
Enriched Classification and Dynamic Tunneling as
Elementary Internet Mechanisms

Gísli Hjálmtýsson and Björn Brynjúlfsson
Networking Systems and Services Laboratory

Department of Computer Science
Reykjavík University, Reykjavík, Iceland

{gisli,bjorninn}@ru.is

Abstract — In this paper we make the case that

mechanisms for enriched classification and dynamic
tunneling with a common elementary protocol should be
widely deployed on the Internet. While such mechanisms
are in common use and widely available their use remains
ad-hoc, static and “underground.” Our elementary control
protocol defines an interface that provides for consistent
and interoperable implementations of the two mechanisms.
We contend that rather than inviting the continued
proprietary ad-hoc deployment, these mechanisms would
bring substantial additional value to the Internet without
significantly increasing complexity.

Index terms — Protocol design, Tunneling, Classification

I. INTRODUCTION

One of the strengths of the Internet is scalability in its
forwarding, caused by aggregation of addressing. In the
Internet architecture packet classification at input ports
maps packets to outgoing ports based on longest prefix
matching of the destination address. This allows routers to
be oblivious of individual flows and indeed aggregate
routing (and forwarding) entries for multiple flows and
multiple hosts into one. Consequently, in segments of the
network where addressing reflects the physical connectivity
(as seen from a particular router) very few entries are
sufficient for forwarding regardless of number of active
hosts or flows.

Enriched classification is common and valuable. In
spite of the clarity and scalability of this architecture
attraction various factors have driven enriched
classification functions into routers. Boundary gateways
typically perform some form of fire-walling function,
whether using Cisco style access control lists, or employing
a full blown connection tracking firewall. Similarly,
IntServ reservation based services, even coarser grained
differentiated services, and traffic engineering in general
call for richer packet classification. IP multicast requires
per flow classification and forwarding based on source and
destination. Continuous IP services in rapidly mobile
environments call for enriched forwarding support either at
the IP layer or by IP aware lower layer facilities.

Ignoring the reality and the need for forwarding based on
enriched classification has resulted in a range of
approaches being employed in ad-hoc manner at various
points of the Internet. In fact, mechanisms for enriched
forwarding are widely available, and on boxes at all levels
of performance. However, some of these are vendor
specific, others protocol or service specific, and in general
cannot be activated in a coherent manner over multiple
routers.

IP layer tunnels are common and valuable. IP-in-IP
tunnels constitute another key invention by allowing a
virtual Internet to be implemented over the Internet itself.
A great benefit of IP-in-IP tunnels is to support incremental
deployment. Indeed, tunneling is widely deployed for this
purpose, in particular for test-beds such as the M-bone, the
6-bone and the A-bone, where the virtual connectivity of
tunnels give the illusion of universal deployment.
Tunneling is also commonly used with IPsec [1] to
establish virtual private networks (VPN’s) over the open
Internet. In addition, IP network operators and service
providers employ various lower level mechanisms to
effectively implement tunnels across multiple hops, using
for example ATM virtual circuits, MPLS LSP, optical
channels, MAC layer manipulations [2] and transport layer
header swapping (e.g. UDP tunnels).

Protocols like mobile IP assume dynamic tunneling from
the local agent at a router in the home domain to a remote
agent at router in the remote domain. Newer protocols
employ application level tunneling to overlay topologies
over the Internet.

We contend that tunneling should be viewed as an IP
layer abstraction, even when implemented using lower
layer mechanism, and should be offered as a service on all
(or most) routers. A basic abstract tunnel can be easily
described, simply as an association between the tunnel end-
points. By adding attributes, such as QoS reservations,
security objects, or explicit routes for example, the basic
abstraction can be specialized (sub-typed) to realize the
various incarnations of tunneling in current use.

