
Application of Graph Transformation for
Automating Web Service Discovery?

Reiko Heckel and Alexey Cherchago

University of Paderborn, Paderborn, Germany
reiko|cherchago@upb.de

Abstract. The paper represents current achievements of an ongoing
research that aims to develop a formal approach supporting an auto-
matic selection of a Web service sought by a requestor. The approach is
based on the matching the requestor’s requirements for a ”useful” service
against the service description offered by the provider. We focus on the
checking behavioral compatibility between operation contracts specifying
pre-conditions and effects of required and provided operations.
Graph transformation rules with positive application conditions are pro-
posed as a visual formal notation for contracts. The desired dependence
between requestor and provider contracts is determined by the semantic
compatibility relation and syntactic matching procedure that is sound
w.r.t. this relation.

1 Introduction

The Web Services technology adopts the WWW for application to application
communication that, in its turn, enables applications to interact with each other
either to use services delivering by other business entities or to provide complex
services based on their own capabilities. The ability of applications to discover
automatically useful services and select those of them that can be safely inte-
grated with the existing components leads Web services to their full potential.

Much work has been already done: The interface of the provided service can
be specified in the Web Service Description language (WSDL). This specification
as well as additional descriptive information about the delivered service is placed
by a provider into a UDDI-registry being an information repository. A service
requestor can query the registry to get descriptions of services delivering facilities
for specific business domains.

While WSDL and UDDI (partially) support the dynamic discovery of ser-
vices, an automatic selection of candidates which can be adequately integrated
into the requestor application is not captured by the Web services standards.
The service descriptions obtained from the UDDI-registry is manually analyzed
by a developer of the requestor application. Our objective is to enable tech-
niques allowing automation of the selection process. The present achievements
regarding this global goal are discussed in the paper.
? Research funded in part by European Community’s Human Potential Programme

under contract HPRN-CT-2002-00275, [SegraVis].

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62910742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The selection process in our research is based on the matching provided and
required service specifications describing the sets of (provided and required) op-
erations. Each required operation must be associated with the structurally and
behaviorally compatible provided operation. The structural compatibility is en-
sured by the matching operation signatures. Since this topic has been thoroughly
investigated in the area of Component-Based Software Engineering (CBSE) [10],
the existing techniques can be transfered to the Web Services domain. Our work
basically contributes to the problem of the behavioral compatibility. We employ
a concept of contracts [5] to represent behavioral information about operations.
Graph transformation rules with positive application conditions are proposed as
a visual formal notation for contract specification.

An operation contract contains potentially incomplete information about
transformation of a system state, therefore a loose semantic of contracts must
be adequately reflected in an approach to graph transformation. In the classical
double-pushout (DPO) approach [4] it is assumed that nothing is changed in
the transformation beyond what is explicitly specified in the rule. It does not fit
our purposes. The double-pullback (DPB) approach [6] defines graph transitions
and generalizes DPO by allowing additional changes, not encoded in the rule.
Such alternations require refinements of the structure of the rules via application
conditions. Besides the elements whose deletion, creation, and preservation are
specified, we would like to specify those elements which must be present in the
rule to be applicable, but are not necessarily affected by the rule application.
These elements compose positive application conditions. In the DPO approach
such positive application conditions could be included in the left-hand sides of
the rules, because due to the implicit frame condition of the approach all that
is not explicitly affected is preserved.

To check whether the provided operation contract matches the required one
we will establish a semantic compatibility relation between the contract rules.
Since this relation will be based on an infinite set of transitions and, therefore,
can not be computed directly, a syntactic matching relation will be defined.
We will demonstrate that the syntactic matching relation provides sufficient
conditions with respect to the semantic one.

The paper is organized as follows: Section 2 describes the basics of the DPO
and DPB approaches to graph transformation. In Section 3, we consider ingredi-
ents of a service specification along with the informal and formal presentations
of the dependencies between the rules, i.e., the semantic compatibility and syn-
tactic matching relations. In the last section, we conclude with a short summary
and list the open problems in our approach.

