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Abstract. The use of highly abstract mathematical frameworks is essential for
building the sort of theoretical foundation for semantic integration needed to
bring it to the level of a genuine engineering discipline. At the same time, much
of the work that has been done by means of these frameworks assumes a certain
amount of background knowledge in mathematics that a lot of people working in
ontology, even at a fairly high theoretical level, lack. The major purpose of this
short paper is provide a (comparatively) simple model of semantic integration
that remains within the friendlier confines of first-order languages and their usual
classical semantics and logic.
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1 Introduction

The important work of Joseph Goguen ([6], [7]), Robert Kent ([8]), Marco Schorlem-
mer and Yiannis Kalfoglou ([11], [12]), and others point the way toward very promising
general framework for characterizing of a variety of concepts of ontology integration.
Such high-level frameworks are essential for the sort of theoretical foundation for se-
mantic integration needed to bring it to the level of a genuine engineering discipline.
At the same time, this work is done in the rarefied theoretical air of category theory
and channel theory, and therefore assumes a certain amount of background knowledge
that a lot of people working in ontology, even at a fairly high theoretical level, lack. In
fact, however, while this work is far more abstract and, concomitantly, far more general
and far-reaching in its implications and applicability, I believe some of the most ba-
sic insights beneath the idea of semantic integration can be expressed in terms of basic
first-order logic and model theory. Moreover, I believe it is important to do so to provide
relatively simple, comparatively concrete accounts of integration that can help to fix the
basic ideas of the emerging theory for the broader community of ontological engineers.
The major purpose of this brief paper, then, is provide a simple model of integration that
remains within the friendlier confines of first-order languages and their usual classical
semantics and logic. The model might also serve as a sort of “bidirectional” test-bed
for the higher-level theoreticians as well — any virtues of the approach that are not
reflected in the higher-level theories can be appropriated by them, and any infelicities
in the approach can be corrected on general grounds provided by the theories.
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The approach I’ll discuss is quite similar in certain respects to the one outlined by
Ciocoiu and Nau in their short paper [2]. I have myself in the past been somewhat
critical of the approach for being a bit too model theoretic in orientation (see [9]), and
that may still well be for some of the applied purposes that Ciocoiu and Nau have in
mind. Once again, however, the point here, is theoretical — to fix the ideas needed
to provide a properconceptualground for building the actual infrastructure to support
integration, much as theε-δ definition of a derivative provided a conceptual foundation
for the mathematics actually used to build bridges and fly spacecraft to distant planets.
And on this count, a model theoretic approach serves admirably well.

1.1 Ontologies

As with about everything having to do with semantic integration, there are many dif-
ferent definitions of what an ontology is. Perhaps the best known is one of the earliest,
from Tom Gruber: An ontology is a “specification of a conceptualization” [REF]. There
is a certain appeal to this proposal — an ontology begins with a certain way of concep-
tualizing the world, or some prominent piece of it, and this conceptualization is made
concrete — specified — in some fashion. The question remains exactly what a spec-
ification is, of course, but a natural understanding is that a specification is some sort
of concrete representation, e.g., an ER diagram or a set of axioms in a given language.
This understanding, in turn, suggests that ontologies can in fact beidentifiedwith their
representations. There is reason to hesitate at this idea, as there is also an intuition that
thesameontology can be expressed in different languages; and indeed one could take
this intuition as a starting point (see, e.g., [9]). Here, however, we will individuate on-
tologies by their representations and, to capture the intuition noted, develop instead the
idea that two distinct ontologies can have the samecontent.

At the same time, we have to acknowledge that, intuitively, ontologies are more
than sets of sentences. The primitive terms of an ontology also haveintendedmean-
ings. However, in general, for applied languages, the notion of an intended model is
essentially unformalizable and as such, though critically important, it is not a matter
for theory but for methodology and practice. A formalization of semantic integration
can only provide an answer to the questionwhat it meansto integrate disparate on-
tologies. While we can hope to write programs that render aid and comfort to the task,
the hard work of determining intended meanings will always ultimately require human
intervention.

2 Languages: SCL and Abstract Syntax

Developing an account of semantic integration, even at the more concrete level pre-
sented here, still requires some level of generality. It won’t be much of a general theory
if it restricts its attention just to, say, OWL and RDF. Rather, we need an account of
what a language is that provides anabstract structuralcharacterization of any possi-
ble, or at least any reasonable, Knowledge Representation (KR) / Semantic Web (SW)
language without specifying any of the concrete details of the language. This permits a
variety of languages that differ in the concrete details to flourish without engendering a
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“Tower of Babel” problem — insofar as each language comports in some fashion with
the general characterization of a language.