While the IP-in-IP encapsulation is defined in [3], no
protocol exists to dynamically establish IP level tunnels.
Although MPLS could be generalized to signal IP-in-IP
tunnel requests, we contend that a more elementary
protocol is sufficient and preferable. In fact, rather than

Dagstuhl Seminar Proceedings 04411
Service Management and Self-Organization in IP-based Networks
http://drops.dagstuhl.de/opus/volltexte/2005/91

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62910891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

incorporating the functionality of traffic engineering,
recovery, and more into a single protocol, we propose that
it would be preferable to have multiple protocols each
focusing on a single task, albeit employing same general
purpose elementary mechanism.

In this paper we describe an elementary control protocol,
and how this protocol can be used to construct dynamic
tunnels, and to employ enriched classification mechanism
to map a set of packets onto these tunnels. We claim that
these mechanisms are needed and already commercially
deployed. By standardizing the protocol interface to these
basic mechanisms a number of applications and services
would benefit substantially. We describe examples of how
these elementary mechanisms can be used to realize
multicast, mobility, traffic engineering, and more, that we
have experimented with over the open Internet and in
simulations.

The rest of the paper is organized as follows. After
discussing related work on tunneling in section II we define
the two mechanisms in section III. Section IV describes the
elementary (yet extensible trough subtyping) tunnel
management protocol. In section V we give five specific
examples of protocols and network services that would
benefit significantly from our mechanisms. We than
conclude in section VI.

II. RELATED WORK

 RSVP [4] allows for receiver initiated resource
reservation. An elementary request consists of a “flow
spec”, used to set parameters in a node’s packet scheduler,
and a ”filter spec” is used to trigger filtering in a node’s
classifier [5]. Our filters are similar to those of RSVP. In
contrast to the complexity of RSVP, however, our
tunneling protocol is designed to be used by other protocols
as a general building block.

L2TP [6] is a protocol to establish dynamically PPP
tunnels for Layer 2 circuits across packet-oriented data
networks. The base L2TP protocol utilizes two types of
messages, control message for dynamic creation,
maintenance and tear-down of L2TP tunnels/sessions; and
data message used to encapsulate PPP frames being carried
over the tunnel. L2TP relies on Internet Protocol security
(IPsec) for encryption services. In contrast to the layer 2
support, our protocol is aimed at facilitating the use of IP
layer tunnels to establish forwarding paths, for the benefit
of IP layer protocols and applications.

MPLS implements a virtual circuit service infrastructure
incorporating a wide range of connection oriented
functionality for traffic engineering, restoration and more.
However, prior attempts to run IP over connection oriented

infrastructures (ATM) were not successful, and exhibited
overburdening complexity. We fear that MPLS is headed
the same way. Perhaps more importantly, we believe that
having tunneling and enriched classification as elementary
IP layer functions would benefit IP protocols and
applications. In contrast MPLS provides virtual circuit
capabilities beneath the IP layer and thus is inaccessible
from higher protocols.

Beyond the examples presented in this paper, a number
of other protocols and applications, such as various
overlays [7], [8], IPv6 Tunnel Brokers [9] and mobile IP
[10], would benefit from having tunneling mechanisms, as
these protocols end up essentially replicating the
functionality of the mechanisms and protocol presented
herein.

III. THE MECHANISMS

The two mechanisms discussed in this section – enriched
classification and tunneling – are well known and
commonly used. The purpose of this section is to establish
a reference definition for the subsequent discussion, of the
mechanisms and of the information needed to be
exchanged to manipulate these mechanisms.

A. Enriched classification

Many modern routers implement enriched forwarding,
for example based on the five tuple, protocol id, source
address, destination address, and source and destination
ports.

