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1. Introduction

Many tasks require correct and meaningful communication and integration among
intelligent agents and information resources. A major barrier to such interoperabil-
ity is semantic heterogeneity: different applications, databases, and agents may
ascribe disparate meanings to the same terms or use distinct terms to convey the
same meaning. The development of ontologies has been proposed as a key tech-
nology to support semantic integration—two software systems can be semantically
integrated through a shared understanding of the terminology in their respective
ontologies.

A semantics-preserving exchange of information between two software applica-
tions requires mappings between logically equivalent concepts in the ontology of
each application. The challenge of semantic integration is therefore equivalent to
the problem of generating such mappings, determining that they are correct, and
providing a vehicle for executing the mappings, thus translating terms from one
ontology into another.

Current approaches to semantic integration do not fully exploit the model-
theoretic structures underlying ontologies. These approaches are typically based
on the taxonomic structure of the terminology ([7], [8]) or heuristics-based compar-
isons of the symbols of the terminology ([1, 5]). Such techniques are well-suited to
working with many ontologies currently under development, most of which define a
terminology with minimal formal grounding and a set of possible models that does
not contain a rich set of features and properties.

However, automated and correct approaches to semantic integration will require
ontologies with a deeper formal grounding so that decisions may be made by au-
tonomous software when comparing ontologies for integration. This article presents
an approach toward this goal using techniques based on the development of strong
ontologies with terminologies grounded in properties of the underlying possible
models. With these as inputs, semi-automated and automated components may be
used to create mappings between ontologies and perform translations.

The Process Specification Language (PSL) ([2], [3]) is used in this article to
demonstrate this approach to ontology construction and integration. PSL consists
of a core ontology which outlines basic objects that exist in the domain, and a
multitude of definitional extensions that provide a rich terminology for describing
process knowledge. These extensions are based on invariants, properties preserved
by isomorphism, which partition the first-order models of the core ontology. Using
these invariants, semantic mappings between application ontologies and PSL may
be semi-automatically generated. In addition, the direct relationship between the
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PSL terminology and the invariants improves the ability to verify the generated
results. These semantic mappings may then be used to perform integration between
applications or ontologies. They may also be used to analyze the application as well
as to bootstrap an ontology to those applications which do not have an associated,
explicit, formal ontology.

2. Supporting Interoperability

The organization of the PSL Ontology and the properties of its extensions have
been shaped by several design principles. In presenting these principles we make
a distinction between hypotheses (that constrain uses of the PSL Ontology) and
criteria (that specify properties of the PSL Ontology itself).

2.1. Interoperability and Completeness. Intuitively, two applications will be
interoperable if they share the semantics of the terminology in their corresponding
theories. Sharing semantics between applications is equivalent to sharing models
of their theories, that is, the theories have isomorphic sets of models. Of course,
the theories (and their models) will have different languages, so we need to make
this intuition about isomorphism more precise. In this section, we introduce some
of the basic notions required to characterize interoperability; we will demonstrate
the relationship to model isomorphism at later in the paper.

We begin with the following definition taken from [4]:

Definition 1. Let M be a structure in a language K and let N be a structure in
a language L. An interpretation Γ of N in M consists of

(1) a formula ∂Γ(x0, ..., xn−1) ∈ K,
(2) for each atomic formula φ(y0, ..., ym−1) ∈ L, a formula φΓ(x0, ..., xm−1) ∈

K,
(3) a surjective map fΓ : ∂Γ(Mn) → N , such that for all formulae φ ∈ L and

all ai ∈ ∂Γ(Mn),

M |= φΓ(a0, ..., am−1) ⇔ N |= φ(fΓ(a0), ..., fΓ(am−1)

Definition 2. Let MA be the set of models of a theory TA, and let MB be the set
of models of a theory TB. The theory TA is sharable with the theory TB iff there is
an injection µ : MA →MB such that M is interpretable in µ(M).

However, applications do not explicitly share the models of their theories. In-
stead, they exchange sentences in such a way that the semantics of the terminology
of these sentences is preserved.

Definition 3. An exchange of a sentence Φ from a theory TA to a theory TB is a
KIF-conformant syntactic mapping σ : L(TA) → L(TB).

