
(An Example for)
Metamodeling Syntax and Semantics

of Two Languages, their Transformation,
and a Correctness Criterion

Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

gogolla@informatik.uni-bremen.de

Abstract. We study a metamodel for the Entity Relationship (ER) and
the Relational data model. We do this by describing the syntax of the
ER data model by introducing classes for ER schemata, entities, and
relationships. We also describe the semantics of the ER data model by
introducing classes for ER states, instances, and links. The connection
between syntax and semantics is established by associations explaining
that syntactical objects are interpreted by corresponding semantical ob-
jects. Analogously we do this for the Relational data model. Finally, we
give a metamodel for the transformation of ER schemata into Relational
database schemata. By characterizing the syntax and semantics of the
languages to be transformed and also the transformation itself within
the same (meta-)modeling language we are able to include equivalence
criteria on the syntactical and on the semantical level for the transfor-
mation. In particular, we show that the semantical equivalence criterion
requires that the ER states and the corresponding Relational states bear
the same information.

1 Context

This paper is based on a comprehensive case study employing our tool USE al-
lowing to check and to reason about properties of UML class diagrams and OCL
constraints. The complete model currently covers 17 classes, 34 associations,
and 58 constraints. This work uses ideas from earlier material on metamodel-
ing an Extended Entity-Relationship approach [Gog94,Gog95], preliminary ver-
sions [GLRZ02] of the metamodel introduced here, and work concentrating only
on syntactical aspects [LGR01,GL03].

1

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62910745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E
nt

ity

R
el

en
d

R
el

sh
ip

A
ttr

ib
ut

e

D
at

aT
yp

e
V

al
ue

E
rS

ta
te

R
el

en
dM

ap

In
st

an
ce

Li
nk

E
rS

ch
em

a

A
ttr

M
ap

R
el

S
ch

em
a

R
el

D
B

S
ta

te

Tu
pl

e

R
el

D
B

S
ch

em
a

1

1.
.*

1

0.
.*

1

0.
.*

2.
.*

1
0.

.1
0.

.1

0.
.*

0.
.* 0.

.*
1

0.
.*

1
0.

.*
1

0.
.*

1

0.
.*

1

1.
.*

1.
.*

0.
.*

0.
.*

1

1

0.
.*

0.
.*

0.
.1

0.
.*

1
0.

.*

1
1

0.
.*

2.
.*

0.
.1

0.
.*

11.
.*

0.
.1

1.
.*

0.
.*

1

0.
.*

1
1.

.*

0.
.*

0.
.1

1.
.*

0.
.*

0.
.*

0.
.1

1

0.
.* 0.
.1

Fig. 1. Class Diagram Metamodeling the ER and Relational Data Model

2

M. Gogolla

2 Metamodeling Data Models

Consider the class diagram in Fig. 1. It shows four ‘clouds’: In the left part a
solid grey and a solid black cloud, in the right part a dashed grey and a dashed
black cloud. The two solid left clouds model the syntax of the data models, the
two dashed right clouds the semantics; the upper clouds describe the ER data
model, the lower clouds the Relational data model. The ER and the Relational
data model share some concepts, namely the parts in the middle talking about
data types, attributes and their semantics.

Syntax of the ER data model: This part introduces the clases ErSchema,
Entity, Relship, Relend, Attribute, and DataType. ErSchema objects consist
of Entity and Relship objects which in turn may possess Attribute objects
typed through DataType objects. Relend objects represent the connection
points between the Relship objects and the Entity objects.

Semantics of the ER data model: In this part we set up the classes ErState,
Instance, Link, RelendMap, AttrMap, and Value. The interpretation is as
follows. An ErSchema object is interpreted by possibly many ErState objects.
An Entity is given semantics by a set of Instance objects, and a Relship by
a set of Link objects. DataType objects are given life through a set of Value
objects. Relend and Attribute objects are interpreted by a set of RelendMap
objects and AttrMap object, respectively.
In order to give more visual clues for differentiating, the associations from the
syntax into the semantics are displayed by bent lines whereas the associations
within the syntax and the associations within the semantics are displayed
by straight lines.

Syntax of the Relational data model: Here the classes RelDBSchema, Rel-
Schema, Attribute, and DataType are needed. RelDBSchema objects consist
of RelSchema objects which possess Attribute objects typed through Data-
Type objects.

Semantics of the Relational data model: The last part utilizes the classes
RelDBState, Tuple, AttrMap, and Value. RelDBSchema objects are inter-
preted by a set of RelDBState objects. Each RelDBState object consists of
a set of Tuple objects. Tuple objects in turn consist of a set of AttrMap
objects assigning a Value object to an Attribute within the Tuple.

Let us shortly mention the attributes and operations relevant for the class di-
agram but being not displayed. All classes in the (left) syntax part possess an
attribute name of data type String. The class Attribute has an aditional boolean-
valued attribute isKey indicating whether this attribute contributes to the key
of the Entity or the RelSchema. The class Value owns the attribute content of
data type String indicating the actual content of the Value object.

