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Abstract — In this paper we make the case that 

mechanisms for enriched classification and dynamic 
tunneling with a common elementary protocol should be 
widely deployed on the Internet.  While such mechanisms 
are in common use and widely available their use remains 
ad-hoc, static and “underground.” Our elementary control 
protocol defines an interface that provides for consistent 
and interoperable implementations of the two mechanisms.  
We contend that rather than inviting the continued 
proprietary ad-hoc deployment, these mechanisms would 
bring substantial additional value to the Internet without 
significantly increasing complexity. 

 
Index terms — Protocol design, Tunneling, Classification 

I. INTRODUCTION 

One of the strengths of the Internet is scalability in its 
forwarding, caused by aggregation of addressing. In the 
Internet architecture packet classification at input ports 
maps packets to outgoing ports based on longest prefix 
matching of the destination address. This allows routers to 
be oblivious of individual flows and indeed aggregate 
routing (and forwarding) entries for multiple flows and 
multiple hosts into one.  Consequently, in segments of the 
network where addressing reflects the physical connectivity 
(as seen from a particular router) very few entries are 
sufficient for forwarding regardless of number of active 
hosts or flows. 

Enriched classification is common and valuable.  In 
spite of the clarity and scalability of this architecture 
attraction various factors have driven enriched 
classification functions into routers.  Boundary gateways 
typically perform some form of fire-walling function, 
whether using Cisco style access control lists, or employing 
a full blown connection tracking firewall.  Similarly, 
IntServ reservation based services, even coarser grained 
differentiated services, and traffic engineering in general 
call for richer packet classification.  IP multicast requires 
per flow classification and forwarding based on source and 
destination.  Continuous IP services in rapidly mobile 
environments call for enriched forwarding support either at 
the IP layer or by IP aware lower layer facilities. 

Ignoring the reality and the need for forwarding based on 
enriched classification has resulted in a range of 
approaches being employed in ad-hoc manner at various 
points of the Internet.  In fact, mechanisms for enriched 
forwarding are widely available, and on boxes at all levels 
of performance.  However, some of these are vendor 
specific, others protocol or service specific, and in general 
cannot be activated in a coherent manner over multiple 
routers. 

IP layer tunnels are common and valuable. IP-in-IP 
tunnels constitute another key invention by allowing a 
virtual Internet to be implemented over the Internet itself.  
A great benefit of IP-in-IP tunnels is to support incremental 
deployment.  Indeed, tunneling is widely deployed for this 
purpose, in particular for test-beds such as the M-bone, the 
6-bone and the A-bone, where the virtual connectivity of 
tunnels give the illusion of universal deployment.  
Tunneling is also commonly used with IPsec [1] to 
establish virtual private networks (VPN’s) over the open 
Internet.  In addition, IP network operators and service 
providers employ various lower level mechanisms to 
effectively implement tunnels across multiple hops, using 
for example ATM virtual circuits, MPLS LSP, optical 
channels, MAC layer manipulations [2] and transport layer 
header swapping (e.g. UDP tunnels). 

Protocols like mobile IP assume dynamic tunneling from 
the local agent at a router in the home domain to a remote 
agent at router in the remote domain.  Newer protocols 
employ application level tunneling to overlay topologies 
over the Internet. 

We contend that tunneling should be viewed as an IP 
layer abstraction, even when implemented using lower 
layer mechanism, and should be offered as a service on all 
(or most) routers.  A basic abstract tunnel can be easily 
described, simply as an association between the tunnel end-
points.  By adding attributes, such as QoS reservations, 
security objects, or explicit routes for example, the basic 
abstraction can be specialized (sub-typed) to realize the 
various incarnations of tunneling in current use.   

While the IP-in-IP encapsulation is defined in [3], no 
protocol exists to dynamically establish IP level tunnels.  
Although MPLS could be generalized to signal IP-in-IP 
tunnel requests, we contend that a more elementary 
protocol is sufficient and preferable.  In fact, rather than 
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incorporating the functionality of traffic engineering, 
recovery, and more into a single protocol, we propose that 
it would be preferable to have multiple protocols each 
focusing on a single task, albeit employing same general 
purpose elementary mechanism.   