In general, there is no automatable way of specifying the complete set of models
of a theory, or even a way of specifying the models themselves. Applications perform
inferences in such a way that provable sentences are those sentences that are satisfied
by all models of the theory.

Definition 4. A theory TA is interoperable with a theory TB iff for any sentence
Φ in L(TA) there exists an exchange σ from TA to TB such that

TA ` Φ ⇔ TB ` σ(Φ)
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The definitions of sharability and interoperability are a restriction and simpli-
fication of previous work in ontology translation discussed in [Ciociou and Nau
2000], where the exchange mapping is called a logical rendering, and the concept
of sharable theories is equivalent to the existence of an ontology-based translation
between the theories.

For first-order theories and complete first-order inference engines, sharability and
interoperability are equivalent, so we adopt the following hypthesis:

Interoperability Hypothesis: :
We are considering interoperability among complete first-order inference
engines that exchange first-order sentences.

The soundness and completeness of first-order logic guarantees that the infer-
ences made by a deductive inference engine are exactly those sentences that are sat-
isfied by all models, and that any truth assignment given by a consistency checker
is isomorphic to a model.

If we move beyond the expressiveness of first-order logic, we lose completeness,
so that there will be sentences that are entailed by a set of models but which are
provable by any deductive inference engine. We could therefore have two theories
that are sharable but not interoperable.

Note that this is also the reason why we require that the inference engines them-
selves are complete. An incomplete inference engine would not be able to deduce
all sentences that are satisfied by the set of models for its ontology. In this case, the
theories would be interoperable, but the applications would not be able to preserve
this interoperability.

Also note that we are not imposing the requirement that the ontologies them-
selves be categorical or even complete. The two applications must simply share
the same set of models (up to isomorphism). Ambiguity does not arise from the
existence of multiple models for an ontology – it arises because the two applications
have nonisomorphic models, that is, the ontology for application A has a model M
that is not isomorphic to any model for the ontology of application B.

2.2. Quasi-Elementary Classes of Structures. By the Interoperability Hy-
pothesis, we do not need to restrict ourselves to elementary classes of structures
when we are axiomatizing an ontology.

Since the the applications are equivalent to first-order inference engines, they
cannot distinguish between structures that are elementarily equivalent.

We therefore introduce the notion of quasi-elementary classes of structures.

Definition 5. A class of structures Mi is elementary iff there exists a first-order
theory T such that Mi = Mod(T ).

Definition 6. Mj quasi-elementary class of structures iff there exists a first-order
theory T such that Mj ⊆ Mod(T ) and any structure N ∈ Mod(T )\Mj is elemen-
tarily equivalent to a structure in Mj.

Thus, the quasi-elementary class forms a subset of the elementary class. In-
tuitively, the structures in Mj are the “intended” structures. If Mj is in fact
elementary, then it is axiomatizable by some first-order theory T , and there will
only be intended structures in the set of models of T . However, classes of structures
that are not axiomatizable will also contain unintended or nonstandard structures.

By the definition of elementary equivalence, any quasi-elementary class of struc-
tures will entail the same set of first-order sentences as some elementary class. In
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particular, the quasi-elementary class of structures Mj will entail the first-order
theory that axiomatizes the elementary class containing Mj .

2.3. Characterization of Models. Employing the Interoperability Hypothesis
and the notion of quasi-elementary classes of structures, we impose the following
condition on the core theories of the PSL Ontology:

SatAx Criterion: :
Classes of structures for core theories within the PSL Ontology are axioma-
tized up to elementary equivalence – the core theory is satisfied by any model
in the class, and any model of the core theory is elementarily equivalent to
a model in the class. Further, each class of structures is characterized up
to isomorphism.

If the PSL Ontology did not satisfy this criterion, then either there exist intended
models that are not models of the ontology, or there exist unintended models of
the ontology. In either case, we cannot guarantee that an exchanged theory is
interoperable with the PSL Ontology.

The Definability Criterion can be applied as a methodology for evaluating the
axiomatization of an ontology.

The first aspect of this approach is to identify the primary intuitions in some
domain. Within PSL, for example, we have intuitions about concepts such as
“activity”, “activity occurrences”, and “timepoints”. These intuitions also restrict
the scope of the axiomatic theories, and they serve as informal requirements which
get formally specified in the classes of structures, and later axiomatized in the
theory itself.