Concerning operations, the classes Instance, Link, and Tuple have an operation
applyAttr with a State and an Attribute parameter returning the actual Value

3

Metamodeling Syntax and Semantics

object of the Attribute. The class Link has an operation applyRelend with an
ErState and a Relend parameter returning the actual Instance of the Relend.
The classes Entity and RelSchema possess an operation key returning the set of
its key attributes.

Apart from the shown multiplicities in the class diagram, all parts must be
restricted by appropriate constraints. In the total we obtain about 50 constraints.
But we show only one typical example from each of the four parts.

Syntax of the ER data model: Within one Entity, different Attributes have
different names.

context self:Entity inv uniqueAttributeNamesWithinEntity:

self.attribute->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

Semantics of the ER data model: Two different Instances of one Entity can
be distinguished in every ErState (where both Instances occur) by a key
Attribute of the Entity.

context self:Instance inv keyMapUnique:

Instance.allInstances->forAll(self2 |

self<>self2 and self.entity=self2.entity

implies

self.erState->intersection(self2.erState)->forAll(s |

self.entity.key()->exists(ka |

self.applyAttr(s,ka)<>self2.applyAttr(s,ka))))

Syntax of the Relational data model: The set of key Attributes of a Rel-
Schema is not empty.

context self:RelSchema inv relSchemaKeyNotEmpty:

self.key()->notEmpty

Semantics of the Relational data model: The Attributes connected to the
RelSchema of a Tuple are identical to the Attributes connected to the Attr-
Map of the Tuple. In other words, there are Attribute assignments for all
Attributes of a Tuple.

context self:Tuple inv commutativityAttribute:

self.relSchema.attribute=self.attrMap.attribute->asSet

The modeling is probably best explained by an example. Figure 2 shows an
example scenario which is represented in Fig. 3 as an ER schema, in Fig. 4 as
an ER state, in Fig. 5 as a Relational schema, and in Fig. 6 as a Relational
state. These object diagrams are however not complete with respect to the links
between syntax and semantics. For example, every object in Fig. 4 is typed by a
link (belonging to one of the bent associations in Fig. 1) to an object in Fig. 3.
Thus, e.g., the five Value objects in the bottom of Fig. 4 possess typing links
to the two DataType objects in the bottom of Fig. 3. In order to make the
presentation comprehensible we have ommitted these details.

4

M. Gogolla

----------+---------------+------------------+--------------

Person | passport | gender
--------+----------+----------

| 123 | ’female’
| 456 | ’male’

Marriage | wife_passport | husband_passport | date

| 123 | 456 | ’1981/07/29’

diana charlesMarriage

123 ’female’ 456 ’male’’1981/07/29’

wife husband

Person Marriage

passport:Integer

gender:String

date:String

husband

wife

Person(passport:Integer,gender:String)

Marriage(wife_passport:Integer,husband_passport :Integer,date:String)

Fig. 2. Content of Example Scenario

Fig. 3. Example Scenario as an ER Schema

5

Metamodeling Syntax and Semantics

Fig. 4. Example Scenario as an ER State

Fig. 5. Example Scenario as a Relational Schema

6

M. Gogolla

Fig. 6. Example Scenario as a Relational State

3 Metamodeling Transformations

Let us now turn to the transformation between the languages. We will model
the transformation by a special class Trans which has associations to the respec-
tive syntax and semantics classes already introduced and which has constraints
attached to it which guarantee desired properties.

ErSchema

RelDBSchema

ErState

RelDBState

Trans

1

0..1

0..1

1 0..*

0..1

0..1

0..*

0..1

0..1

Fig. 7. Transformation Class and Associations

The class diagram in Fig. 7 shows the class Trans needed for the transformation
and the respective associations. A Transformation object is associated with ex-

7

Metamodeling Syntax and Semantics

actly one ER schema and exactly one Relational database schema. It additionally
can be connected to ER and Relational states which in turn can be connected
through an association expressing that both states are equivalent.

As for the syntax and semantics of the data models the Transformation class
diagram must be restricted by another 10 constraints in order to allow only
meaningful situations. We here discuss only two example constraints, one dealing
with schema aspects and the other one dealing with state aspects.