In this paper we describe an elementary control protocol, 
and how this protocol can be used to construct dynamic 
tunnels, and to employ enriched classification mechanism 
to map a set of packets onto these tunnels.  We claim that 
these mechanisms are needed and already commercially 
deployed. By standardizing the protocol interface to these 
basic mechanisms a number of applications and services 
would benefit substantially.  We describe examples of how 
these elementary mechanisms can be used to realize 
multicast, mobility, traffic engineering, and more, that we 
have experimented with over the open Internet and in 
simulations. 

The rest of the paper is organized as follows. After 
discussing related work on tunneling in section II we define 
the two mechanisms in section III. Section IV describes the 
elementary (yet extensible trough subtyping) tunnel 
management protocol. In section V we give five specific 
examples of protocols and network services that would 
benefit significantly from our mechanisms. We than 
conclude in section VI. 

II. RELATED WORK  

  RSVP [4] allows for receiver initiated resource 
reservation. An elementary request consists of a “flow 
spec”, used to set parameters in a node’s packet scheduler, 
and a ”filter spec” is used to trigger filtering in a node’s 
classifier [5]. Our filters are similar to those of RSVP. In 
contrast to the complexity of RSVP, however, our 
tunneling protocol is designed to be used by other protocols 
as a general building block.  

L2TP [6] is a protocol to establish dynamically PPP 
tunnels for Layer 2 circuits across packet-oriented data 
networks.  The base L2TP protocol utilizes two types of 
messages, control message for dynamic creation, 
maintenance and tear-down of L2TP tunnels/sessions; and 
data message used to encapsulate PPP frames being carried 
over the tunnel. L2TP relies on Internet Protocol security 
(IPsec) for encryption services.  In contrast to the layer 2 
support, our protocol is aimed at facilitating the use of IP 
layer tunnels to establish forwarding paths, for the benefit 
of IP layer protocols and applications.  

MPLS implements a virtual circuit service infrastructure 
incorporating a wide range of connection oriented 
functionality for traffic engineering, restoration and more.  
However, prior attempts to run IP over connection oriented 

infrastructures (ATM) were not successful, and exhibited 
overburdening complexity.  We fear that MPLS is headed 
the same way.  Perhaps more importantly, we believe that 
having tunneling and enriched classification as elementary 
IP layer functions would benefit IP protocols and 
applications.  In contrast MPLS provides virtual circuit 
capabilities beneath the IP layer and thus is inaccessible 
from higher protocols.   

Beyond the examples presented in this paper, a number 
of other protocols and applications, such as various 
overlays [7], [8], IPv6 Tunnel Brokers [9] and mobile IP 
[10], would benefit from having tunneling mechanisms, as 
these protocols end up essentially replicating the 
functionality of the mechanisms and protocol presented 
herein.   

III. THE MECHANISMS 

The two mechanisms discussed in this section – enriched 
classification and tunneling – are well known and 
commonly used.  The purpose of this section is to establish 
a reference definition for the subsequent discussion, of the 
mechanisms and of the information needed to be 
exchanged to manipulate these mechanisms. 

A. Enriched classification 

Many modern routers implement enriched forwarding, 
for example based on the five tuple, protocol id, source 
address, destination address, and source and destination 
ports.   

Abstractly, a classifier maps packets into equivalence 
classes based on attributes of the packet.  Commonly these 
attributes include the IP header and the transport level 
header.  The equivalence relation is defined by a filter, F, 
so that two packets, pi and pj, are equivalent, iff F(pi) = 
F(pj).  We define the equivalence classes, in terms of a byte 
mask, M, and a value V, such that F(p) = ( p & M = V ), 
where the & is the bitwise AND operator. Multiple filters 
may map to the same equivalence class, i.e., an equivalence 
class is defined as E = { p | F0(p) or F1(p) … Fn(p) }.  Each 
equivalence class has associated with it state, in particular 
the forwarding state.  The forwarding state consists of a set 
of flow descriptors, each descriptor identifying a internal 
flow name, and a set of output device(s).  Additional 
attributes may be assigned to an equivalence class, 
including queuing, bandwidth reservations and more.  