2 Preliminaries

In this section, we review some of the main concepts of the double-pushout (DPO)
[4] approach (see [3] for a survey) and the double-pullback (DPB) approach [6]
to graph transformation. Also, we provide several examples being reused in Sec-

2

A. Cherchago



tion 3 to demonstrate the matching of service specifications. We start with the
brief discussion of the DPO approach.

2.1 The Double-Pushout Approach to Graph Transformation

Given a graph TG, called type graph, a TG-typed (instance) graph consists of a
graph G together with a typing homomorphism g : G → TG (cf. Fig. 1 on the
left) associating with each vertex and edge x of G its type g(x) = t in TG. In
this case, we also write x : t ∈ G. A TG-typed graph morphism between two
TG-typed instance graphs 〈G, g〉 and 〈H,h〉 is a graph morphism f : G → H
which preserves types, that is, h ◦ f = g.

The DPO approach to graph transformation has originally been developed
for vertex- and edge-labelled graphs [4]. Here, we present the typed version [2].

G

g

��

TG

G

f

++

g
!!CC

CC
CC

CC
H

h
}}{{

{{
{{

{{

TG

L

(1)dL

��

K

(2)

loo r //

dK

��

R

dR

��

G Dg
oo

h
// H

Fig. 1. Typed graph and graph morphism (left) and double-pushout diagram (right).

Example 1. UML class diagram in Fig. 2 on the left represents the domain data
model of a Web Service for booking a hotel room that plays a part of a sam-
ple scenario throughout out presentation. A customer (class Customer) intends
to book a room (class Room) in a hotel (class Hotel). A booking information
(class BookingInfo) and possibly a business license code (class LicenseInfo) of a
customer (e.g. travel bureau) are required to be provided to make a reservation.
A result of the booking process is represented by an acknowledgment in the
form of a reservation tag (class ReservTag) and/or a reservation document (class
Reservation) containing all details of the reservation.

provides

BookingInfo

Reservation

ReservTag

Customer Hotel

LicenseInfo

Room

1

1

1..*1

1

1

1

1

1

1

1
1..*

*

*

*

*

0..1

0..1

obtains

sent

has

TG

g

b1:BookingInfo

res1:Reservation

rt1:ReservTag

c1:Customer

h1:Hotel

r1:Room

provides

obtains

G

Fig. 2. Type graph representing the data model of sample scenario (left) and instance
graph (right).

3

Application of Graph Transformation for Automating Web Service Discovery



In the context of graph transformation, a class diagram is considered as
a directed graph, whose vertices contain type declarations. Their relation with
object diagrams (cf. Fig. 2 on the right) representing run-time states is expressed
by the notion of a type graph (TG) and corresponding instance graphs [2].

According to the DPO approach, graph transformation rules, also called
graph productions, are specified by pairs of injective graph morphisms (L l←−
K

r−→ R), called rule spans, between TG-typed instance graphs L, K and R.
The left-hand side L contains the items that must be present for an application
of the rule, the right-hand side R those that are present afterwards, and the
interface graph K specifies the “gluing items”, i.e., the objects which are read
during application, but are not consumed.

Definition 1. (rule, graph transformation system) A rule span typed over
TG, in short TG-typed rule span, s = (L l←− K

r−→ R) is a span of injective
TG-typed graph morphisms.

A graph transformation system GTS = 〈TG, P, π〉 consists of a type graph
TG, a set of rule names P , and a mapping π associating with each rule name p
a TG-typed rule span π(p). If p ∈ P is a rule name and π(p) = s, we say that
p : s is a rule of GTS.

The upper part of Fig. 3 demonstrates the span representation of the rule
bookHotel().

l r

g h

dRdKdL (1) (2)

bi1:BookingInfo

c1:Customer

c2:Customer

h1:Hotel

r1:Room

r2:Room

provides

G

bi:BookingInfo

c:Customer

h:Hotel

r:Room

provides

L

bi:BookingInfo

c:Customer

h:Hotel

r:Room

provides

K

bi1:BookingInfo

c1:Customer

c2:Customer

h1:Hotel

r1:Room

r2:Room

provides

D

bi1:BookingInfo

res1:Reservation

rt1:ReservTag

c1:Customer

c2:Customer

h1:Hotelr1:Room

r2:Room

provides

obtains

H

bi:BookingInfo

res:Reservation

rt:ReservTag

c:Customer

h:Hotel

r:Room

provides

obtains

R

Fig. 3. DPO graph transformation step using rule bookHotel().