The second aspect of the methodology is the specification of some set of struc-
tures. These structures provides a rigorous mathematical characterization of the
semantics of concepts in the domain. The class of structures corresponding to the
intuitions of the ontology are defined either by specifying some class of algebraic or
combinatorial structures, or by extending classes of structures defined for other the-
ories within the ontology. The objective is to identify each concept with an element
of some mathematical structure, such as a set or a set with additional structure;
the underlying theory of the mathematical structure then becomes available as a
basis for reasoning about the concepts and their relationships. Examples of struc-
tures include graphs, linear orderings, partial orderings, groups, fields, and vector
spaces. In particular, given the nonlogical lexicon in some language, structures are
isomorphic to the extensions of the relations, functions, and constants denoted by
the predicate symbols, function symbols, and constant symbols of the lexicon.

If we wish to represent some domain, we want the necessary properties to be
captured by the structures. Ideally, we want properties of the structures to be
reflected by the properties of the corresponding concepts in the domain. These
characteristics can be used to evaluate the adequacy of the intended structures. If
some property is not captured, then we must make a decision about this property.
If it is not necessary, then we can ignore it. If it is deemed necessary, then we must
extend the characterization of the intended structures so that it includes some
formalization of this property.

This relationship between the intuitions and the structures is, of course, informal,
but we can consider the domain intuitions as providing a physical interpretation of
the structures. In this sense, we can adopt an experimental or empirical approach to
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the evaluation of the class of intended structures in which we attempt to falsify these
structures. If we can find some objects or behaviour within the domain which do
not correspond to an intended structure, then we have provided a counterexample
to the class of structures. In response, we can either redefine the scope of the class
of structures (i.e. we do not include the behaviour within the characterization of
the structures) or we can modify the definition of the class of structures so that
they capture the new behaviour.

For example, physicists use various classes of differential equations to model
different phenomena. However, they do not use ordinary linear differential equa-
tions to model heat diffusion, and they do not use second-order partial differential
equations to model the kinematics of springs. If we wish to model some phenomena
using a class of differential equations, we can use the equations to predict behaviour
of the physical system; if the predictions are falsified by observations, then we have
an incorrect set of equations. Similarly, in our case, we can use some class of struc-
tures to predict behaviour or characterize states of affairs; if there is no physical
scenario in the domain which corresponds to these behaviours or states of affairs,
then we intuitively have an incorrect set of structures.

The final aspect of the methodology is the set of axiomatic theories, which are
sets of sentences in some language using some logic. In this paper, we restrict
ourselves to a first-order languages.

Once we have specified the class of structures, we can formally evaluate an
axiomatic theory with respect to this specification. In particular, we want to prove
two fundamental properties:

• Satisfiability: every structure in the class is a model of the axiomatic
theory.

• Axiomatizability: every model of the axiomatic theory is isomorphic to
some structure in the class.

Strictly speaking, we only need to show that a model exists in order to demon-
strate that a theory is satisfiable. However, in the axiomatization of domain the-
ories, we need a complete characterization of the possible models. For example,
since we are considering the domain of computer vision, to show that a theory is
satisfiable, we need only specify an image and scene which together with the axioms
are satisfied by some structure. The problem with this approach is that we run the
risk of having demonstrated satisfiability only for some restricted class of images,
scenes, or surfaces. For example, a theory of activities that supports scheduling
may be shown to be consistent by constructing a satisfying interpretation, but the
interpretation may require that resources cannot be shared by multiple activities;
although such a model may be adequate for such scenes, it would in no way be
general enough for our purposes. We want to propose a comprehensive theory of
activities, so we need to explicitly characterize the classes of activities, timepoints,
objects, and other assumptions which are guaranteed to be satisfied by the specified
structures.

The purpose of the Axiomatizability Theorem is to demonstrate that there do
not exist any unintended models of the theory, that is, any models which are not
specified in the class of structures.
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2.4. The Ontological Stance. When building translators, we are faced with the
additional challenge that almost no application has an explicitly axiomatized ontol-
ogy. However, we can characterize a software application as if it were an inference
system with an axiomatized ontology, and use this ontology to predict the set of
sentences that the inference system decides to be satisfiable. This is the Ontological
Stance, and is analogous to the intentional stance (Dennet 87), which is the strategy
of interpreting the behavior of an entity by treating it as if it were a rational agent
who performs activities in accordance with some set of intentional constraints.

