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1 Extended Abstract

The lecture presents an integrated modeling and solution framework aiming at
the robust and efficient solution of very large instances of tree-sparse programs.
This wide class of nonlinear programs (NLP) is characterized by an underlying
tree topology. It includes, in particular, dynamic stochastic programs in scenario
tree formulation, multistage stochastic programs, where the objective and con-
straints depend on random future events with known probability distributions.

The basic principle behind the overall concept lies in a suitable nesting of
generic and problem-specific algorithmic layers, each handling separate aspects.
The large, tree-sparse NLP is tackled by a primal-dual interior method or, as
in [1], by an SQP method using a primal-dual interior method as QP solver.
These generic methods handle inequalities and, if applicable, nonlinearity and
nonconvexity. On the bottom level, the central computational step in every in-
terior iteration consists in calculating a Newton direction from the indefinite
KKT system representing suitable linearizations of the perturbed Karush–Kuhn–
Tucker optimality conditions. Principal features of the tree-sparse approach in-
clude the theoretical analysis and algorithmic exploitation of the structure of
such KKT systems, based on their natural interpretation as linear-quadratic
control problems. This leads to the distinction of generic block sparsity charac-
terizing the entire class of tree-sparse problems, and sub-block sparsity specific to
individual instances. The resulting KKT solution algorithm handles the generic
block structure according to the general analysis, and the sub-block structure
by local sparse matrix techniques [2,3,4]. The tree-sparse framework generalizes
earlier work, providing a unified formulation for multistage stochastic programs
and various other problems sharing a similar KKT structure, like trajectory op-
timization problems or the spatial dynamics of multibody systems in descriptor
form. Stochastic programming is the primary application field and source of
motivation for the generalization. Here the scenario tree reflects the underlying
information structure, or nonanticipativity requirements: every node represents
a decision that may depend on the past (the path to the node) but may not
anticipate specific realizations of the future. Given the robust overall framework
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based on interior methods and possibly SQP methods, the primary goals in algo-
rithm development are memory efficiency and runtime efficiency, to cope with
the enormous size of usual scenario tree problems. The analysis of typical prop-
erties of application models leads to the distinction of three major tree-sparse
problem types with different regularity properties, each having an associated
block-level KKT solution algorithm that can be adapted to the sub-block spar-
sity of individual instances via specialized data structures and node operations.
Thus we arrive at a general modeling and solution framework, providing strong
guidelines how to pose a specific problem instance properly and how to construct
an associated, highly specialized sparse KKT solver [4,5].

Interior methods are widely known to be well suited for very large-scale
linear and nonlinear programming, and have already earlier been considered in
stochastic programming. However, their practical performance depends critically
on efficient KKT solvers. When our work started, only a single paper [6] ad-
dressed the multistage case, using a general-purpose sparse solver with pivoting
heuristics adapted to the tree topology. All other approaches aimed at the linear
two-stage case only, most of them being based on the very first interior method
for stochastic programs [7] and addressing sparsity on a coarse block level. Our
approach is the first to systematically develop KKT solution techniques based
on a detailed analysis of the rich hierarchical structure in tree-sparse programs,
which is then fully exploited. It is also the first that can handle global constraints
directly and efficiently. Such constraints may couple arbitrary nodes across the
tree. In stochastic programs they arise as terminal conditions involving expecta-
tions; a prominent application is Markowitz type portfolio management [8], [2],
for an application in process engineering see [9]. Other examples of global con-
straints include periodicity conditions in trajectory optimization or the modeling
of kinematic loops in multibody systems.

A coarse comparison to decomposition methods (cf. the survey papers [10,11])
is as follows. Primal (nested Benders) decomposition methods, being based on
successive polyhedral approximations of nodal subproblems, are suitable for lin-
early constrained convex stochastic programs and have proven highly successful
in the purely linear case. They are not well suited for the general nonlinear
case or for problems with global constraints. Dual decomposition methods have
the potential of solving very general stochastic programs, including non-smooth
ones. Such methods are very successful in stochastic integer programming [12],
but only moderately efficient on smooth problems. The proposed tree-sparse ap-
proach is efficient on linear as well as nonlinear (smooth) problems, and especially
well-suited when global constraints or significant nonlinearities are involved.

Regarding practicability, the suggested specialization of the KKT solver for
individual applications would generally be unacceptable if it had to be performed
manually. A software tool for that purpose has therefore been developed [13].
This tool generates sparse implementations of the generic block operations, in
the form of source code and with emphasis on memory efficiency.
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