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Preferenes and DominationJudy GoldsmithUniversity of Kentuky, Dept. of Computer Siene773 Anderson Hall, Lexington, KY, 40506-0046, USAgoldsmit�s.uky.eduAbstrat. We show that the dominane problem for CP-nets is P-hard,and that the dominane problem for the more general ase of yli CP-nets is PSPACE omplete.Keywords. Qualitative preferenes, CP-nets, omplexity, PSPACE om-pleteness1 IntrodutionThe problems of representing and eliiting user preferenes over a multi-attributedomain arise in e-ommere, planning, and a host of other �elds. Preferenes anbe represented expliitly by a ranked ordering of domain instanes, but this listwill be of length exponential in the number of attributes. Preferenes an some-times be represented logarithmially more suintly by desribing prefereneson individual attributes, or on small sets of attributes.CP-nets [1℄ provide a qualitative representation of preferenes. They allow auser to order values of an attribute, all other things being equal (eteris paribus),or to speify the attributes on whih preferene for a partiular attribute's valuesdepends. CP-nets (formal de�nitions given in Setion 3) are attrative beausethey allow for suint representations, and beause they suggest a simple andeasily-understood eliitation proess. Ayli CP-nets are seemingly omputa-tionally easy to reason with.Unfortunately, many preferenes about whih we would like to reason anonly be expressed in a way that reates a yle of attribute dependenies. It ispossible to have a yli CP-net that is onsistent (i.e., no instane is preferableto itself), but it seems that onsisteny is omputationally diÆult to hek.Another omputational question of interest in CP-nets is, given two instanes� and �, whih one is preferred. This is alled the dominane problem. It ispossible to show that � is preferred to � (� � �) by exhibiting a sequene ofinstanes �i with � = �0 and �T = �, and eah �i � �i+1 expliitly from theCP-net. Then eah pair �i; �i+1 di�ers in exatly one attribute. The sequeneh�iii�T is alled an improving ipping sequene.If it an be shown that all improving ipping sequenes have length polyno-mial in the number of attributes, then the dominane problem is in NP. Boutilier,et al. [1℄ showed that the dominane problem for ayli CP-nets is in P for



Preferenes and Domination 3some very restrited lasses of CP-nets, and is NP-omplete for other restritedlasses. However, the omplexity of the general problem, either for ayli oryli CP-nets, was only onjetured to be PSPACE-omplete.We show here that the dominane problem for yli CP-nets with inom-plete tables is indeed PSPACE-omplete. This work was done independently andsimultaneously by J�erôme Lang [2℄. Lang's original proof used inonsistent pref-erenes; Ni Wilson showed that there was a redution to CP-nets with onsistentpreferenes [3℄. The problem of inomplete tables was resolved by Truszzynski[4℄: For any yli CP-net with inomplete tables, there is an equivalent one withomplete tables. In partiular, there is a dominane-preserving redution fromthe dominane problem for CP-nets with inomplete tables to the dominaneproblem for CP-nets with omplete tables.2 Example NetworksConsider the possibility that there are many saunas available, and we wish todeide to whih sauna we should bring a guest named Bill1. We wish to representBill's preferenes with respet to the attributes of restritions (single-sex vs.mixed), type (steam vs. dry), busyness (rowded vs. not rowded).Bill tells us that he prefers unrowded saunas to rowded ones; that he prefersdry to steam, and that his preferenes with respet to restritions depend onrowdedness: If the sauna is rowded or steamy, he prefers mixed-sex saunas,otherwise he prefers single-sex saunas. Figure 1 shows the underlying dependenygraph for Bill's sauna preferenes. A omplete spei�ation of the network wouldalso inlude the (onditional) preferene tables.
Type

Rest

Busy

r.Fig. 1. Sauna preferenesNext, onsider Judy's preferenes about musi. The attributes inlude genre,voals, mood, and volume. We learn that she prefers to be in a good mood,1 The preferenes expressed in this setion are purely hypothetial, and do not repre-sent the preferenes of partiular people.