Providing such a characterization has been a large part of the motivation of the
(Simplified) Common Logic project (http://cl.tamu.edu), where a very general, very
abstract notion of a syntax is defined, one designed to encompass the needs, choices,
and preferences of any possible concrete language. (See [13] for a reasonably friendly
version, and [14] for a hostile formal version.) I will use a very compressed and hand-
waving version of SCL here.

Of course, as noted, for such a framework for integration to be effective, KR/SW
languages must be comport with the general characterization. Thus, another goal of
SCL is to serve as a clear standard with which KR/SW languages can demonstrably
comport. I will illustrate briefly how this is done below.

2.1 Syntax

A languageconsists of asignatureand agrammar.

SignaturesThe signature of a language L consists of a set ofsyntactic classes. These
must divide into a class ofvariablesand two (not necessarily disjoint) classes:individ-
ual constants, predicate constants. andfunction symbols. (That individual and predicate
constants can overlap comes from earlier versions of KIF, but also reflects an important
syntactic feature of RDF; see [15].) An element of a syntactic class is anatom— typ-
ically, a string consisting of elements from some set of basic characters (e.g., unicode
characters). We will assume a countable number of atoms in each class. (This is an
innocuous assumption that will smooth the approach to integration below.)

Grammars Informally, a grammar is a set of rules (typically recursive) that specify
how to constructwell-formedexpressions from atoms and other, less complex, well-
formed expressions. We can formalize the notion of a grammar in terms of a set of
one-one functions with pairwise disjoint ranges. More specifically, every grammar will
include a function APP that forms terms from function symbols some terms, and a
function PRED that forms atomic sentences from a constant and some terms. (Arity
for predicates can be introduced as a separate notion.) CONJ and DISJ form sentences
from any finite number of sentences; COND and BICOND form sentences from pairs of
sentences; EXQUANT and UNIVQUANT form sentences from a sequence of pairwise
distinct variables and a given sentence. Notions of bondage and freedom for variable
occurrences can be defined straightforwardly.

Example 1: KIF As examples I will choose use (a simplified version of) KIF and a
standard sort of first-order language. Although the latter is not a language for the Se-
mantic Web, that is beside the point here — we are concerned to nail down some notions
of integration between ontologies in different languages, and techniques will apply re-
gardless of choice of language. So for purposes here, languages have been chosen that
are efficient, easy to work with, and (not least) with which the author is particularly
familiar. Future work will explicitly encompass RDF, OWL, and other more explicitly
Web-oriented languages.
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Syntactic ClassesKIF’s syntactic classes consist ofconstants, variables, andsent-ops.
Constants are strings of alphanumeric characters, dashes, and underscores. Variables
are simply constants prefixed by ‘?’. The sent-ops are:not , and , or , implies , iff ,
forall , andexists .

KIF’s grammar is as follows; I will use corner quotes to indicatequasi-quotation
that allows to use metalanguage variables ranging over linguistic objects to indicate
general classes of expressions;1

– Every constant is both an individual constant and a predicate constant.
– Constants and variables areterms
– p(π τ1 ... τn)q is an (atomic) sentence, for constantsπ and termsτi.
– p(not ϕ)q is a sentence ifϕ is.
– p(and ϕ1 ... ϕn)q andp(or ϕ1 ... ϕn)q are sentences if theϕi are.
– p(implies ϕ ψ)q andp(iff ϕ ψ)q are sentences ifϕ andψ are.
– p(forall (ν1 ... νn) ϕ)q andp(exists (ν1 ... νn) ϕ)q are sentences ifϕ is, for

any variablesν1, ..., νn.

Example 2: A Typical First-order Language SCL is designed to allow for languages
with maximal (first-order) expressiveness, a feature that is particularly desirable for lan-
guages designed chiefly for purposes of representation rather than automated reasoning.
Not all languages, of course, will want to make use of all of those features. Some will
also wish to impose more structure than SCL requires, e.g., by the assignment of arities
to predicates. SW languages in particular will put restrictions on permissible sentences.
Nonetheless, all such languages can be considered conformant “as far as they go” inso-
far as their sentences constitute a recursive subset of a fully compliant SCL language;
such conformance is not hard to show for most any SW language. Here the point will
be illustrated simply with a more traditional first-order language L.