The transformation of graphs is defined by a pair of pushout diagrams, a
so-called double-pushout construction.

Definition 2. (DPO graph transformation) A double-pushout (DPO) dia-
gram d is a diagram as in Fig. 1 on the right, where (1) and (2) are pushouts.

4

A. Cherchago



Given a type graph TG and a rule p : s with s = (L l←− K
r−→ R) the corre-

sponding (DPO) transformation step from G to H is denoted by G
p/d
=⇒ H, or

simply G
p

=⇒ H if the diagram d is understood.

An example of a transformation step via the rule bookHotel() is given in
Fig. 3.

Operationally speaking, the application of the rule proceeds as follows. Given
the occurrence dL of the left-hand-side L in G, the application consists of two
steps: The elements of G matched by L\ l(K) are removed, that does not change
graph G in Fig. 3. Then, the elements matched by R\r(K) are added to D which
leads to the derived graph H additionally containing the vertecies res1, rt1 and
the corresponding edges.

Gluing the graphs L and D over their common part K yields again the given
graph G, i.e., D is a so-called pushout complement and the left-hand square (1)
is a pushout square. Only in this case the application is permitted. Similarly, the
derived graph H is the gluing of D and R over K, which forms the right-hand
side pushout square (2).

This formalization implies that only vertices that are preserved can be merged
or connected to edges in the context. It is reflected in the identification and
the dangling conditions of the DPO approach which characterize, given a rule
p : s = (L l←− K

r−→ R) and an occurrence dL : L → G of the left-hand side,
the existence of the pushout complement (1), and hence of a transformation step

G
p/d
=⇒ H. The identification condition states that objects from the left-hand side

may only be identified by the match if they also belong to the interface (and are
thus preserved). The dangling condition ensures that the structure D obtained
by removing from G all objects that are to be deleted is indeed a graph, that is,
no edges are left “dangling” without source or target node.

2.2 The Double-Pullback Approach to Graph Transformation

The DPO approach guarantees that the changes to the given graph H are exactly
those specified by the rule. However, operation contracts represent specifications
of operations that are, in general, incomplete, that is, additional effects should be
allowed in the transformation. Therefore, a more liberal notion of rule application
is required which ensures that at least the elements of G matched by L\ l(K) are
removed, and at least the elements matched by R \ r(K) are added. This kind
of the rule interpretation is supported by the double-pullback (DPB) approach
to graph transformation [6].

Graph transitions have been proposed to provide a looser interpretation of
graph transformation rules. The DPB approach introduces graph transitions
and generalizes DPO by allowing additional changes, not encoded in the rule.
Graph transitions are defined by replacing the double-pushout diagram of a
transformation step with a double-pullback .

Definition 3. (graph transition) Let p : s be a rule span with s = (L l←−
K

r−→ R). Then, a graph transition from G to H via p, denoted by G
p/d
; H,

5

Application of Graph Transformation for Automating Web Service Discovery



is a diagram like the right part of Fig. 4 where both (1) and (2) are pullback
squares. A graph transition (or briefly transition) is called injective if both g and
h are injective graph morphisms. It is called faithful if it is injective, and the
morphisms dL and dR satisfy the following condition: for all x, y ∈ L, y 6∈ l(K)
implies dL(x) 6= dL(y), and analogously for dR

1.

L̂

d
L̂ ��

??
??

??
??

L
l̂oo

dL

��

(1)

K
loo r //

dK

��

(2)

R

dR

��

G D
h

//
g

oo H

Fig. 4. DPB graph transition and positive application condition.

Notice that any pushout square of two given morphisms such that one of them
is injective is also a pullback square. Thus, every DPO transformation is also
a DPB transition. Each faithful transition can be regarded as a transformation
step plus a change-of-context [6]. This is modeled by extra deletion and creation
of elements before and after the actual step.

