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Abstract. We think of Match as an operator which takes two graph-like struc-
tures and produces a mapping between those nodes of the two graphs that cor-
respond semantically to each other. Semantic matching is a novel approach 
where semantic correspondences are discovered by computing and returning as 
a result, the semantic information implicitly or explicitly codified in the labels 
of nodes and arcs. In this paper we present an algorithm implementing semantic 
matching, and we discuss its implementation within the S-Match system. We 
also test S-Match against three state of the art matching systems. The results, 
though preliminary, look promising, in particular for what concerns precision 
and recall. 

1. Semantic matching  

Preliminary to the definition of semantic matching is the definition of concept of/at a 
node, which, in turn, is based on the notion of concept of/at a label. Let us analyze 
these two notions in turn, starting from the second. The trivial but key observation is 
that labels in classification hierarchies are used to define the set of documents one 
would like to classify under the node holding the label. In other words, a label has an 
intended meaning, which is what this label means in the world. However, when using 
labels for classification purposes, we use them to denote the set of documents which 
talk about their intended meaning. This consideration allows us to define the “concept 
of/at a label” as “the set of documents that are about what the label means in the 
world”. Trees add structure which allows us to perform the classification of docu-
ments more effectively. Thus, we have that “the concept of/at a node” is “the set of 
documents that we would classify under this node”, given it has a certain label and it 
is positioned in a certain place in the tree.  

We can now proceed to the definition of semantic matching. Let a mapping ele-
ment be a 4-tuple < IDij, n1i, n2j, R >, i=1,...,N1; j=1,...,N2; where IDij is a unique 
identifier of the given mapping element; n1i is the i-th node of the first graph, N1 is 
the number of nodes in the first graph; n2j is the j-th node of the second graph, N2 is 
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the number of nodes in the second graph; and R specifies a semantic relation which  
holds between the concepts of nodes n2j and n1i. Possible semantic relations are: 
equivalence (=), more general (  ), less general (  ), mismatch (⊥), overlapping (   ). 
Thus, for instance, the concepts of two nodes are equivalent if they have the same ex-
tension, they mismatch if their extensions are disjoint, and so on for the other rela-
tions. Semantic matching can then be defined as the following problem: given two 
graphs G1, G2 compute the N1 × N2 mapping elements <IDij, n1i, n2j, R′ >, with n1i ∈ 
G1, i=1,…,N1,  n2j ∈ G2, j=1,...,N2 and R′  the strongest semantic relation holding 
between the concepts of nodes n1i, n2j. 

2. Semantic matching algorithm 

The S-Match algorithm is organized in the following four macro steps: 
− Step 1: for all labels in the two trees, compute concepts at labels 
− Step 2: for all nodes in the two trees, compute concepts at nodes 
− Step 3: for all pairs of labels in the two trees, compute semantic relations among 

concepts denoted by labels 
− Step 4: for all pairs of nodes in the two trees, compute semantic relations among 

concepts at nodes 
Let us consider for instance the two trees depicted in Figure 1a.   

Fig. 1. Two trees (a). The matrix of semantic relations between concepts at labels in the trees 
(b). The matrix of semantic relations between the concepts at nodes in the trees (matching re-

sult) (c).  

During Step 1 we try to capture the meaning of the labels in the trees. In order to 
perform this we first tokenize the complex labels. For instance “Wine and Cheese” 
from Figure 1 becomes <Wine, and, Cheese>. Then we lemmatize tokens; and “Im-
ages” becomes “image”. Then, an Oracle (at the moment we use WordNet 2.0 as an 
Oracle) is queried in order to obtain the senses of the lemmatized tokens. Afterwards, 
these senses are attached to the atomic concepts. Finally, the complex concepts are 
built from the atomic ones. Thus, the concept of label Wine and Cheese, CWine and Cheese is 
computed as CWine and Cheese = <wine, {sensesWN#4}>&<cheese, {sensesWN#4}>, where 
<cheese, {sensesWN#4}> is taken to be the union of the four WordNet senses.  

Step 2 takes into account the structural schema properties. The logical formula for 
a concept at node is constructed, most often as the conjunction of the formulas in the 
concept path to the root. Element level semantic matchers are applied during Step 3. 
They determine the semantic relations holding between the atomic concepts at labels. 
For example, from WordNet we can derive the information that image and picture are 
synonyms. Therefore, the equivalence relation between concepts at labels (CImages = 
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CPictures) can be inferred. The relations between the atomic concepts at labels for the 
trees depicted on Figure 1a are depicted on Figure 1b. Element level semantic match-
ers provide the input to the structure level matcher, which is applied on Step 4 and 
produces the set of semantic relations between concepts at nodes as the matching re-
sult (see Figure 1c). On this step the tree matching problem is reformulated into the 
set of node matching tasks. Further, each of node matching tasks is reduced into a set 
of propositional validity problems.  

3. A platform implementing semantic matching 

Our approach is to develop a platform for semantic matching, namely a highly 
modular system where single components can be plugged, unplugged or suitably cus-
tomized. The logical architecture of the system we have developed, called S-Match, is 
depicted on Figure 2.  
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Fig. 2. Architecture of the S-match platform 

Let us discuss it from a data flow perspective. The module taking input schemas 
does the preprocessing. It takes in input trees codified into a standard internal XML 
format. This internal format can be loaded from a file manually edited or can be pro-
duced from a input format dependent translator. This module implements the pre-
processing phase and produces, as output, enriched trees which contain concepts of 
labels and concepts of nodes. These enriched trees are stored in an internal database 
(the database labeled PTrees on Figure 2) where they can be browsed, edited and ma-
nipulated. The preprocessing module has access to the set of oracles which provide 
the necessary a priori lexical and domain knowledge. In the current version WordNet 
is the only oracle we have. The Matching Manager coordinates the execution of steps 
3 and 4 using the oracles library (used here as element level strong semantics match-
ers), the library of element level weak semantic matchers, and the library of SAT 
solvers. 

3



4. A comparative evaluation 

We have done some preliminary comparison between S-Match and three state of the 
art matching systems, namely Cupid [3], COMA [1], and SF [5] as implemented 
within the Rondo system [4]. In our evaluation we have used three examples: the sim-
ple catalog matching problem, presented in the paper and two small examples from 
the academy and business domains. The business example describes two company 
profiles: a standard one (mini) and Yahoo Finance (mini). The academy example de-
scribes courses taught at Cornell University (mini) and at the University of Washing-
ton (mini). As match quality measures we have used the following indicators: preci-
sion, recall, overall, F-measure, overall and time. All the tests have been performed 
on a P4-1700, with 256 MB of RAM, with the Windows XP operating system, and 
with no applications running but a single matcher. The evaluation results are shown 
on Figure 3. From the point of view of the quality of the matching results S-Match 
clearly outperforms the other systems.  
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Fig. 3. Experimental results 
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