4 J. Goldsmithand then she prefers folk musi to rok. But when she is in a bad mood, sheprefers rok to folk. Whether she prefers voals depends on her mood and thegenre. Volume preferenes depend on genre as well. Folk musi is preferred softand rok is preferred loud.What distinguishes this network from the sauna network is that there is ayle in the dependenies: The preferene on volume depends on mood, yet loudmusi improves a bad mood. We represent this by an ar from volume to mood(a dotted line in Figure 2).Note that this introdues two new features to the network: yles in theunderlying direted graph, and an inomplete preferene table. However, it anbe shown that this partiular network is onsistent. In other words, no instaneis preferred to itself; There are no yles in the impliitly represented preferenegraph.
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Fig. 2. Musi preferenes3 De�nitionsDe�nition 1 A CP-net onsists of a direted graph G = hV;Ei, where V is theset of preferene attributes and an edge between attributes indiates dependene,and a set of onditional preferene tables. Eah v 2 V has a domain Dv ofpossible values, and a orresponding preferene table. Eah row of the preferenetable for v is labeled by values of v's parent attributes. Eah row spei�es apreferene order on the values of Dv.If eah preferene table has a row for eah set of values of the parent nodes,and if eah row spei�es a omplete linear order on the values Dv, then we saythat the CP-net has omplete tables.An instane of a CP-net is a setting of values for eah node in the CP graph.



Preferenes and Domination 5Consider two instanes � and � whih di�er only on attribute v. We saythat there is an improving ip from � to � if the value of v in � is preferredto the value of v in �, given the values of the parents of v in both � and �. Asequene �0 : : : �T is an improving ipping sequene if for eah i < T , there isan improving ip from �i to �i+1.We say that � is preferred to � (� � �) if there is an improving ippingsequene � = �0 : : : �T = �.Note that a self loop on a node in the CP graph makes the de�nition of animproving ip unlear. If v is parent to itself, then two instanes that di�er onlyon v do not agree on the parents of v. Therefore, we disallow self loops in ourde�nition of CP-nets.The CP-net spei�es an ordering on instanes. This an be expanded to thepreferene graph. The nodes of the preferene graph are instanes, and thereis a direted edge from � to � if and only if there is an improving ip from� to �. Note that the number of nodes in the preferene graph is exponentialin the number of attributes (with base depending on the size of the attributedomains). Thus, it is oneivable that there ould be exponentially long paths inthe graph. In partiular, it is oneivable that there may be exponentially longminimum-length paths between nodes. The rami�ations of this observation areonsidered in Setion 4.2.4 Complexity ResultsWe begin with a proof that the dominane problem is P-hard for CP-nets. Thisholds even for the restited lass of ayli CP-nets. The result is not surprising,but the proof sets up the proof that the dominane problem for yli CP-netsis PSPACE hard.4.1 P-HardnessTheorem 1. The dominane problem for CP-nets is P-hard.Note that the onstrution that follows desribes a CP-net with inompletetables. By Truszzynski's result [4℄, the CP-net desribed in the proof an betransformed into a CP-net with omplete tables, without loss of generality.The table inompleteness arises beause we speify, for multi-valued at-tributes, a single value that is preferred to all others. We do not speify anorder on the less-preferred values.Proof. Let M be a polynomial time bounded Turing mahine with time boundp(n). Without loss of generality, we assume that M a single-tape, single-headTuring mahine that starts in state s0, with the read/write head at the left endof the tape. We further assume that there is a unique aepting state, and thatM aepts with an empty tape and the read-write head bak in the �rst square.In other words, there is a unique aepting on�guration that depends only onthe length of the input.