A rule under the DPB interpretation may also contain, so-called “don’t care”
elements. They must be present before the rule application, but the specification
of their behavior is beyond the scope of the rule. The “don’t care” elements
compose an extra restriction on the using of the rule called a positive application
condition. A graph transformation rule with positive application condition p̂ also
contains the graph L̂ specifying extensions of L by such elements. L̂ represents
a pattern for positive application condition.

Definition 4. (rule with positive application condition) A graph trans-
formation rule with positive application condition p̂ is a pair (p, L̂), where p : s

is a graph transformation rule with s = (L l←− K
r−→ R) and L̂ is a TG-typed

graph, such that L is a subgraph of L̂ and l̂ : L→ L̂ is the corresponding inclusion
(cf. Fig. 4 on the left).

Example 2. Fig. 5 shows two graph transformation rules with positive appli-
cation conditions representing a booking procedure from the viewpoint of the
requestor (upper rule) and provider (lower rule). The interface graphs of these
rules are omitted in the figure. L̂p and L̂r specify the patterns needed for the
rule application and contain information about a customer (verticies c and cus),
booking details (verticies bi), etc. While the graphs L̂p and Lp in the provider
rule are identical, the graph L̂r in the requestor rule additionally holds the vertex
1 The last condition means that dL and dR satisfy the identification condition of the

DPO approach [3] with respect to l and r.

6

A. Cherchago



l:LicenseInfo denoting a business license code of a customer. This vertex, being
typical example of the “don’t care” element, is required to be present, but does
not participate in the following transformations. The reservation of a room is
shown by newly created verticies res, rs, rt and the corresponding edges between
them in the right-hand sides of the rules. The extra association sent in the lower
rule reflects the fact that the reservation document is sent to the customer by
default that is not assumed in the upper rule.

=>

bi:BookingInfo

c:Customer

l:LicenseInfo

h:Hotel

r:Room

provides

has

Lr
^

lr̂

bi:BookingInfo

c:Customer

h:Hotel

r:Room

provides

Lr

=>lp̂

bi:BookingInfo

cus:Customer

h:Hotel

rm:Room

provides

Lp
^

bi:BookingInfo

cus:Customer

h:Hotel

rm:Room

provides

Lp

bookHotel(c:Customer, bi:BookingInfo, l:LicenseInfo):ReservTag

reservHotel(cus:Customer, b:BookingInfo):(ReservTag, Reservation)

bi:BookingInfo

res:Reservation

rt:ReservTag

obtains

c:Customer

h:Hotel

r:Room

provides

Rr

bi:BookingInfo

rs:Reservation

rt:ReservTag

cus:Customer

h:Hotel

rm:Room

provides

sent

obtains

Rp

Fig. 5. Graph transformation rules for provided operation bookHotel() and required
operation reservHotel().

Definition 5. (graph transition via rule with positive application con-
dition) Let p̂ = (p, L̂) be a graph transformation rule with positive application
condition, where s = (L l←− K

r−→ R). A graph transition from G to H via the

rule p̂, denoted by G
p̂/d
; H, is a graph transition via a rule p, such that there

exists dL̂ satisfying dL = dL̂ ◦ l̂ (cf. Fig. 4 on the left).

Faithful transitions capture our intuition about a loose interpretation of con-
tracts which can be specified by graph transformation rules with positive appli-
cation conditions.

The purpose of the next section is to present a formal approach to service
specification matching based on graph transformation.

3 Service Specification Matching

This section discusses constituents of a service specification and addresses ser-
vice specification matching basically at the level of behavioral descriptions. The

7

Application of Graph Transformation for Automating Web Service Discovery



semantic compatibility and syntactic matching relations determine a foundation
for the matching procedure. The formal definition of these relations comes out of
the ideas obtained in the sample scenario of a hotel booking Web Service which
will be also considered.