Syntactic ClassesThe syntactic classes of L areindividual constants, variables, pred-
icate constants, andsentence operators. Individual constants are lower case lettersa –
t, possibly with numerical subscripts. Variables are lower case lettersu – z, possibly
with numerical subscripts. Predicate constants are upper case lettersA –Z with numer-
ical superscripts and possible with numerical subscripts. (A predicate with numerical
superscriptn is ann-place predicate. Sentence operators are¬, ∧, ∨, →, ↔, ∀, ∃.

Grammar The grammar for L is as follows:

– Constants and variables areterms
– pπτ1...τnq is an (atomic) sentence, forn-place predicatesπ and termsτi.
– p¬ϕq is a sentence ifϕ is.
– p(ϕ ∧ ψ)q, p(ϕ ∨ ψ)q, p(ϕ→ ψ)q, andp(ϕ↔ ψ)q are sentences ifϕ andψ are.
– p∀νϕq andp∃νϕq are sentences ifϕ is, for any variableν.

1 C and Perl programmers might consider by analogy the difference between single quotes and
double quotes.
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Obviously this is a recursive sublanguage of a fully compliant SCL language —
extracted by the assignment of arities to predicates and the elmination of non-binary
conjunctions and disjunctions and the binding of multiple variables. So this language
can be considered conformant “as far as it goes”.

2.2 Semantics

We will assume a fairly standard model theory, albeit one that has a bit more flexibility
to it to accommodate possible overlap between the individual and predicate constants.
Specifically, an interpretation for a language consists of two sets of objects — individual
and relations; relations are assigned sets of n-tuples as their extensions. Each individual
constantκ is assigned an individualden(κ) as its denotation and each predicate constant
and function symbolπ a relationden(π) — with the added stipulation that the extension
of the relation assigned to a function symbol must be functional.2 For an interpretation
M with individuals M, relations R, extension functionextand denotation functionden,
then we then have that an atomic sentence PRED(π, τ1, ..., τn) is true inM just in case
〈den(τ1), ..., den(τn)〉 ∈ ext(den(π)). The remaining clauses are just as one would
expect, notably:

– A quantified sentence EXQUANT(ν, ϕ) [UNIVQUANT(ν, ϕ)] is true inM just in
case just in case, for some [every] individuale ∈ I, ϕ is true in M[ν/e], where
M[ν/e] is just like M except that the denotation function forM assignse to the
variableν.

An interpretationM of a language L is amodelof a set of sentencesO of L just in case
every member ofO is true inM . O entailsa sentenceϕ just in caseϕ is true in every
model ofO.

3 Ontologies Defined

We noted above that we will be taking ontologies to be identified with their represen-
tations. In this context, this means that we identify ontologies with their axioms, as
expressed in some language. Specifically: AnontologyO in a language L is a class of
sentences of L. The members ofO are called theaxiomsofO. We stipulate without any
loss of generality that, for any ontologyO in a language L, there must always be count-
ably many atoms of L that do not occur in any of the sentences ofO. This smooths the
definition of semantic integration below. Given simple facts about infinite cardinalities,
this too is an innocuous assumption.

4 Semantic Mapping as Meaning Preserving Translation

This basic framework already provides a fairly robust formal notion of semantic map-
ping on which to build. Intuitively, a semantic mapping is (as far as possible) ameaning

2 That is, if a (e.g., 1-place) function symbolσ is assigned relationr as its denotation, then if
〈e1, e2〉 ∈ ext(r) and〈e1, e3〉 ∈ ext(r), thene2 = e3.
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preserving translationfrom the language of one ontology into that of another. Here’s
one way to cash this out using standard concepts from first-order model theory. (I am
draw heavily upon [3] and [5] in what follows.) LetO2 be an ontology in a language L2.
(For the sake of familiarity, I will let L2 be the standard language of first-order logic.)
Let ϕ be a sentence of L2 with a single free variableν such thatO2 entailsp∃νϕq.
Define aΦ-map from a language L1 into O2 to be a functionα from the individual
constants, function symbols, and predicate constants of L1 into sentences of L2 such
that:

– For each individual constantκ of L1:
• Only the variableν occurs free inα(κ), and
• O2 entailsp∃1ν(ϕ ∧ α(κ))q.

Whenα(κ) is of the formν = λ for some constantλ of L2, letα◦(κ) beλ.