Abstractly, a classifier maps packets into equivalence
classes based on attributes of the packet. Commonly these
attributes include the IP header and the transport level
header. The equivalence relation is defined by a filter, F,
so that two packets, pi and pj, are equivalent, iff F(pi) =
F(pj). We define the equivalence classes, in terms of a byte
mask, M, and a value V, such that F(p) = (p & M = V),
where the & is the bitwise AND operator. Multiple filters
may map to the same equivalence class, i.e., an equivalence
class is defined as E = { p | F0(p) or F1(p) … Fn(p) }. Each
equivalence class has associated with it state, in particular
the forwarding state. The forwarding state consists of a set
of flow descriptors, each descriptor identifying a internal
flow name, and a set of output device(s). Additional
attributes may be assigned to an equivalence class,
including queuing, bandwidth reservations and more.

In practice flow classification based on exact matches is
relatively simple as those can be implemented by hashing.
Range matching, e.g., based on prefix matching on source
and destination, is however significantly more expensive
[11].

3

B. Dynamic tunneling

We define an elementary tunnel to be an association
between the two endpoints, the tunnel entry and the tunnel
exit, plus an associated set of filters defining the set of
packets to be routed to the tunnel at the tunnel entry. We
consider all other tunnel attributes to specialize this basic
type of tunnel. By this definition a tunnel constructs a uni-
directional forwarding path from entry to exit. Taking an
object-oriented type inheritance view, we consider all other
types of tunnels to be subtypes of this base type. Using
very late object binding we can therefore implement a
general purpose interface and protocol, that still support
subtype specific tunnel attributes.

We separate the abstraction of a tunnel from its
implementation and specific attributes potentially
associated with a tunnel. Examples of specific types of
tunnels can include QoS attributes, route pinning, and
security associations. A tunnel could abstract out physical
implementations such as using optical light-paths.

Although tunnels are typically implemented as by-
directional interfaces, we define our abstraction as a one
directional forwarding path. This simplifies dynamic
tunnel construction and management, while providing a
more valuable abstraction as a building block for protocols
and applications, as discussed below. Bidirectional tunnels
are constructed from two unidirectional tunnels.

One common objection to IP-in-IP tunnels is that tunnels
impede performance. This need not be the case. In our
implementation we have separated the processing entities
(and object types) that implement tunnel entry and tunnel
exit. Tunnel exit is trivial, as the router need only advance
the IP-header pointer to the inner header and then restart
the IP classification and processing. To improve tunnel
entry performance, we have implemented in our prototype a
scheme where for each packet the router allocates extra
headroom enough for one extra outer header. If the packet
is tunneled this avoids reallocating a new buffer and
copying the data.

More elaborate tunneling may require more processing
and incur additional overheads. For example, when using
secure tunnels, the ESP header must also be processed at
the tunnel boundary before the security processing
(dispatch and encryption/decryption) takes place.

IV. THE TUNNEL MANAGEMENT PROTOCOL

The simple tunnel management protocol is designed to
support the minimal functionality to establish the
association between the tunnel endpoints, associate a filter
to the tunnel at entry, and to invoke a subtype specific

create method at both ends of the tunnel. The protocol is a
building block to be used by other protocols and services,
and is void of all other semantics. The protocol supports
tunnel creation only from the tunnel exit (i.e. the receiver)
to the sender. The tunnel is assumed to become active
instantly.

The protocol consists of two types of control messages
and their associated semantics which are implemented at
routers. The two messages defined are CREATE, used to
create a tunnel, and REMOVE expressing that the tunnel is
no longer desired. The protocol is designed to exchange
the minimum amount of information required to
successfully construct tunnels. The protocol is limited only
to this task. All other concerns are exterior to the protocol
and are addressed by service protocols or applications.

The protocol permits additional tunnel type specific data
to be carried in the control messages allowing the exchange
of type specific data. An option field in the protocol
message header allows designation of the additional
information and serves as subtype identifier to support a
typical factory pattern. The additional data does not change
the semantics of the two protocol messages and thus does
not alter the complexity of the protocol.

A trivial tunnel, one between immediate neighbors,
having no attributes other than the associated filter, is
essentially a forwarding association and can be realized
without any encapsulation taking place.