3.1 Service Specification

First of all, let us introduce the basic ingredients of the service specifications.
We start with the data model of the application expressed by the UML class
diagram in Fig. 2. This data model has been already discussed in Section 2.1. To
avoid additional complications, we assume that service requestor and provider
are working with the same data model, agreed upon in advance.

According to [8], a Web service is an interface that describes a collection of
operations that are network-accessible through standardized XML messaging.
The next part of the service specification is represented by an interface. An
example of the provided and required interfaces is given in Fig. 6.

bookHotel(c:Customer, bi:BookingInfo, l:LicenseInfo):ReservTag

rejectBooking(rt:ReservTag)

<<interface>>
RequiredInterface

...

<<interface>>
ProvidedInterface

...

reservHotel(cus:Customer, b:BookingInfo):(ReservTag, Reservation)

changeReserv(rt:ReservTag, bi:BookingInfo):Reservation

cancelReserv(rt:ResrvTag)

Fig. 6. Provided and required interfaces.

An interface contains structural information about operations. The behavior
of these operations can be specified by contracts. The concept of contracts is
widely used to describe behavior of Web services and their constituents (see [5]).
A contract consists of a pre-condition specifying the system state before some
behavior is executed and a post-condition describing the system state after the
execution of the behavior. There are different approaches employing formal tech-
niques (e.g., description logic [9], algebraic specification languages [10], etc.) to
contract specification. The main obstacle of these approaches is their lack of
usability in the software industry, where knowledge and skills in the application
of logic formalisms are scarce. A notation that is close to the standard software
modeling languages (e.g., UML) and has, at the same time, a formal background
allowing to provide automation is given by typed graph transformation [2]. Graph
transformation rules with positive application conditions can be taken as a visual
formal notation for the contract specification.

The positive application condition L̂ represents the pre-condition. The left-
hand side L and the the right-hand side R describe the post-condition and effect.
Fig. 5 demonstrates the graph transformation rules for the required operation
bookHotel() and the provided operation reservHotel(). Among other things, L̂r

and L̂p contain elements stating for the input parameters of these operations,
i.e., information about a customer (verticies c and cus), booking details (verticies

8

A. Cherchago



bi), and a business license code (vertex l:LicenseInfo). Notice that the graph
transformation rules with application conditions enable to clearly distinguish a
pre-condition of an operation from its post-condition and effect. Besides, one
can describe the input parameters of the operations which can be submitted by
the requestor, but are not necessarily affected by the further computations (e.g.,
LicenseInfo).

To summarize, a service specification consists of a data model, structural
(operation signatures) and behavioral (operation contracts represented by graph
transformation rules) specifications of operations constituting a service. In the
next section we discuss service specification matching and consider an example
of matching required and provided operation contracts.

3.2 Specification Matching

In general, specification matching has to deal with all three aspects of a specifica-
tion, i.e., data, signatures, and contracts. For simplicity, we ignore the matching
of data models and discuss the matching of signatures only briefly (see [10] for
a general discussion).

As an example, we consider the relation between the required operation
bookHotel() and the provided operation reservHotel() whose signatures and con-
tracts are depicted in Fig. 5.

The signatures of the operations have several distinctions. The required op-
eration has the extra input parameter l:LicenseInfo, while the provided operation
contains an extra output parameter of the type Reservation. This does not vi-
olate compatibility, because the input of the requestor, which is not required,
may simply be ignored by the provider. Similarly, the output of the provided,
which is not expected by the requestor, may be skipped.

To determine the relation between signatures and contracts, we require that
input and output parameters of each operation are represented by vertices with
corresponding types in the rules. These dependencies are indicated by the dashed
arrows in Fig. 5.

Now we consider behavioral compatibility which amounts to check compati-
bility of pre-conditions (L̂r and L̂p) and effects (Lr => Rr and Lp => Rp). In
order to perform an operation successfully, the provider requires certain input
data from the requestor as well as a certain properties to hold in the current
state. In the provider rule of Fig. 5 the input data is given by information about
a customer and booking details. The requestor has to be prepared to deliver
this data and to guarantee these properties. Hence, the pre-condition of the re-
questor must entail the pre-condition of the provider, which is expressed by an
occurrence (formally a graph homomorphism) from L̂p to L̂r.