– For eachn-place function symbolσ of L1:
• Exactly the (distinct) variablesν, ν1, ..., νn occur free inα(σ),
• None of the variablesν1, ..., νn occurs inϕ, and
• O2 entailsp∀ν1...νn((ϕν

ν1
∧ ... ∧ ϕν

νn
) → ∃1ν(ϕ ∧ α(σ)))q.3

Whenα(σ) is of the formν = β(ν1, ..., νn) for some function symbolβ of L2, let
α◦(σ) beβ.

– For eachn-place predicate symbolσ of L1:
• Exactly the (distinct) variablesν1, ..., νn occur free inα(σ).

The idea here is straightforward. AΦ-map is designed to take the non-logical el-
ements of the lexicon of a language L1 of a given ontologyO1 into sentences of the
language L2 of a target ontologyO2 that, in a certain intuitive sense, preserve their
meaning. Thus, first of all,ϕ is intended to carve out the intended domain ofO1 from
that ofO2. Thus, intuitively, theΦ-map of a constantκ in L1 is a sentence of L2 with a
free variable that is true of the same object thatκ denotes. (In the simplest case, there is a
constantλ in L2 that intuitively denotes the same thing thatκ does in L1. In this case the
Φ-map ofκ is simply the sentenceν = λ.) Similarly, theΦ-map of ann-place function
symbolσ will, intuitively, be a sentence inn+ 1 variables that expresses a (functional)
relation that is definable inO2 and which is true ofn + 1 thingsa1, ..., an, an+1 (all
satisfyingϕ) if and only if the function thatσ denotes maps the objectsa1, ..., an to
an+1. (Again, if there is a single function symbolβ of L2 that intuitively expresses the
same function asσ, then theΦ-map ofσ will simply beν = β(ν1, ..., νn).) And, finally,
theΦ-map of ann-place predicate constantπ should be a sentence inn variables that,
in O2, expresses then-place relation relation denoted in L1 byπ.

Given any modelM2 of O2, then, aΦ-map induces an interpretationM1 of L1
whose domain consists of the things in the domain ofM2 that satisfyϕ, and which
interprets a constantκ by the thing satisfyingα(κ), ann-place function symbolσ by
the set ofn+ 1-tuples satisfyingα(σ), andn-place predicate symbolπ by the set ofn-
tuples satisfyingα(π). Intuitively, then, aΦ-mapα from a language L1 to an ontology
O2 preserves the meaning of the non-logical vocabulary of L1 as circumscribed by an
ontologyO1 if, given any model ofO2, the interpretation of L1 induced byα is a

3 ϕν
τ means the result of replacing every free occurrence ofν in ϕ with an occurrence ofτ .
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model ofO1. We make this precise as follows; for simplicity we assume that individual
constants, function symbols, and predicate symbols are pairwise disjoint classes.

Let α be aΦ-map from L1 toO2, let M2 = 〈D2, R2, ext, den〉 be a model ofO2,
and letM2[ν/e] be the interpretation that is just likeM2 except that it mapsν to e.
Define the interpretationM2−α = 〈D1, R1, ext , den〉 of L1 inducedby α as follows:

– D1 = {e ∈ D2 : ϕ is true inM2[ν/e]}.
– R1 = {{〈e1, ..., en〉 ∈ D1n : n > 0 andϕ is true inM2[ν1/e1, ..., νn/en]} :
ϕ is a sentence in whichν1, ..., νn occur free}.

– ext(r) = r, for r ∈ R1.
– den(κ) = the uniquee ∈ D1 such thatα(e) is true inM2, for constantsκ of L1.
– den(σ) = {〈e1, ..., en, en+1〉 ∈ D1n+1 : α(σ) is true in

M2[ν1/e1, ..., νn+1/en+1]}.
– den(π) = {〈e1, ..., en〉 ∈ D1n : α(π) is true inM2[ν1/e1, ..., νn/en]}.

We can now define aΦ-map of L1 intoO2 to bemeaning preserving foran ontology
O1 in L1 iff, for any modelM2 of O2, the interpretationM2−α of L1 induced byα is
a model ofO1.

A Φ-mapα yields a natural, fully-fledgedtranslationfunctionα∗ from the sentences
of L1 into those of L2 that enables us to define meaning preservation relative to the
translation of one ontologyO1 into anotherO2 . For simplicity’s sake, we will assume
that there is a constant of L2 corresponding to each constant of L1, and a function
symbol of L2 corresponding to each function symbol of L1, so that we can use the
shorter notation that is allowed above under these conditions:

– α∗(ν) = ν, for variablesν of L1. (We assume for simplicity that L1 and L2 share
the same variables.)