In practice flow classification based on exact matches is 
relatively simple as those can be implemented by hashing.  
Range matching, e.g., based on prefix matching on source 
and destination, is however significantly more expensive 
[11]. 
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B. Dynamic tunneling 

We define an elementary tunnel to be an association 
between the two endpoints, the tunnel entry and the tunnel 
exit, plus an associated set of filters defining the set of 
packets to be routed to the tunnel at the tunnel entry.  We 
consider all other tunnel attributes to specialize this basic 
type of tunnel.  By this definition a tunnel constructs a uni-
directional forwarding path from entry to exit.  Taking an 
object-oriented type inheritance view, we consider all other 
types of tunnels to be subtypes of this base type.  Using 
very late object binding we can therefore implement a 
general purpose interface and protocol, that still support 
subtype specific tunnel attributes.   

We separate the abstraction of a tunnel from its 
implementation and specific attributes potentially 
associated with a tunnel.  Examples of specific types of 
tunnels can include QoS attributes, route pinning, and 
security associations.  A tunnel could abstract out physical 
implementations such as using optical light-paths. 

Although tunnels are typically implemented as by-
directional interfaces, we define our abstraction as a one 
directional forwarding path.  This simplifies dynamic 
tunnel construction and management, while providing a 
more valuable abstraction as a building block for protocols 
and applications, as discussed below.  Bidirectional tunnels 
are constructed from two unidirectional tunnels. 

One common objection to IP-in-IP tunnels is that tunnels 
impede performance.  This need not be the case.  In our 
implementation we have separated the processing entities 
(and object types) that implement tunnel entry and tunnel 
exit.  Tunnel exit is trivial, as the router need only advance 
the IP-header pointer to the inner header and then restart 
the IP classification and processing.  To improve tunnel 
entry performance, we have implemented in our prototype a 
scheme where for each packet the router allocates extra 
headroom enough for one extra outer header.  If the packet 
is tunneled this avoids reallocating a new buffer and 
copying the data. 

More elaborate tunneling may require more processing 
and incur additional overheads.  For example, when using 
secure tunnels, the ESP header must also be processed at 
the tunnel boundary before the security processing 
(dispatch and encryption/decryption) takes place. 

IV. THE TUNNEL MANAGEMENT PROTOCOL 

The simple tunnel management protocol is designed to 
support the minimal functionality to establish the 
association between the tunnel endpoints, associate a filter 
to the tunnel at entry, and to invoke a subtype specific 

create method at both ends of the tunnel.  The protocol is a 
building block to be used by other protocols and services, 
and is void of all other semantics.  The protocol supports 
tunnel creation only from the tunnel exit (i.e. the receiver) 
to the sender.  The tunnel is assumed to become active 
instantly. 

The protocol consists of two types of control messages 
and their associated semantics which are implemented at 
routers. The two messages defined are CREATE, used to 
create a tunnel, and REMOVE expressing that the tunnel is 
no longer desired.  The protocol is designed to exchange 
the minimum amount of information required to 
successfully construct tunnels. The protocol is limited only 
to this task.  All other concerns are exterior to the protocol 
and are addressed by service protocols or applications. 

The protocol permits additional tunnel type specific data 
to be carried in the control messages allowing the exchange 
of type specific data.  An option field in the protocol 
message header allows designation of the additional 
information and serves as subtype identifier to support a 
typical factory pattern.  The additional data does not change 
the semantics of the two protocol messages and thus does 
not alter the complexity of the protocol. 

A trivial tunnel, one between immediate neighbors, 
having no attributes other than the associated filter, is 
essentially a forwarding association and can be realized 
without any encapsulation taking place. 

All state of the protocol is soft.  As a consequence only 
the CREATE message and its correct interpretation is 
necessary for protocol correctness. The REMOVE message 
is used to accelerate resource reclaim, which is important 
for some protocols and applications.  The control messages 
are sent as IP packets with a new protocol number and the 
Router Alert option, and carry the common protocol 
header.  All control messages are sent best effort.   