All state of the protocol is soft. As a consequence only
the CREATE message and its correct interpretation is
necessary for protocol correctness. The REMOVE message
is used to accelerate resource reclaim, which is important
for some protocols and applications. The control messages
are sent as IP packets with a new protocol number and the
Router Alert option, and carry the common protocol
header. All control messages are sent best effort.

A. Soft state

The soft protocol state on routers is only valid for a
certain period of time. Thus every system periodically
sends CREATE messages to refresh the corresponding soft
state, frequently enough to avoid unwanted loss of state due
to random losses of CREATE messages. The primary
benefit of soft state is simplification of exception handling.
Specifically the use of soft state affords us to send the
REMOVE message unreliably as the allocated forwarding
state is eventually removed after timer expiration. To
reduce the message overhead of maintaining the soft state
we let the refresh interval grow exponentially (to a certain
limit) as the forwarding state becomes older, as suggested
in [12].

4

Figure 1 The protocol header for the tunneling management

protocol

B. CREATE

CREATE messages are used to create tunnels and to
refresh the forwarding state timer. The protocol header
common to all messages is shown in Figure 1. It contains
the following fields:

• Control: Containing control fields, such as protocol
version etc, and an 8 bit message type set to the
value CREATE or REMOVE (detailed content of
the other 24 bits TBD via consensus).

• Flow mask (F): consisting of the five-tuple: protocol
identifier, source address (S), destination address
(D), source port, and destination port.

• Tunnel-Exit-end: The IP address of the end of the
requested channel. This is either the router
terminating the tunnel or the receiving end system.

• Subtype identifier: If present, indicated by a value
not equal to null, the protocol message header is
followed by type specific data.

An end system or a router interested in creating a tunnel

sends a CREATE message towards the tunnel entry point,
step 1 in Figure 2. The CREATE carries the flow mask,
defining the flow which maps to the tunnel, the tunnel exit
point (the CREATE sender stamps its own IP address here)

and, if appropriate, a subtype identifier. Upon receiving
the CREATE message, step 2, the entry point of the tunnel
sets up a classifier entry matching the flow and maps this to
the tunnel, applying subtype processing as needed. Step 3,
4 and 5 show how a packet matching a flow traverses the
tunnel.

Periodically - on expiration of the soft state refresh timer

- each router/end system terminating a tunnel refreshes the
upstream state, by resending a CREATE message for each
channel associated with the expired timer.

The tunnel entry may refuse a tunnel request, for various
reasons, including policy, security, or lack of resources. In
this case it replies with a protocol unreachable ICMP
message.

C. REMOVE

The only other message of the protocol is a REMOVE
message, sent from a downstream node expressing that the
association and the channel should be removed. The
message has the same format as the CREATE message,
with the message type set to REMOVE. While not
necessary for the correctness of the protocol (due to the soft
state) the REMOVE adds minimal complexity and
expedites resource release.

V. PROTOCOLS AND APPLICATIONS

In this section we discuss few examples of how the
elementary mechanisms and the tunnel management
protocol can be applied as a building block to implement an
array of protocols, and valuable network services.

A. Multicast

We have implemented and experimented with a Self-
configuring Lightweight Internet Multicast (SLIM) [13], a
single source multicast that incorporates dynamic tunneling
to self-configure over the open Internet. Although our
protocol specification declares protocol specific messages,
JOIN and LEAVE protocol could easily be realized using
the CREATE and REMOVE respectively, with an
appropriate SLIM subtype. In the case of SLIM the filter
specifies source and destination address as the multicast
source and the channel identifier respectively, and nullifies
the ports.

An end-system sends a CREATE message towards the
source. The closest SLIM router intercepts the message
(due to router alert, using the subtype as dispatch ID) and
constructs a tunnel to the client and sets up the forwarding
state, and suppresses the message. Each tunnel exit in the
multicast distribution tree maintains the soft-state with

Figure 2 A dynamic tunnel being created and used with the protocol

5

periodic refreshes. An end-system sends a REMOVE
when the (last) application closes the channel. An
intermediate router issues a REMOVE when the last
outgoing branch either leaves or expires.