A requestor wants to have some benefit form the invocation of a service oper-
ation. If an operation does less then expected by a requestor, it is not considered
to be useful. In other words, the effect of the provided operation must not be
less than the effect specified by the requestor. That means, the requestor rule
must be embedded in the provider as it is the case with the rules in Fig. 5. For

9

Application of Graph Transformation for Automating Web Service Discovery



example, the operation reservHotel() additionally creates the edge sent that de-
notes default delivering a reservation document to the customer. This vertex is
not presented in the requestor contract, because it is sufficient for him to obtain
only a reservation tag. Nevertheless, the effect of the provided operation fits the
client requirements.

Next, we will present a (partial) formalization of the intuitive ideas obtained
from the example.

3.3 Towards Formalization

The concept of transition allows us to formalize semantically the desired notion
of compatibility: Provider and requestor rules are semantically compatible if (1)
every transition via the provider rule can be regarded as a transition via the
requestor rule, and (2) applicability of the requestor rule implies applicability of
the provider rule.

Definition 6. (semantic compatibility) Let p̂1 = (p1, L̂1) and p̂2 = (p2, L̂2)
be graph transformation rules with positive application conditions, where s1 =
(L1

l1←− K1
r1−→ R1) and s2 = (L2

l2←− K2
r2−→ R2). We say that p̂1, is semanti-

cally compatible with p̂2, in symbols p̂2 |= p̂1, iff

1. for all spans t = (G
g←− D

h−→ H) and transitions G
p2/d2
; H, there ex-

ists a transition G
p1/d1
; H using the same bottom span t , where d1 =

(dL1 , dK1 , dR1) and d2 = (dL2 , dK2 , dR2) (cf. Fig. 7 on the right), and
2. if there exists dL̂1

: L̂1 → G such that dL1 := dL̂1
◦ l̂1 satisfies the identifica-

tion condition of p1, then there exists dL̂2
: L̂2 → G such that dL2 := dL̂2

◦ l̂2
satisfies the identification condition of p2.

L̂1

d
L̂1

@@@

��
@@@

(1)

L1

hL

��

l̂1oo

dL1
~~

~

��~~
~

(3) G

(2)

(4)

L̂2

h
L̂

OO

d
L̂2~~~

??~~~

L2
l̂2

oo

dL2@@@

__@@@

L1

dL1

!!

hL

��

(a)

K1

dK1

~~

l1oo
r1 //

hK

��

(b)

R1

dR1

~~

hR

��

L2

dL2

��

(a′)

K2

l2oo
r2 //

dK2

��

(b′)

R2

dR2

��

G Dg
oo

h
// H

Fig. 7. Matching graph transformation rules.

This definition reflects the desired relation between contracts, but can hardly
be applied for an algorithm determining contract compatibility. Therefore, we
introduce a relation of syntactic matching which encompasses ideas presented in
Section 3.2 and has more constructive character.

10

A. Cherchago



Definition 7. (syntactic matching) Let p̂1 = (p1, L̂1) and p̂2 = (p2, L̂2)
be graph transformation rules with positive application conditions, where s1 =
(L1

l1←− K1
r1−→ R1) and s2 = (L2

l2←− K2
r2−→ R2). We say that p̂1 syntactically

matches with p̂2, in symbols p̂2 ` p̂1, iff

1. there exist graph homomorphisms hL : L1 → L2, hK : K1 → K2, and
hR : R1 → R2 such that the diagrams (a) and (b) in Fig. 7 on the right
represent a faithful transition, and

2. there exists an injective graph homomorphism hL̂ : L̂2 → L̂1 such that hL̂ ◦ l̂2
satisfies the identification condition of p2 and the outer square in Fig. 7 on
the left commutes.

An example of syntactic matching is given in Section 3.2 for the graph trans-
formation rules specifying the contracts of the required operation bookHotel()
and the provided operation reservHotel().

Finally, we demonstrate the soundness of our approach.