A. Soft state 

The soft protocol state on routers is only valid for a 
certain period of time.  Thus every system periodically 
sends CREATE messages to refresh the corresponding soft 
state, frequently enough to avoid unwanted loss of state due 
to random losses of CREATE messages. The primary 
benefit of soft state is simplification of exception handling.  
Specifically the use of soft state affords us to send the 
REMOVE message unreliably as the allocated forwarding 
state is eventually removed after timer expiration. To 
reduce the message overhead of maintaining the soft state 
we let the refresh interval grow exponentially (to a certain 
limit) as the forwarding state becomes older, as suggested 
in [12]. 
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Figure 1 The protocol header for the tunneling management 

protocol 

B. CREATE 

CREATE messages are used to create tunnels and to 
refresh the forwarding state timer.  The protocol header 
common to all messages is shown in Figure 1.  It contains 
the following fields:  

• Control: Containing control fields, such as protocol 
version etc, and an 8 bit message type set to the 
value CREATE or REMOVE (detailed content of 
the other 24 bits TBD via consensus). 

• Flow mask (F): consisting of the five-tuple: protocol 
identifier, source address (S), destination address 
(D), source port, and destination port. 

• Tunnel-Exit-end: The IP address of the end of the 
requested channel.  This is either the router 
terminating the tunnel or the receiving end system.  

• Subtype identifier: If present, indicated by a value 
not equal to null, the protocol message header is 
followed by type specific data.  

 
An end system or a router interested in creating a tunnel 

sends a CREATE message towards the tunnel entry point, 
step 1 in Figure 2.  The CREATE carries the flow mask, 
defining the flow which maps to the tunnel, the tunnel exit 
point (the CREATE sender stamps its own IP address here) 

and, if appropriate, a subtype identifier.  Upon receiving 
the CREATE message, step 2, the entry point of the tunnel 
sets up a classifier entry matching the flow and maps this to 
the tunnel, applying subtype processing as needed.  Step 3, 
4 and 5 show how a packet matching a flow traverses the 
tunnel. 

  
Periodically - on expiration of the soft state refresh timer 

- each router/end system terminating a tunnel refreshes the 
upstream state, by resending a CREATE message for each 
channel associated with the expired timer.  

The tunnel entry may refuse a tunnel request, for various 
reasons, including policy, security, or lack of resources.  In 
this case it replies with a protocol unreachable ICMP 
message. 

C. REMOVE 

The only other message of the protocol is a REMOVE 
message, sent from a downstream node expressing that the 
association and the channel should be removed.  The 
message has the same format as the CREATE message, 
with the message type set to REMOVE.  While not 
necessary for the correctness of the protocol (due to the soft 
state) the REMOVE adds minimal complexity and 
expedites resource release. 

V. PROTOCOLS AND APPLICATIONS 

In this section we discuss few examples of how the 
elementary mechanisms and the tunnel management 
protocol can be applied as a building block to implement an 
array of protocols, and valuable network services. 

A. Multicast  

We have implemented and experimented with a Self-
configuring Lightweight Internet Multicast (SLIM) [13], a 
single source multicast that incorporates dynamic tunneling 
to self-configure over the open Internet.  Although our 
protocol specification declares protocol specific messages, 
JOIN and LEAVE protocol could easily be realized using 
the CREATE and REMOVE respectively, with an 
appropriate SLIM subtype.  In the case of SLIM the filter 
specifies source and destination address as the multicast 
source and the channel identifier respectively, and nullifies 
the ports. 

An end-system sends a CREATE message towards the 
source.  The closest SLIM router intercepts the message 
(due to router alert, using the subtype as dispatch ID) and 
constructs a tunnel to the client and sets up the forwarding 
state, and suppresses the message.  Each tunnel exit in the 
multicast distribution tree maintains the soft-state with 

Figure 2 A dynamic tunnel being created and used with the protocol 
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periodic refreshes.  An end-system sends a REMOVE 
when the (last) application closes the channel.  An 
intermediate router issues a REMOVE when the last 
outgoing branch either leaves or expires. 

We have defined two mappings that constitute further 
suptyping. These subtypes have proven valuable in 
reaching end-systems not directly connected to a multicast 
router and allowing multicast traffic to flow trough 
symmetric firewalls and NATs [14].   

The elementary mechanisms described in this paper 
allow for simple implementation of multicast, support 
incremental deployment and organic growth of the 
multicast service. 