We have defined two mappings that constitute further
suptyping. These subtypes have proven valuable in
reaching end-systems not directly connected to a multicast
router and allowing multicast traffic to flow trough
symmetric firewalls and NATs [14].

The elementary mechanisms described in this paper
allow for simple implementation of multicast, support
incremental deployment and organic growth of the
multicast service.

B. Rapid mobility in wireless networks

As the network edge becomes increasingly wireless, and
network use increasingly mobile, there is a need to
incorporate support for mobility in the IP infrastructure.
Whereas mobile IP may be suitable for personal mobility
(relocation) it is inadequate for providing services where
mobility is rapid an persistent.

Using the elementary mechanisms above, we are now
experimenting with device initiated vertical handoffs for
highly mobile environments. To initiate a handoff, the
receiver sends a CREATE message towards the sender to
the target base station (new access point). A mobility
management daemon on routers (comparable to a multicast
daemon) intercepts the CREATE request at the closest
common ancestor of the two access points (old and new)
and terminates the CREATE request. Instead it creates a
new tunnel on the same flow mask, effectively triggering a
multicast on both branches during the handoff. When the
handoff is completed, the device sends a REMOVE to the
old station terminating the multiple deliveries. Upon the
next refresh of the new tunnel state, the management
daemon at the branch point removes the tunnel entry at the
intermediate point, reverting back to a single end-to-end
tunnel.

C. Traffic engineering

A common use of ATM circuits and MPSL LSP’s is for
traffic engineering, either to load balance onto multiple
paths or to explicitly route some class of packets between
two routers along a path not selected by destination based
routing. This is one of the primary reasons for current
provider interest in MPLS.

In most cases, however, specifying every hop in a path is
not necessary to achieve the traffic engineering goals.
Most commonly, selecting a particular gateway, or a
particular intermediate router is sufficient. For example, a

management system may decide to balance load from NY
to LA among the three main paths in a backbone network,
selecting between Chicago, Saint Luis or Huston as
intermediate points may be sufficient to effectively select
the routing path and balance the load. Constructing three
tunnels from NY to each of these cities and load balancing
among those tunnels thus achieves the task and
significantly lower complexity (and cost) than by
employing a full blown connection oriented infrastructure
below the IP network.

D. Restoration-Failure hiding and recovery

Tunneling provides a powerful abstraction to allow for
fast recovery of broken links. Using approaches similar to
those used for connection-oriented fast restoration, a
restoration tunnel can be pre-provisioned and associate
with an exception so that when a failure occurs (e.g. link
failure) the router immediately switches to the tunnel as an
alternate path. When unplanned failures occur, some sub-
optimality is unavoidable. Thus the restoration tunnel only
needs to bridge the time it takes for the routing protocols to
converge (after failure). A restoration tunnel thus only
needs to satisfy two criteria: a) that it is forwarded on a
different device than it is meant to protect, and b) the traffic
routed into the tunnel upon a failure does not bounce right
back. In prior work we have experimented with such a
scheme for IP layer restoration in optical networks,
resulting in restoration within a millisecond [15, 16].

E. Secure tunnels

Our mechanisms are sufficient for securing traffic
between two points by allowing for the creation of secure
tunnels. IPsec tunnels are constructed by sub-typing the
basic tunnel, adding the security attributes. While the
protocol is unchanged, the objects implementing the tunnel
exit and entry are clearly more complex than for the
elementary tunnel.

An end system/router interested in creating an IPsec
tunnel sends a CREATE message to a tunnel entry point,
setting the subtype identifier to IPsec. The type specific
data trailing the protocol header includes attributes needed
for the tunnel entry to establish a Security Association (SA)
and start Internet Key Exchange. After establishing a valid
SA the corresponding tunnel and flow state is setup. When
the secure tunnel is no longer needed the end system sends
a REMOVE message to the secure tunnel entry point.

