
Graph Transformation Based Models of Dynamic
Software Architectures and Architectural Styles

Abstract

Sebastian Thöne (seb@upb.de) ?

International Graduate School of Dynamic Intelligent Systems
University of Paderborn, Germany

Software architectures play an important role in software development. As
abstract models of the run-time structure they help to bridge the gap between
user requirements and implementation. In the context of e-business, self-healing,
or mobile systems, dynamic architectures gain more and more importance. They
represent systems that do not simply consist of a fixed, static structure, but
can react to certain requirements or events by run-time reconfiguration of its
components and connections. The availability of those reconfiguration opera-
tions depends on the chosen run-time platform which has to support the desired
modifications.

The development of such dynamic architectures is a complex task which is
usually driven by a stepwise modeling and refinement approach. The software
architect derives a first abstract model of the architecture from the user require-
ments. This model mainly covers the functional aspects and business-related
components. Later in the design process, more and more non-functional require-
ments like security concepts and implementation-specific aspects are integrated
into the core functionality. This leads to a sequence of refined architectures down
to the real system design for implementation.

A recent example of this general modeling principle is the Model-Driven Ar-
chitecture (MDA) put forward by the OMG. Here, platform-specific details are
initially ignored at the model-level to allow for maximum portability. Then, these
platform-independent models are refined by adding details required to map to
a given target platform. Thus, at each refinement level, one imposes more as-
sumptions on the resources, constraints, and services of the chosen platform.

In software architecture research, architectural styles are used to describe
families of architectures by common resource types, configuration patterns and
constraints. We propose in [1] to consider the restrictions imposed by a certain
choice of platform as an architectural style. Moreover, to account for component
interactions and platforms that support dynamic reconfigurations, we extend
the classical notion of architectural style, which is restricted to structural con-
straints, by also describing platform-specific communication and reconfiguration
mechanisms.

We formalize the architectural styles as graph transformation systems includ-
ing architectural types, constraints, and graph transformation rules. Based on
? in collaboration with Luciano Baresi (Milano), Reiko Heckel (Paderborn), and Dániel

Varró (Budapest)

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62910752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


that, a notion of refinement is defined in [2], which preserves both semantic cor-
rectness and platform consistency. This means that a concrete architecture must
satisfy the same requirements as the abstract architecture, and that it must
be consistent with constraints and mechanisms imposed by the chosen target
platform.

For this purpose, we define refinement relations between abstract and con-
crete styles which enable us to check for correct refinement of two given architec-
tures. We do not only consider structural refinements of fixed configurations but
also behavioral refinement, which means refining abstract scenarios of component
interactions and reconfigurations into platform-specific scenarios.

Since refinements are often tedious and error-prone, a further goal of our
work is to automate the derivation of refined models. Indeed, the maximum gain
of reusing platform-independent models is achieved if the mapping to various
target platforms can be automated. For this purpose, we propose a formulation
of the behavioral refinement problem as a reachability problem which can be
solved by classical graph transformation and model checking tools.

References

[1] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Modeling and validation of service-
oriented architectures: Application vs. style. In Proc. ESEC/FSE 03 European
Software Engineering Conference and ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, pages 68–77. ACM Press, 2003. wwwcs.upb.de/cs/

ag-engels/Papers/2003/BaresiHeckelThoeneVarro_ESEC03.pdf.
[2] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based refinement of dynamic

software architectures. In Proc. WICSA4 – 4th Working IEEE/IFIP Conference
on Software Architecture, 2004. to appear. wwwcs.upb.de/cs/ag-engels/Papers/
2004/WICSA4_Baresi-Heckel-Thoene-Varro.pdf.