B. Rapid mobility in wireless networks 

As the network edge becomes increasingly wireless, and 
network use increasingly mobile, there is a need to 
incorporate support for mobility in the IP infrastructure.  
Whereas mobile IP may be suitable for personal mobility 
(relocation) it is inadequate for providing services where 
mobility is rapid an persistent. 

Using the elementary mechanisms above, we are now 
experimenting with device initiated vertical handoffs for 
highly mobile environments.  To initiate a handoff, the 
receiver sends a CREATE message towards the sender to 
the target base station (new access point).  A mobility 
management daemon on routers (comparable to a multicast 
daemon) intercepts the CREATE request at the closest 
common ancestor of the two access points (old and new) 
and terminates the CREATE request.  Instead it creates a 
new tunnel on the same flow mask, effectively triggering a 
multicast on both branches during the handoff.  When the 
handoff is completed, the device sends a REMOVE to the 
old station terminating the multiple deliveries.  Upon the 
next refresh of the new tunnel state, the management 
daemon at the branch point  removes the tunnel entry at the 
intermediate point, reverting back to a single end-to-end 
tunnel.  

C. Traffic engineering 

A common use of ATM circuits and MPSL LSP’s is for 
traffic engineering, either to load balance onto multiple 
paths or to explicitly route some class of packets between 
two routers along a path not selected by destination based 
routing.  This is one of the primary reasons for current 
provider interest in MPLS.   

In most cases, however, specifying every hop in a path is 
not necessary to achieve the traffic engineering goals.  
Most commonly, selecting a particular gateway, or a 
particular intermediate router is sufficient.  For example, a 

management system may decide to balance load from NY 
to LA among the three main paths in a backbone network, 
selecting between Chicago, Saint Luis or Huston as 
intermediate points may be sufficient to effectively select 
the routing path and balance the load.  Constructing three 
tunnels from NY to each of these cities and load balancing 
among those tunnels thus achieves the task and 
significantly lower complexity (and cost) than by 
employing a full blown connection oriented infrastructure 
below the IP network. 

D. Restoration-Failure hiding and recovery  

Tunneling provides a powerful abstraction to allow for 
fast recovery of broken links.  Using approaches similar to 
those used for connection-oriented fast restoration, a 
restoration tunnel can be pre-provisioned and associate 
with an exception so that when a failure occurs (e.g. link 
failure) the router immediately switches to the tunnel as an 
alternate path. When unplanned failures occur, some sub-
optimality is unavoidable. Thus the restoration tunnel only 
needs to bridge the time it takes for the routing protocols to 
converge (after failure). A restoration tunnel thus only 
needs to satisfy two criteria: a) that it is forwarded on a 
different device than it is meant to protect, and b) the traffic 
routed into the tunnel upon a failure does not bounce right 
back. In prior work we have experimented with such a 
scheme for IP layer restoration in optical networks, 
resulting in restoration within a millisecond [15, 16].  

E. Secure tunnels 

Our mechanisms are sufficient for securing traffic 
between two points by allowing for the creation of secure 
tunnels.  IPsec tunnels are constructed by sub-typing the 
basic tunnel, adding the security attributes.  While the 
protocol is unchanged, the objects implementing the tunnel 
exit and entry are clearly more complex than for the 
elementary tunnel. 

An end system/router interested in creating an IPsec 
tunnel sends a CREATE message to a tunnel entry point, 
setting the subtype identifier to IPsec. The type specific 
data trailing the protocol header includes attributes needed 
for the tunnel entry to establish a Security Association (SA) 
and start Internet Key Exchange. After establishing a valid 
SA the corresponding tunnel and flow state is setup.  When 
the secure tunnel is no longer needed the end system sends 
a REMOVE message to the secure tunnel entry point. 

We are currently prototyping these mechanisms on the 
Pronto [17] router. 
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VI.   SUMMARY 

We propose that enriched classification and dynamic 
tunneling should be viewed and deployed as elementary 
mechanisms on routers throughout the Internet.  We have 
shown several examples of protocols and network services 
that would benefit substantially.  As these mechanisms are 
already in widespread use, in an ad-hoc manner, we feel 
that the complexity of the Internet would be reduced by 
adopting these as building blocks.  
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