6 J. GoldsmithLet T (x) be the tableau of the omputation M(x). In other words, T (x) is a(p(jxj) + 1) � (p(jxj) + 1) table, where the ith row represents the on�gurationof M at step i of the omputation. Cell j of row i represents either{ the state M at step i, written immediately to the left of the tape squarebeing sanned by M(x) at step i, or{ the ontents of tape square j of M(x) at step i, if the read/write head is tothe right of tape square j in the on�guration, or{ the ontents of tape square j � 1 of M(x) at step i, if the read/write headis to the left of or at tape square j in the on�guration.Most of the preferene attributes in the CP-net that we onstrut representthe ells in the tableau T (x). There are O(p(jxj)2) many suh attributes. Inaddition, there are \gate-keeper" attributes g0 to gp(jxj). The tableau attributestake on values from the tape alphabet of M , plus blank (B), and the set ofstates. The gate-keepers are binary.The initial row of tableau attributes, t(0; j), have unonditionally preferredvalues that reet the initial on�guration of M(x). The initial value (in the �of our redution output) of g0 is 1.The eventual dominane question, whose answer is equivalent to M(x) a-epting, is whether � � �, where � reets the input on�guration of M(x)and the rest of the tableau attributes set to B. In �, all of the gi have value0 exept g0 = 1. The instane � has B for all tableau attribute values exeptt(p(jxj); 0) = qaept, and all gi = 1.Eah tableau attribute t(i + 1; j) depends on four tableau attributes in theprevious row (from t(i; j � 1) to t(i; j + 2)), to guarantee that it \sees" anymovement of the read-write head into its plae in the step i + 1 on�guration,or any loal hange from the previous on�guration due to the proximity of theread-write head.In addition, the tableau attribute t(i+1; j) depends on gjp(x)j, gi and gi+1: Ifgjp(x)j = 0, gi = 1 and gi+1 = 0 then a preferene is spei�ed for t(i+ 1; j) thatguarantees that the preferred value aurately reets step i of the omputationM(x).If i < p(jxj) and gp(jxj) = 1, then the preferred value for t(i; j) is B.Eah gi+1 depends on gi:{ If gi = 0 then gi+1 = 0 � gi+1 = 1;{ If gi = 1 then gi+1 = 1 � gi+1 = 0.Suppose that M has the following transition: Æ(s; q) = (s0; R; q0). Considerthe following rows of the preferene tables for t(i+1; j) and t(i+1; j+1). (Alsosee Figure 4.1.)Note that a transition of the form Æ(s; q) = (s0; L; q0) would require that weonsider attributes t(i+1; j+1) = q and t(i+1; j+2) = s, in order for t(i+1; j)to take the value q0.{ If gi = 1 and gi+1 = 0, t(i; j) = q and t(i; j+1) = s then the preferred valuefor t(i+ 1; j) is s0.



Preferenes and Domination 7{ If gi = 1 and gi+1 = 0, t(i; j) = q and t(i; j+1) = s then the preferred valuefor t(i+ 1; j + 1) is q0. j j + 1� � � q s � � �� � � s0 q0 � � �Fig. 3. A Turing mahine transitionLet CM;x be the CP-net onstruted thusly, with attributes t(i; j) and gi, 0 �i; j � p(jxj). Let � be the instane of CM;x that reets the initial on�gurationof M(x) and has t(i+ 1; j) = B for all i; j < p(jxj), g0 = 1 and gi+1 = 0. Let �be the instane where t(p(jxj); 0) = qaept and all the other t(i; j) = B, and allgi = 1.The ith row of a onsistent tableau represents the ith on�guration of theomputation of M(x). The onstrution of CM;x guarantees that there is animproving ipping sequene that sets the attributes of the CP-net aording tothe values of a onsistent tableau, and then sets all but the last row of t(i; j)attributes to B. And the only way to set t(p(jxj); 0) = qaept, is to simulate theomputation of M(x) for p(jxj) steps. Thus, we get the following laim.Claim. M(x) aepts if and only if � � � in CM;x.If the deterministi omputation M(x) aepts, then, by our assumptions onM , there is a unique �nal on�guration of M(x), represented by the last row ofattributes in �. One the �nal row of attributes has been evaluated, gp(jxj) willbe 1, and by preferene, all other t(i; j) will be set to B.There may be many other possible improving ipping sequenes, but noothers will prove that � � �.To �nish the proof of the theorem, we observe that CM;x an be omputedin time polynomial in the representation of M and the length of x.4.2 Flipping Sequene Lengths and Membership in PSPACEIf we ould show that all improving ipping sequenes have length polynomialin the number of attributes of the CP-net, then the dominane problem wouldat least be in NP: Guess a polynomial-length ipping sequene, and verify thateah ip is an improving ip.However, without a polynomial-length guarantee, we an only show that thedominane problem is in PSPACE. The following is a sketh of a nondeterministilinear spae algorithm for dominane.Given � and � on tape 1 and 2, respetively, repeat until the string on tape1 is the same as that on tape 2: Perform an improving ip on the string on tape1.