3.1 Schema aspect

For every Entity in the ErSchema there is a RelSchema having the same name
and Attributes with the same properties, i.e. name, DataType, and key property.

context self:Trans inv relSchemaForEntity:

self.erSchema.entity->forAll(e |

self.relDBSchema.relSchema->select(rl | -- existsOne

e.name=rl.name and

e.attribute->forAll(ea |

rl.attribute->select(ra | -- existsOne

ea.name=ra.name and ea.dataType=ra.dataType and

ea.isKey=ra.isKey)->size=1))->size=1)

3.2 State aspect

For every Tuple in the RelDBState (1) there is either exactly one Instance such
that for every AttrMap of the Tuple there is exactly one AttrMap in the In-
stance holding the same information or (2) there is exactly one link such that
for every AttrMap of Tuple the following holds: (A) if the AttrMap belongs not
to a key Attribute, there is exactly one AttrMap in the Link holding the same
information, and (B) if the AttrMap belongs to a key Attribute, there is exactly
one RelendMap in the Link and exactly one AttrMap of the RelendMap such
that the AttrMap from the Tuple and the AttrMap from the Link hold the same
information.

context self:Er2Rel_Trans inv tupleCorrespondsToInstanceXorLink:

self.relDBState.tuple->forAll(t |

self.erState.instance->select(i | -- existsOne

t.attrMap->forAll(amRel |

i.attrMap->select(amEr | -- existsOne

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value)->size=1))->size=1

xor

8

M. Gogolla

self.erState.link->select(l | -- existsOne

t.attrMap->forAll(amRel |

(not(amRel.attribute.isKey) implies

l.attrMap->select(amEr | -- existsOne

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value)->size=1)

and

(amRel.attribute.isKey implies

l.relendMap->select(rm | -- existsOne

rm.instance.attrMap->select(amEr | amEr.attribute.isKey)->

select(amEr | -- existsOne

amRel.attribute.name =

rm.relend.name.concat(’_’).concat(amEr.attribute.name)

and

amRel.value=amEr.value)->size=1)->size=1)))->size=1)

For a notion of equivalence between an ER state and a Relational state one has to
consider two directions of the translation, namely first the direction from ER to
Relational and second the direction from Relational to ER. The above constraint
touches the second direction from Relational to ER (for each tuple there is an
instance or a link). The first direction is also covered by the constraints but not
shown here (for each instance and link there is a tuple). Both directions together
establish a correctness criterion, namely the equivalence between the ER state
space and the Relational state space. As far as we know, such a correctness
criterion, i.e., the equivalence between the respective state spaces, is always
the aim of translating data models but such a criterion has not been stated
explicitly and completely formally in the literature up to now. We emphasize that
our approach allows to discuss these questions only because we have rigorously
described the data models and their transformation within a single framework,
namely with the language of UML class diagrams and OCL constraints. However,
the approach is not bound to UML and OCL.

4 Relationship to Language Engineering

We think that the underlying principal ideas lying behind the concrete transla-
tion and the concrete languages which we consider, i.e., the ER and Relational
data models and their translation, can be used in other domains like classi-
cal compilers or modern approaches like model-driven development as well. We
classify the central ingredients of our approach as follows:

(A) Formally describe the syntax and the semantics of your language (or perhaps
more generally of your domain). Explicitly distinguish between syntactical
and semantical aspects and explicitly establish the connection between syn-
tax and semantics.

9

Metamodeling Syntax and Semantics

(B) If you need a second language (or domain) also describe this formally as you
have done with the first language (or domain). The second language may
of course be derived from your first language (or domain) by specialisation,
e.g., by adding more constraints.

(C) Explicitly describe the translation by introducing concepts for the translation
and by restricting it through appropriate constraints. Such restrictions can
describe correctness criteria for the translation. Insist on using the same
description mechanism for all three ingredients, i.e., the source language, the
target language, and the translation. Using one single description mechanism
enables you to check and to reason about your ‘language engineering’ system
homogeneously.

(D) Test, test, test.

References

[GL03] Martin Gogolla and Arne Lindow. Transforming Data Models with UML.
In Borys Omelayenko and Michel Klein, editors, Knowledge Transformation
for the Semantic Web, pages 18–33. IOS Press, Amsterdam, 2003.

[GLRZ02] Martin Gogolla, Arne Lindow, Mark Richters, and Paul Ziemann.
Metamodel Transformation of Data Models. In Jean Bezivin and
Robert France, editors, Proc. UML’2002 Workshop in Software Model
Engineering (WiSME 2002). Technical Report, University of Nantes,
http://www.metamodel.com/wisme-2002, 2002.

[Gog94] Martin Gogolla. An Extended Entity-Relationship Model - Fundamentals
and Pragmatics. Springer, Berlin, LNCS 767, 1994.

[Gog95] Martin Gogolla. Towards Schema Queries for Semantic Data Models. In
Norman Revell and A Min Tjoa, editors, Proc. 6th Int. Conf. and Workshop
on Database and Expert Systems Applications (DEXA’95), pages 274–283.
ONMIPRESS, San Mateo, 1995.

[LGR01] Arne Lindow, Martin Gogolla, and Mark Richters. Ein formal validiertes
Metamodell für die Transformation von Schemata in Informationssystemen.
In K. Bauknecht, W. Brauer, and T. Mück, editors, Proc. GI Jahresta-
gung (GI’2001), Band 1, Workshop Integrating Diagrammatic and Formal
Specification Techniques, pages 662–669. Austrian Computer Society, Wien,
2001.

10

M. Gogolla