– α∗(κ) = α◦(κ), for constantsκ of L1.
– If τ is a function termpσ(ω1, ...ωk)q, α∗(τ) = pα◦(σ)(α∗(ω1), ..., α∗(ωk))q
– If ϕ is an atomic sentence PRED(π, τ1, ...τn), α∗(ϕ) =

pα(π)(α∗(τ1), ..., α∗(τn))q
– As expected for the boolean cases.
– If ϕ is EXQUANT(ν, ψ), thenα∗(ϕ) = p∃ν(ϕ ∧ α∗(ψ))q.
– If ϕ is UNIVQUANT(ν, ψ), thenα∗(ϕ) = p∀ν(ϕ→ α∗(ψ))q.

The axioms of an ontology infuse its basic lexicon with meaning by putting con-
straints on how the atoms in the lexicon can be jointly interpreted. A translation func-
tion α∗ (relative to someΦ-mapα) of those axioms into the language of another on-
tology will be meaning preserving, relative to the given ontologies, just in case those
constraints are respected, i.e., just in case the axioms of the source ontology — upon
translation underα∗ — are all entailed by the target ontology. This can happen only if
the constraints on the lexicon of L1 expressed by the axioms ofO1 are respected —
upon translation — byO2. More formally then:

Definition 1. LetO1 andO2 be ontologies in languages L1 and L2, respectively, and
letα∗ be the translation function from L1 into L2 generated by a givenΦ-map. Thenα∗

is meaning preserving with respect to O1 and O2if, for any axiomϕ of O1,O2 entails
ϕ.
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It should be obvious that, if aΦ-map from L1 toO2 is meaning preserving forO1, then
its corresponding translation functionα∗ will be as well. Given this, we can formulate
a simple, initial notion of semantic mapping:

Definition 2. A semantic mappingfrom one ontologyO1 in a language L1 into an
ontologyO2 in a language L2 is a translation functionα∗, relative to a givenΦ-mapα,
from L1 to language L2 that is meaning preserving with respect toO1 andO2.

4.1 A Vivid Formal Example

A well known mapping for number theory into set theory provides a particularly vivid
example of semantic mapping so defined. Examples of this kind, because of their for-
mality, can often be misleading, as they abstract away from exactly all of the messy real
world problems of ontology integration. However, bear in mind once again that at this
point we are only trying to fix ideas — we need a clear notion of the concepts we are
striving for, ideally, even if, in practice, we can only approximate it. For this purpose,
mathematical examples like this one that filter out real world “noise” can be helpful and
effective.

The usual language of arithmetic LPA is a first-order containing ‘+’, ‘ ·’, a function
symbol ‘s’ for the successor function, and the numeral ‘0’. The usual axioms of Peano
Arithmetic (PA) — the most familiar number theory — are the following. First, basic
axioms for ‘0’ and ‘s’:

– ∀x(s(x) 6= 0) (0 is not the successor of any number.)
– ∀x∀y(s(x) = s(y) → x = y) (Successor is 1-to-1.)

Next, the basic recursion axioms for ‘+’ and ‘·’:
– ∀x(x+ 0 = x)
– ∀x∀y(x+ s(y)) = s(x+ y))
– ∀x(x · 0 = 0)
– ∀x∀y(x · s(y) = (x · y) · x)

Finally, the induction schema. Letϕν
σ be the sentence that results from replacing all free

occurrences of the variableν in ϕ with occurrences ofσ:

– (ϕx
0 ∧ ∀x(ϕ→ ϕx

s(x))) → ∀xϕ, for any sentenceϕ in which ‘x’ occurs free.