The Ontological Stance is an operational characterization of the set of intended
models for the application’s terminology. In this sense, it should be treated as
a semantic constraint on the application. It does not postulate a specific set of
axioms, but rather a set of intended models.

Ontological Stance: :
Given an application A, there exists a class of models MA such that any
sentence Φ is decided by A to be satisfiable iff there exists M ∈ MA such
that

M |= Φ

The ontology of an application can be evaluated with respect to this set of
intended models, just as the methodology proposed in the preceding section can
be used to evaluate the PSL Ontology. Let us say that an application ontology is
weak if it does not axiomatize the class of intended models for the application as
postulated by the Ontological Stance. If an application A has a weak ontology TA,
then there exists a sentence Φ such that either

• A decides Φ to be satisfiable but there does not exist a model M1 of TA

such that M1 |= Φ,
• or there exists a model M2 of TA such that M2 |= Φ, but A decides Φ to

be unsatisfiable.
In either case, the application will not be interoperable with other applications.

2.5. Weak Translation Theorem. In this section, we demonstrate how the no-
tion of sharability is equivalent to model isomorphism.

Conformance Hypothesis: :
Every structure that is a model of the application ontology is interpretable
in a model of a core theory that is an extension of PSL-Core.

This is a rather strong hypothesis, since it entails that all application ontologies
are sharable with PSL-Core. However, it plays a role that is analogous to the SatAx
Criterion for PSL; the Conformance Hypothesis is one way of ensuring that the set
of intended models for the application (as postulated by the Ontological Stance)
have been axiomatized.

We will adopt the following approach from [6]. Let N be a structure in L0 and let
M be a structure in L. We say that N is definable in M iff we can find a definable
subset X of Mn and we can interpret the symbols of L0 as definable subsets and
functions on X so that the resulting structure in L0 is isomorphic to N .

Definition 7. Let M be a structure in a language L. For each definable equivalence
relation Ei on Mn, let SEi

= Mn/Ei and let πEi
: Mn → Mn/Ei be the quotient

map. The language Leq is the expansion of L in which we add a new relation symbol
to L for every equivalence relation.
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Meq is the structure whose underlying set is the disjoint union of M and all of
the SEi .

By Theorem 5.3.1 of [4], a structure N is interpretable in a structure M iff N
is isomorphic to a relativized reduct of a definitional expansion of Meq.

Definition 8. Let λA be the expansion of the nonlogical lexicon of PSL by the
introduction of the nonlogical lexicon of the application ontology TA.

A weak translation axiom for a relation p ∈ λA is a sentence of the form

(∀x) p(x) ≡ Φ(x)

where Φ(x) ∈ L(Tpsl).

Conjecture 1. Weak Translation Theorem: If the application ontology satis-
fies the Conformance Hypothesis, and the PSL Ontology satisfies the SatAx Crite-
rion, then there exists a set of weak translation axioms Tweak for the application
ontology such that Tpsl ∪ Tweak is interoperable with TA.

Conjecture 2. If the application ontology satisfies the Conformance Hypothesis,
and the PSL Ontology satisfies the SatAx Criterion, then there exists a set of weak
translation axioms for the application ontology that axiomatize the models of the
ontology up to elementary equivalence.

Without the Conformance Hypothesis, there may exist models of TA that are not
isomorphic to models of PSL, in which case TA is not sharable. Without the SatAx
Criterion, we cannot guarantee that weak translation axiomatizes the models of
TA. In this sense, the Conformance Hypothesis also imposes conditions on the PSL
Ontology, which must be rich enough to axiomatize the application ontology.

Note that the Conformance Hypothesis supports interoperability even for appli-
cations that have weak ontologies. The Weak Translation Theorem does not require
that the models of the application ontology are axiomatized, but simply that they
are isomorphic to models of the PSL Ontology. In this sense, the weak translation
can also serve as a means of axiomatizing the intended models of weak ontologies
up to elementary equivalence.

3. Supporting Self-Integration

3.1. Classification and Invariants. The terminology within the definitional ex-
tensions intuitively corresponds to classes of activities and objects. Within the PSL
Ontology, the terminology arises from the classification of the models of the core
theories with respect to sets of invariants.