We are currently prototyping these mechanisms on the
Pronto [17] router.

6

VI. SUMMARY

We propose that enriched classification and dynamic
tunneling should be viewed and deployed as elementary
mechanisms on routers throughout the Internet. We have
shown several examples of protocols and network services
that would benefit substantially. As these mechanisms are
already in widespread use, in an ad-hoc manner, we feel
that the complexity of the Internet would be reduced by
adopting these as building blocks.

ACKNOWLEDGMENTS

The authors would like to thank Ólafur Ragnar
Helgasson for constructive criticism on this paper.

REFERENCES

[1] S. Kent, R. Atkinson, "Security Architecture for the
Internet Protocol", RFC 2401, November 1998.
[2] G. Goldszmidt and G. Hunt, “Scaling Internet Services
by Dynamic Allocation of Connections,” in Proceedings of the
6th IFIP/IEEE Integrated Management, Boston MA, May
1999.
[3] W. Simpson, "IP in IP Tunneling", RFC 1853, October
1995.
[4] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala,
"RSVP: A New Resource ReSerVation Protocol," IEEE
Network Magazine, Vol. 7, No. 9 (Sept. 1993), pp. 8-18.
[5] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin,
"Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification", RFC 2205, September 1997.
[6] W. Townsley, A. Valencia, A. Rubens, G. Pall G. Zorn, B.
Palter, "Layer Two Tunneling Protocol L2TP", RFC 2661,
August 1999.
[7] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz,
“Brocade: Landmark Routing on Overlay Networks,” First
Intemational Workshop on Peer-to-Peer Systems (IPTPS),
Cambridge, MA, March 2002.
[8] Yatin Chawathe, “Scattercast: an adaptable broadcast
distribution framework,” ACM Multimedia Systems Journal
9(1), 104-118, 2003.
[9] A. Durand, P. Fasano, I. Guardini, D. Lento, "IPv6 Tunnel
Broker", RFC 3053, January 2001.
[10] C. Perkins, "IP Mobility Support for IPv4", RFC 3344,
August 2002.
[11] T.V. Lakshman, and D. Stiliadis, ``High-Speed Policy
Based Packet Forwarding using Efficient Multi-Dimensional
Range Matching,'' Proceedings of ACM SIGCOMM'98
[12] H. Holbrook, S. Singhal and D. Cheriton, "Log-Based
Receiver-reliable Multicast for Distributed Interactive

Simulation," In Proceedings of ACM SIGCOMM 1995, pages
328-341, Cambridge, Massachusetts, August 1995.
[13] G. Hjálmtýsson, B. Brynjúlfsson and Ó. R. Helgason,
"Self-configuring Lightweight Internet Multicast - Protocol
specification," IEEE SMC, 2004
[14] Gísli Hjálmtýsson, Björn Brynjúlfsson and Ólafur Ragnar
Helgason, “Overcoming last-hop/first-hop problems in IP
multicast,” in proceedings of NGC 2003, September 2003.
[15] Albert Greenberg, Gísli Hjálmtýsson and Jennifer Yates,
"Smart Routers - Simple Optics. A Network Architecture for
IP over WDM," in the proceedings of the OFC 2000,
Baltimore, March 2000.
[16] Gísli Hjálmtýsson, Panagiotis Sebos, Graham Smith, and
Jennifer Yates, "Simple IP Restoration for IP/GbE/10GbE
optical networks," Postdeadline paper PD-36, OFC 2000,
Baltimore, MD, March 2000.
[17] G. Hjálmtýsson, H. Sverrisson, B. Brynjúlfsson and Ó. R.
Helgason, "Dynamic packet processors - A new abstraction for
router extensibility," in proceedings of OPENARCH-2003,
San Francisco, April 2003.