The usual language LZF of Zermelo-Fraenkel set theory is a first-order language
whose lexicon contains only the one binary predicate ‘∈’. For simplicity we will also
assume that the language contains the one individual constant ‘∅’ and the binary func-
tion symbols ‘∪’ (“union”) and ‘×’ (“cartesian product”), axiomatized by their usual
definitions. We will also make use of the usual bracket notation ... for defining fi-
nite sets, which can also be defined in familiar ways. Now, first, define the “succes-
sor” sc(A) of a setA to beA ∪ {A}. Beginning with the empty set∅ and iterat-
ing the successor operation yields the set of so-called finite von Neumann ordinals:
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, ...}, the standard representation of the natural num-
bers in modern set theory. We can therefore take our sentenceΦ to be the sentence ex-
pressing property of being ineveryset that contains∅ and is closed undersc (Φ then
will be true of exactly the finite von Neumann ordinals); let’s giveΦ the more concrete
name ‘Num’ in this context:
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Num =df p∀y((∅ ∈ y ∧ ∀z(z ∈ y → sc(z) ∈ y)) → x ∈ yq .

Now, taking “equal in size to” as usual to mean “can be put into one-to-one correspon-
dence with”, for finite setsA andB:

– sum(A,B) = theNum that is equal in size to(A× {∅}) ∪ (B{sc(∅)}).4
– prod(A,B) = theNum equal in size toA×B.

(For our purposes we don’t care whatsum andprod do with infinite sets.) Given these
definitions, we can define aNum-mapα from LPA into ZF. We note first that ZF entails
‘∃xNum ’, as required. Next, we letα(‘0’) =‘x = ∅’ and we note that ZF obviously
entails ‘Num(∅)’ and so, by logic, ZF entails ‘∃1x(Num ∧ x = ∅)’ (as is required of a
Φ-map for constants in source language).5

Next, we letα(‘+’) = ‘sum(x, y) = z’ andα(‘ ·’) = ‘prod(x, y) = z’. We note
again that ZF entails ‘∀xy(Num ∧ Num[x/y] → ∃z(Num[x/z] ∧ sum(x, y) = z)’;
similarly for ‘prod’. It is a well-known fact that, given a model of ZF, the interpretation
that thisNum-map induces on LPA is a model of PA. Notably, whenM is the “intended”
standard model of ZF, the induced interpretation of LPA has the set of von Neumann
ordinals as its domain, sc as the interpretation of ‘s’, and sum andprod , restricted to
the von Neumann ordinals, as the interpretations of ‘+’ and ‘·’, respectively.

This Num-mapα yields an obvious concomitant, meaning preserving semantic
mappingα∗ from the language LPA into O2. (we will assume that the two languages
have identical variables).

– α∗(τ) = τ , if τ is a variable of L1.
– α∗(‘0’) = ‘∅’
– α∗(ps(τ)q) = psc(α∗(τ))q
– α∗(pτ = σq) = pα∗(τ) = α∗(σ)q
– α∗(pτ + σq) = psum(α∗(τ), α∗(σ))q
– α∗(pτ · σq) = pprod(α∗(τ), α∗(σ))q
– α∗(p¬ϕq) = p¬α(ϕ)q
– α∗(p(ϕ ∧ ψ)q) = p(α∗(ϕ) ∧ α∗(ψ)q; similarly for the other binary connectives.
– α∗(p∃νϕq) = p∃ν(Numx

ν ∧ α∗(ϕ))q
– α∗(p∀νϕq) = p∀ν(Numx

ν → α∗(ϕ))q

It follows almost trivially that ifα is a meaning preservingNum-map, thenα∗ is
a semantic mapping from PA to ZF; anything that the number theoretic ontology PA
can say about numbers is something ZF says about them in their set theoretic guise. ZF,
however, says a lot more besides; in particular, for definiteness, ZF chooses to identify

4 We can’t define addition in terms of∪ alone, of course, because every member ofNum is
a subset of every larger member. Hence, for any twoNums A andB, A ∪ B will just be
the larger of the two. The trick here is simply that we “paint” the members ofA and B,
respectively, “different colors” by pairing the members ofA with ∅ and the members of B
with its singleton{∅}. The union of these “painted” sets will then be the right size to represent
addition.

5 ‘∃1xϕ’ says that there is exactly one thing satisfyingϕ, and can be defined in the usual way
as ‘∃x∀y(ϕ ↔ x = y)’.
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the numbers with a particular set that exemplifies the structure described by PA, and,
more significantly, it generalizes the notion of number into the transfinite.6 7

It is worth re-emphasizing that what we are after here is a definition of what seman-
tic mappingis. Such a definition does not of itself yield any immediate insight intohow
to map one ontology into another; it does notgeneratethe translation from the source
ontology to the target. That requires insight into the intended meanings of the axioms
of both ontologies. The definition only tells us what it is for such a translation to be
semanticallycorrect.