Theorem 1. (soundness of matching) Assume two graph transformation
rules with positive application conditions p̂1 and p̂2. Then p̂2 ` p̂1 implies
p̂2 |= p̂1.

Proof. (Sketch) We show that Def. 7 entails Def. 6.1/2, respectively.

1. It is necessary to demonstrate that for each faithful transition via the second
rule there is a faithful transition via the first rule. By assumption, there exist
graph homomorphisms between the first and the second rules (hL, hK , hR),
forming a faithful transition (cf. Fig. 7 on the right). Now, both transitions
can be vertically composed using the composition of the underlying pullback
squares, and faithfulness of the composed transition follows from the fact
that the identification condition of dL1 follows from that of hL and dL2 , and
analogously for the right-hand side.

2. Given dL̂1
: L̂1 → G, we obtain dL̂2

: L̂2 → G by dL̂1
◦ hL̂ resulting in

the commutativity of diagram (3). Morphism dL2 = dL̂2
◦ l̂2 satisfies the

identification condition of p2 because of this commutativity and the fact
that hL̂◦ l̂2 satisfies the identification condition of p2. Moreover, we can show
that the remaining diagrams in Fig. 7 on the left commute, thus relating the
compatibility conditions for pre-condition and effect.

Completeness of syntactic matching requires a more refined relation at the
semantic level, establishing a connection between statements (1) and (2), that
we have not yet fully worked out. The final section summarizes the main results
and discusses more open problems.

4 Conclusion and Future Works

The paper has outlined basic ideas standing behind a UML-based approach
to service specification matching. This approach employs graph transformation

11

Application of Graph Transformation for Automating Web Service Discovery



rules with positive application conditions as a visual formal notation for modeling
operation contracts. A loose interpretation of the rules based on DPB graph
transitions has been used to obtain an operational understanding of contracts
and a corresponding semantic compatibility relation. Since this relation is defined
over the infinite set of transitions and, therefore, can not be directly computed,
we have established a syntactic relation providing sufficient conditions for the
semantic one.

In the future, we intend to refine the semantic relation adding constraints
on the compatibility between pre-conditions and effects, that will guarantee the
completeness of our approach. Also, it is desirable to extended the existing for-
malization to typed graphs with attributes [7] and sub-typing [1].

The practical application of the theoretical concepts presented in our work
is stipulated by finding an adequate XML-representation of contracts, and tool
support for computing the syntactic matching relation.

References

1. R. Bardohl, H. Ehrig, J. de Lara, O. Runge, G. Taentzer, and I. Weinhold. Node
type inheritance concepts for typed graph transformation. Fachberichte Informatik
2003-19, Technical University Berlin, 2003.

2. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

3. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation, Part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations, pages 163–245. World Scientific,
1997. Preprint available as Tech. Rep. 96/17, Univ. of Pisa, http://www.di.unipi.
it/TR/TRengl.html.

4. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

5. D. Fensel and C. Bussler. The web service modeling framework. 2003.
6. R. Heckel, H. Ehrig, U. Wolter, and A. Corradini. Double-pullback transitions and

coalgebraic loose semantics for graph transformation systems. Applied Categorical
Structures, 9(1), January 2001. See also TR 97-07 at http://www.cs.tu-berlin.
de/cs/ifb/TechnBerichteListe.html.

7. R. Heckel, J. Küster, and G. Taentzer. Confluence of typed attributed graph
transformation systems. In A. Corradini and H.-J. Kreowski, editors, Proc. 1st
Int. Conference on Graph Transformation (ICGT 02), Barcelona, Spain, Lecture
Notes in Comp. Science. Springer-Verlag, October 2002.

8. H. Kreger. Web services conceptual architecture (WSCA 1.0), May 2001. http:

//www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.
9. C. Pahl. An ontology for software component matching. In M. Pezze, editor, Fun-

damental approaches to software engineering: 6th international conference, FASE
2003, volume 2621 of LNCS, pages 6–21. Springer, 2003.

10. A.M. Zaremski. Signature and specification matching. PhD thesis, Carnegie Mellon
University, Pittsburg, Pa., January 1996.

12

A. Cherchago