Invariants are properties of models that are preserved by isomorphism. A set
of invariants is complete for a class of structures if and only if it can be used to
classify the structures up to isomorphism. For example, a finite abelian group can
be classified up to isomorphism by the subgroups whose orders are factors of the
group’s order. In general, it is not possible to formulate a complete set of invariants;
for example, there is no known set of invariants that can be used to classify graphs
up to isomorphism. However, even without a complete set, invariants can still be
used to provide a classification of the models of a core theory in PSL.

Classification Criterion: :
The set of models for the core theories of PSL are partitioned into equiva-
lence classes defined with respect to the set of invariants of the models.
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Invariants can also be used as the basis for decidable model isomorphism the-
orems. For example, although the theory of groups is in general undecidable, the
theory of abelian groups is decidable, and this result utilizes the invariants in the
classification of abelian groups.

3.2. The Role of Definitional Extensions. Although we may not be able to
find a complete set of invariants for models of the PSL Ontology, we can specify
the equivalence classes associated with any given set of invariants.

Definitional Extension Criterion: :
Each equivalence class in the classification of PSL models can be axioma-
tized within a definitional extension of PSL:

for each equivalence class C, there exists a unary relation p in a defini-
tional extension, such that

〈x〉 ∈ p ⇔ x ∈ C
Thus the definition of a relation is satisfied by every element in the equivalence

class, and every element in the equivalence class satisfies the definition of the rela-
tion.

In particular, each definitional extension in the PSL Ontology is associated with
a unique invariant; the different classes of activities or objects that are defined in
an extension correspond to different properties of the invariant.

The Definitional Extension Criterion is analogous to the SatAx Criterion insofar
as both are used to evaluate the adequacy of the axiomatization of some extension
within the PSL Ontology. Whereas the SatAx Criterion evaluates the adequacy of
a core theory with respect to some class of structures, the Definitional Extension
Criterion evaluates the adequacy of a definitional extension to the classification of
the models of some set of core theories.

3.3. Strong Translation Theorem.
Coverage Hypothesis: :

The set of models for an application ontology can be partitioned into equiv-
alence classes defined with respect to the set of invariants of the models.

By the Conformance Hypothesis, such a set of invariants can be used to partition
the set of models of PSL core theories into equivalence classes.

Definition 9. Let λA be the expansion of the nonlogical lexicon of PSL by the
introduction of the nonlogical lexicon of the application ontology TA.

A translation definition for a relation p ∈ λA is a sentence of the form

(∀x) p(x) ≡ Φ(x)

where Φ(x) contains only relation symbols from definitional extensions of PSL.

Conjecture 3. Strong Translation Theorem: If an application ontology satis-
fies the Conformance and Coverage Hypotheses and the PSL Ontology satisfies the
SatAx, Classification, and Definitional Extension Criteria, then there exists a set
of translation definitions Tstrong for the application ontology such that Tpsl∪Tstrong

is interoperable with TA.

We can use the translation definitions to assign a profile to every class of elements
in the application ontology. Such a profile consists of the set of equivalence classes
for each invariant in the classification theorem.
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Conjecture 4. If an application ontology satisfies the Conformance and Coverage
Hypotheses and the PSL Ontology satisfies the SatAx, Classification, and Defini-
tional Extension Criteria, then the translation definitions for the application ontol-
ogy axiomatize the models of the ontology up to elementary equivalence.

The Coverage Hypothesis for definitional extensions is analogous to the Confor-
mance Hypothesis for core theories. If the set of invariants for classifying models
of the application ontology is different from the set of invariants used in the classi-
fication of models of PSL, then we cannot use translation definitions.

4. Summary

This paper has described how model-theoretic invariants of an ontology can be
used to specify semantic mappings translation definitions between application on-
tologies and an interlingua. In particular, examples have been presented using the
Process Specification Language (PSL) ontology as the neutral medium in integra-
tion.

The sets of models for the core theories of PSL are partitioned into equivalence
classes defined with respect to the invariants of the models. Each equivalence class
in the classification of PSL models is axiomatized using a definitional extension of
PSL. Software tools based on these invariants and definitional extensions support
semi-automatic generation of semantic mappings between an application ontology
and the PSL Ontology. This approach can be generalized to other ontologies by
specifying the invariants for the models of the axiomatizations.
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