5 Semantic Integration: Bridge Axioms and Merging

In actuality, of course, it will rarely be the case that a one ontology can be mapped
entirely into another the way that PA can be mapped into ZF. Much more likely is that
neither ontology will contain all of the content of the other. Rather, when oneO1 is
mapped into the otherO2, O1 will bring new information that is not implicit inO2.
It is not enough for genuine intergration, however, simply to take the union of the two
ontologies. For in general, the information inO1, while not strictly contained inO2
(under an appropriate translation function) will have many logical connections to the
information inO2 that are explicit inneitherontology. Fully-fledged semantic integra-
tion, then, will require identifying these logical connections and making them explicit.
Axioms introduced to make these connections are calledbridge axioms, formulated in
the language ofO2. (Recall that we have required there always to be countably more
n-place predicates in the language of an ontology than actually occur in the axioms of
the ontology.) True integration between two ontologies, then, will involve a semantic
mapping fromO1 inO2 plusa set of bridge axioms. The result of such a “merge”, then,
will be a new ontology incorporating the information from both and their salient logical
connections. We might begin, then, with the following definition:

Definition 3. A mergeof ontologyO1 intoO2 is a triple〈Φ,α,B〉, whereΦ is a sen-
tence of L2,B is a set of bridge axioms in the language L2 ofO2, andα is a meaning-

6 [1] is still about as good an introduction to transfinite arithmetic as there is. For its modern
development in ZF, see, e.g., [4].

7 It might be argued that our formal example is perhaps a bit misleading in that it involves not
simply a semantic mapping but what philosophers sometimes call an ontological “reduction”
(see [10] — talk of numbers is “reduced” to talk of a certain class of sets. But this is actually
a bit inaccurate, as what ZF provides is not so much a different ontology than PA but simply a
higher degree of specification. For Peano Arithmetic is not really an ontology of a certain well-
defined set —the natural numbers. It actually makes no claim about, and doesn’t concern itself
with, what the numbers arereally. Rather, it is about a certain type ofstructure, one that can
be exhibited by infinitely many different sets. ZF simply provides one particularly convenient
set to play this role. In real world contexts however, typically, more than structure is at issue;
rather, there is some definite ontology in question that distinct ontologiessharein common, at
least in part. In these cases, what a meaning preserving translation with respect to ontologies
O1 andO2 will show is, not that a certain class of entities can be “seen as” another class, the
way numbers can be seen as sets in ZF, but rather that the target ontologyO2 talks aboutthe
very same things asO1, and perhaps more besides.
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preservingΦ-map from L1 intoα∗[O1] ∪O2 ∪B.8

This needs refinement, however, as the notion of a bridge axiom is undefined; and,
indeed, if we allow any sentence of L2 to count as a bridge axiom, then the above
definition allows for “trivial” merges in which the bridge axioms are the result of simply
translating the axioms ofO1 into L2 in such a way that every atomic sentence of L1 is
mapped to sentence of L2 that involves no constants or predicates that occur in02. The
result would be a “merge” ofO1 andO2 in which the information expressed in each
ontology was completely isolated from the information in the other; though merged into
one, the two ontologies would in effect remain entirely unintegrated.

Obviously, what’s missing here is the idea ofbridging that a bridge axiom should
embody: A bridge axiom shouldconnectthe objects and concepts ofO1 logically to
those ofO2. This can happen in two ways. First, and perhaps most typically, a bridge
axiom will involve at least one (translation of a) constant ofO1 and at least one non-
logical constant occurring in the axioms ofO2. This motivates the following definition:

Definition 4. Let 〈Φ,α,B〉 be a merge of ontologiesO1 andO2. The bridge axiom
β ∈ B is aconnecting axiomif it contains at least one constant (individual or predicate)
or function symbol of L2 and is such that, for some constant or function symbolχ of
L1, α(χ) contains at least one constant or function symbol of L2 not occurring in any
axiom ofO2.

This gets us closer, but the definition still allows for the possibility that particular con-
necting axioms could be trivial in a certain sense — notably, we could construct tautolo-
gies that satisfy the definition of a connecting axiom; or the axiom could add nothing to
the work already done by the translation scheme T. While ensuring that all of the bridge
axioms in a merge are doing some heavy lifting is perhaps more a pragmatic, even aes-
thetic, issue than a theoretical one, it might still be useful to have a rigorous notion of
nontrivial to serve as an ideal for bridge axioms to meet. We do this by formalizing the
insight that a nontrivial connecting axiom should impose a (consistent) constraint on
the interpretation of the “union” of the two ontologies:

Definition 5. Let 〈Φ,α,B〉 be a merge of ontologiesO1 andO2. A connecting axiom
β ∈ B is nontrivial if α∗[O1]∪O2 is consistent with, but does not entail,β, i.e., if β is
true in in some models ofα∗[O1] ∪O2 and false in others.