8 J. GoldsmithIf there is an improving ipping sequene from � to �, some nondeterministiomputation will �nd it. Sine NPSPACE = PSPACE, this is suÆient to showthat the dominane problem for CP-nets is in PSPACE.It is not known whether there are exponentially long improving ipping se-quenes for ayli CP-nets. However, it is possible to build a yli CP-net withan exponential-length improving ipping sequene [5℄.To show that the dominane problem for yli CP-nets is PSPACE hard,it would be nie to use a redution like that given in the proof of Theorem1. However, a generi PSPACE Turing mahine must be assumed to run inexponential time. Thus, enumerating attributes for eah time step would extendthe redution beyond polynomial time. The modi�ation to that onstrution isto use (and reuse) only two rows of the tableau: \now" and \next step". One\next step" is updated, the values of that row are opied to the \now" row, and\next step" is rewritten with blanks. The two phases, update and opy, aregoverned by gate-keeper variables g0 through gp(jxj), where p is now the spaebound of the Turing mahine.Note that the reuse of attributes over time implies an essential yliity inthis onstrution.4.3 PSPACE-HardnessTheorem 2. The dominane problem for yli CP-nets is PSPACE-omplete.Proof. We have argued in the previous subsetion that the dominane problemfor yli CP-nets is in PSPACE. We now sketh a polynomial-time omputableredution from a PSPACE Turing mahine M and input x to a CP-net and twoinstanes, � and �, suh that � � � if and only if M(x) aepts.We make the same assumptions about M as in the proof of Theorem 1,inluding that it has a unique aepting on�guration for eah input length.Given M and x and polynomial bound p(n), we onstrut a CP-net CM;xwith 3p(jxj) + 3 attributes and onstrut instanes � and �.The attributes of CM;x represent two on�gurations, \now" (attributes 0through p) and \next" (attributes d0 through dp), and gate-keepers g0 throughgp. Here \p" is short for p(jxj). The gate-keepers are used to fore eah ell ofthe on�guration to be updated in eah phase.The two phases, update and opy, are regulated by the gp gate-keeper:When gp = 0, we are in an update phase, and when gp = 1 we are in a opyphase. Eah on�guration attribute dj depends on j�1; j ; j+1 and j+2, andon gj�1, gj , and gp.Suppose that M has the following transition: Æ(s; q) = (s0; R; q0). Considerthe following rows of the preferene table for dj .{ If gp = 0, gj�1 = 1, gj = 0, and if j�1 = q and j = s, then the preferredvalue for dj is q0.{ If gp = 0, gj�1 = 1, gj = 0, and if j = q and j+1 = s, then the preferredvalue for dj is s0.



Preferenes and Domination 9{ If gp = 1, and gj�1 = 1 = gj then the preferred value for dj is B.The opy phase a�ets the js as follows: If gp = 1, gj�1 = 0, and gj = 1,then the preferred value for j is the value of dj . (Note that there is a distintrow in the preferene table for dj for eah possible value of j .)Finally, and ylially, we de�ne the preferenes for the gjs. Eah gj dependson gj�1, j�1 to j+2, dj , and on gp.{ If gp = 0, gj�1 = 1, and dj has been updated aording to the transitions ofM and the values of j�1 to j+2, then the preferred value for dj is 1.{ If gp = 1, gj�1 = 0, and j = dj , then the preferred value for dj is 0.For g0, if gp = 1 and p = dp, then the preferred value for g0 is 1. If gp = 0and dp has been updated aording to the transitions of M and the values ofp�1 and p, then the preferred value for g0 is 0.Thus, the \updating" of the gjs aording to improving ips is interlaed withthe updating of the js and djs. In the update phase, when djs are updatedto reet the next on�guration after that represented by the js, the gjs areipped to 1. In the opy phase, they are ipped one by one to 0.Claim. In this onstrution of CM;x, any improving ipping sequene that startswith g0 = 1 and the other gjs set to 0 will �rst alternate updates of the djs andgjs, and then alternate updates of the js and gjs. This two-phase updating maybe repeated as many times as there are steps in the omputation of M(x), andeah two-phase set of updates, or improving ips, will orrespond to one step ofthat omputation. Note that the number of two-phase sets of updates may beexponential in the number of nodes in the CP-net CM;x.Using Claim 4.3, we an show the following.Claim. Let CM;x be onstruted as desribed in this proof. Let � be the instanefor CM;x with 0 = qaept, all other j and dj are B, and all the gj are 0. Let �be the instane for CM;x where the js reet the initial on�guration of M(x),all the djs are B, g0 = 1, and all gj+1 = 0. Then � � � if and only if M(x)aepts.We observe that the onstrution of CM;x and of � and � an be done intime polynomial in the desription of M and in the length of x.5 ConlusionsWe have shown that the dominane problem for yli CP-nets is PSPACE-omplete. While this does not prove that the omplexity of ayli CP-net dom-inane is high, it does indiate that the general model of CP-nets might be abad hoie for a omputational model of preferenes. We onjeture that manynatural preferenes are inherently yli.
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