31 = 0. Let «
be the instance where #(p(|z|),0) = accept and all the other ¢(4, j) = B, and all
gi = L

The i*" row of a consistent tableau represents the i*" configuration of the
computation of M(z). The construction of Cps, guarantees that there is an
improving flipping sequence that sets the attributes of the CP-net according to
the values of a consistent tableau, and then sets all but the last row of (i, j)
attributes to B. And the only way to set t(p(|z]), 0) = Qaccept, is to simulate the
computation of M(z) for p(|z|) steps. Thus, we get the following claim.

Claim. M (x) accepts if and only if @ > £ in Cps .

If the deterministic computation M (z) accepts, then, by our assumptions on
M, there is a unique final configuration of M (z), represented by the last row of
attributes in a. Once the final row of attributes has been evaluated, g,(,|) will
be 1, and by preference, all other ¢(i, ) will be set to B.

There may be many other possible improving flipping sequences, but no
others will prove that a = .

To finish the proof of the theorem, we observe that Cjys, can be computed
in time polynomial in the representation of M and the length of z.

4.2 Flipping Sequence Lengths and Membership in PSPACE

If we could show that all improving flipping sequences have length polynomial
in the number of attributes of the CP-net, then the dominance problem would
at least be in NP: Guess a polynomial-length flipping sequence, and verify that
each flip is an improving flip.

However, without a polynomial-length guarantee, we can only show that the
dominance problem is in PSPACE. The following is a sketch of a nondeterministic
linear space algorithm for dominance.

Given a and § on tape 1 and 2, respectively, repeat until the string on tape
1 is the same as that on tape 2: Perform an improving flip on the string on tape
1.
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If there is an improving flipping sequence from « to 3, some nondeterministic
computation will find it. Since NPSPACE = PSPACE, this is sufficient to show
that the dominance problem for CP-nets is in PSPACE.

It is not known whether there are exponentially long improving flipping se-
quences for acyclic CP-nets. However, it is possible to build a cyclic CP-net with
an exponential-length improving flipping sequence [5].

To show that the dominance problem for cyclic CP-nets is PSPACE hard,
it would be nice to use a reduction like that given in the proof of Theorem
1. However, a generic PSPACE Turing machine must be assumed to run in
exponential time. Thus, enumerating attributes for each time step would extend
the reduction beyond polynomial time. The modification to that construction is
to use (and reuse) only two rows of the tableau: “now” and “next step”. Once
“next step” is updated, the values of that row are copied to the “now” row, and
“next step” is rewritten with blanks. The two phases, UPDATE and COPY, are
governed by gate-keeper variables go through g,(|.|), where p is now the space
bound of the Turing machine.

Note that the reuse of attributes over time implies an essential cyclicity in
this construction.

4.3 PSPACE-Hardness
Theorem 2. The dominance problem for cyclic CP-nets is PSPACE-complete.

Proof. We have argued in the previous subsection that the dominance problem
for cyclic CP-nets is in PSPACE. We now sketch a polynomial-time computable
reduction from a PSPACE Turing machine M and input z to a CP-net and two
instances, @ and f, such that a > £ if and only if M (x) accepts.

We make the same assumptions about M as in the proof of Theorem 1,
including that it has a unique accepting configuration for each input length.

Given M and z and polynomial bound p(n), we construct a CP-net Cas
with 3p(|z|) + 3 attributes and construct instances a and .

The attributes of Car . represent two configurations, “now” (attributes cg
through ¢,) and “next” (attributes dy through d,), and gate-keepers go through
gp- Here “p” is short for p(|z|). The gate-keepers are used to force each cell of
the configuration to be updated in each phase.

The two phases, UPDATE and COPY, are regulated by the g, gate-keeper:
When g, = 0, we are in an update phase, and when ¢, = 1 we are in a copy
phase. Each configuration attribute d; depends on ¢;_1,¢j,cjy1 and c¢jyo, and
on g;_1, gj, and gp.

Suppose that M has the following transition: d(s,q) = (s', R, q'). Consider
the following rows of the preference table for d;.

—Ifg,=0,9;-1=1,g; =0,and if ¢;_1 = g and ¢; = s, then the preferred
value for d; is ¢'.

—Ifg,=0,g;-1=1,g; =0, and if ¢; = g and ¢; 41
value for d; is s'.

s, then the preferred
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— If g, =1, and g;—1 = 1 = g; then the preferred value for d; is B.

The copry phase affects the c¢;s as follows: If g, =1, g;—1 = 0, and g; = 1,
then the preferred value for ¢; is the value of d;. (Note that there is a distinct
row in the preference table for d; for each possible value of ¢;.)

Finally, and cyclically, we define the preferences for the g;s. Each g; depends
on g;—1, €j—1 to Cjt+2, d]‘, and on 9p-

— If g, =0, gj_1 =1, and d; has been updated according to the transitions of
M and the values of ¢;_1 to ¢jy2, then the preferred value for d; is 1.
—Ifg,=1, gj—1 =0, and ¢; = dj, then the preferred value for d; is 0.

For go, if g, = 1 and ¢, = d,, then the preferred value for go is 1. If g, =0
and d, has been updated according to the transitions of M and the values of
cp—1 and ¢, then the preferred value for gq is 0.

Thus, the “updating” of the g;s according to improving flips is interlaced with
the updating of the ¢;s and djs. In the UPDATE phase, when d;s are updated
to reflect the next configuration after that represented by the ¢;s, the g;s are
flipped to 1. In the coPY phase, they are flipped one by one to 0.

Claim. In this construction of Cy ., any improving flipping sequence that starts
with go = 1 and the other g;s set to 0 will first alternate updates of the d;s and
g;s, and then alternate updates of the ¢;s and g;s. This two-phase updating may
be repeated as many times as there are steps in the computation of M (z), and
each two-phase set of updates, or improving flips, will correspond to one step of
that computation. Note that the number of two-phase sets of updates may be
exponential in the number of nodes in the CP-net Cys ..

Using Claim 4.3, we can show the following.

Claim. Let Cys . be constructed as described in this proof. Let « be the instance
for Cas» With co = gaccept, all other ¢; and d; are B, and all the g; are 0. Let
be the instance for Cps . where the ¢;s reflect the initial configuration of M (z),
all the djs are B, go = 1, and all g;41 = 0. Then a > g if and only if M (z)
accepts.

We observe that the construction of Cjs, and of a and 8 can be done in
time polynomial in the description of M and in the length of .

5 Conclusions

We have shown that the dominance problem for cyclic CP-nets is PSPACE-
complete. While this does not prove that the complexity of acyclic CP-net dom-
inance is high, it does indicate that the general model of CP-nets might be a
bad choice for a computational model of preferences. We conjecture that many
natural preferences are inherently cyclic.
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