As intimated above, not all conceivable bridge axioms are connecting axioms. A
second possibility is that an axiom ofO1, when translated, might nontrivially extend
O2, but add no new vocabulary. For example, suppose in a given automobile manufac-
turing ontologyO2 there are only cars with two doors. Suppose now this ontology is
merged with a different automobile ontologyO1 in which there are in fact cars with
four doors. The concept “sedan” is therefore definable using concepts available inO2,
but the axiom “There are sedans” is not provable fromO2. Call this sort of axiom an
augmentation axiom:

8 Where, in general, for a functionf : A −→ B, and whereC ⊆ A, f [C] = {f(a) : a ∈ C}.
Soα∗[O1] is simply the image of the ontologyO1 in O2 under the semantic mapping from
L1 into L2 generated byα.
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Definition 6. Let 〈Φ,α,B〉 be a merge of ontologiesO1 andO2. An bridge axiom
β ∈ B is anaugmentation axiomif every constant and function symbol ofβ occurs in
some axiom ofO2 butO2 does not entailβ.

Given these definitions, we can define a merge〈Φ,α,B〉 to be nontrivial just in caseB
contains at least one augmentation axiom or one nontrivial bridge axiom.9

6 Semantic Mapping and Practical Integration

A final word about practical semantic integration that reflects the ideas worked out here.
Given two ontologiesO1 andO2 to be merged, one can at the outset, typically, make no
assumptions whatever about the logical relations between the constants in those ontolo-
gies, even — or perhaps better, especially — when the constants are similar or identical.
Rather the logical connections between the constants of the two ontologies is something
that must, in general, be stipulated later in the integration process, either through the ad-
dition of bridge axioms or through the subsequent development of a translation scheme
that, to some extent at least, identifies the concepts and objects in one ontology with
those of another. Typically, though, it will be useful todefer the question of logical
connections and simply form an initial “union” of the two ontologies in which the in-
formation in each is sequestered from the information in the other. The easiest way to
accomplish this is simply by means of a sort of quasi-merge that is in fact trivial in the
sense above. In such a merge, the translation function that maps the atomic sentences
of one ontologyO1 to sentences of L2 that share no constants in common with any of
the axioms ofO2. One can then incrementally identify logical connections explicitly
by means of bridge axioms, or by refining the translation function in such a way that
some sentences ofO1 are translated entiredly into sentences of L2 that are theorems of
O2. One then moves incrementally toward a lean and robust ontology by the addition
of genuine, nontrivial bridge axioms.

7 Conclusions

In this brief paper, I’ve drawn upon basic, familiar notions of first-order logic to make
some initial steps toward a rigorous theory of semantic integration. Drawing on SCL,
we introduced an abstract, structural notion of a language. Such a treatment of lan-
guages is necessary for a general account of integration between languages that differ
considerably in their concrete features. One must in these cases describe integration in
terms of more general, abstract strutural features of the languages in question. Using
this framework, a general notion of semantic mapping was defined as meaning preser-
vation, where this is spelled out model theoretically in terms of the notion of aΦ-map: a
mapping from the basic lexicon of a given ontology into (hopefully) equivalent concepts
of another ontology.Φ-maps, in turn, yield translation functions that, under proper con-
ditions, can be considered semantic mappings between ontologies. This simple notion

9 As a final touch, one could also require that one’s bridge axioms arenonredundant, i.e., that
for noϕ ∈ B is it the case thatα∗[O1] ∪O2 ∪ (B − {ϕ}) entailsϕ.
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of semantic mapping is rather limited, as it only applies to cases where one ontology
subsumes another in a certain well-defined sense. In the penultimate section, therefore,
the notion of a semantic mapping was broadened to that of amergethat gives us a notion
of a semantic mapping for two ontologies that only overlap in meaning. We closed with
a final reflection on the relation between these formal notions and the methodology of
real world integration. It is hoped that the notions introduced here make some progress
— in approach, at least, if not in actual content — toward a rigorous, well-defined en-
gineering discipline of ontology integration.
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