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Abstract— Assistance to people during rehabilitation has to
be adapted to their needs. Too little help can lead to frustration
and stress in the user; an excess of help may lead to low
participation and loss of residual skills. Robotic rollators may
adapt assistance. The main challenge to cope with this issue is to
estimate how much help is needed on the fly, because it depends
not only on the person condition, but also on the specific
situation that they are negotiating. Clinical scales provide a
global condition based estimation, but no local estimator based
on punctual needs. Condition also changes in time, so clinical
scales need to be recalculated again and again. In this paper
we propose a novel approach to estimate users’ condition in
a continuous way via a robotic rollator. Our work focuses
on predicting the value of the well known Tinetti Mobility
test from spatiotemporal gait parameters obtained from our
platform while users walk. This prediction provides continuous
insight on the condition of the user and could be used to
modify the amount of help provided. The proposed method
has been validated with 19 volunteers at a local hospital that
use a rollator for rehabilitation. All volunteers presented some
physical or mental disabilities. Our results sucessfully show a
high correlation of spatiotemporal gait parameters with Tinetti
Mobility test gait (R2 = 0.7) and Tinetti Mobility test balance
(R2 = 0.6).

I. INTRODUCTION

Population is getting older. The elderly are projected to
grow by 56 per cent until 2030 [1]. In addition, a high
percent of population aged 16 and over declared a severe
disability [2]. There are not enough care giving professionals
to cover these needs, so in extreme many of these people
require institutionalization. Assistive robots may improve the
autonomy and the quality of life of people with dependency
[3] to avoid these problems. Medical specialists recommend
to use a variety of assistive devices depending on the user
requirements [4]. In this paper we focus on smart rollators
(Fig. 1) which are a useful support for activities of daily
living (ADL).

Walking assistance and fall prevention have been exten-
sively investigated in the field of smart rollators [5], [6], [7],
[8], [9]. However, only a few works [10], [11] propose to
adjust the amount of assistance. Adjustment is critical for
rehabilitation purposes. Unnecessary assistance provokes a
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Fig. 1. The user 8 walks with i-Walker platform

decrease of physical and mental activities, increasing the risk
of a disuse syndrome [12]. Too little help may lead to failure,
frustration and stress.

Some works on help adjustment define different states
depending on user posture [13]. When unusual states are
detected, they reactively change the amount of help. How-
ever, they do not analyze how much help different users
may need if they are in the same state. Another approach
takes into account the user condition as provided by medical
staff feedback [10]. They manually adjust some rollator
parameters in order to modify the amount of help beforehand.
These solutions obviously depend on clinicians’ feedback
and can not adapt to condition changes or special situations
unless a new clinical assessment is performed. [11] excludes
clinical intervention by using the center of rotation to evalu-
ate the user condition. However, this parameter needs to be
calibrated from a test without assistance. If its value changes
in time, it needs to be recalibrated.

In this work we propose a novel approach to unsupervis-
edly estimate user condition using only spatiotemporal gait
parameters obtained on the fly by the sensors in a robot
rollator. We will correlate those parameters with the well
known Tinetti Mobility Test [14] while users walk. Thus,
we will isolate the most relevant parameters that provide the
same information than Tinetti does, only these parameters
can be unsupervisedly obtained any time while users walk.
The main contributions of this work are: i) normalization
and scaling of spatiotemporal gait parameters related to user
condition; ii) obtaining a prediction of Tinetti Mobility Test
using only spatiotemporal gait parameters; and iii) validation
with a set of volunteers presenting a diversity of physical
and/or cognitive disabilities. Our results have been successful
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in every case. We expect to use this estimation in the future
to adapt the amount of help provided by the rollator to users
in a continuous way.

II. METHODOLOGY

A. The i-Walker platform and our gait analysis algorithm

We use the smart rollator i-Walker [15]. It is a standard
rollator frame with force sensors embedded in its handlebars
and encoders in both wheels (Fig. 1).

In our previous work [16] we used i-Walker to obtain
meaninful spatiotemporal gait parameters from different
challenged users. Our results validated that the chosen set
of spatiotemporal gait parameters is coherent with the user
diagnosed condition. However, we still did not use the
parameter set to estimate how much help each user required
because we needed to combine those parameters into a single
estimation. In this work, we obtain that estimation using only
the handlebar force sensors and the wheels odometry. Unlike
other solutions which include cameras or wearable sensors,
estimation can be obtained anywhere, in everyday conditions
and for extended periods of time.

The gait analysis algorithm presented in [16] returns 7
parameters (Table I). Some parameters as UserSupport or
StepT ime depend on body side. We obtain average and
standard deviation of each parameter for a period of time. It
total there are 18 features to be analyzed {P1, P2, ..., Pn}.

B. Test population

Testing assistive devices with users with disabilities is
usually challenging, so many works in this area tend to test
with healthy [7], [8], [17], [18] or simulated users [11]. Other
works focus on specific groups of users, e.g. Parkinson [19]
or stroke [20]. Our goal is to define a general estimation
of rollator user condition. Therefore, we have chosen a set
of volunteers as varied as possible at the Hospital Regional
Universitario de Malaga and Fondazione Santa Lucia. Our
volunteers had a variety of cognitive and/or physical dis-
abilities (Table II). We imposed only two restrictions to our
volunteers, they had to: i) be able to walk with the aid of a
rollator; and ii) support some weight while walking on the
rollator. With the second restriction, we discarded users who
could walk without any aid.

Our tests include 19 volunteers: 13 women and 6 men.
They are in average 67.47±8.86 years old (range 46 − 80
years). Table II shows their neurological and/or physical
disabilities. We asked clinicians to provide the Tinetti scale
results for every volunteer, so we could correlate gait pa-
rameters with Tinetti Balance (TBAL) and Gait (TGAIT ).
The table includes body size parameters for each volunteer,
because parameters like stride length or user support depends
on weight (w0) and leg length (l0) and they need to be nor-
malized. The cognitive disabilities in our volunteers include
Parkinson, dementia and intellectual disability. The physical
disabilities include amputees and a variety of fractures. The
Parkinson and Dementia patients were at the end of their
rehabilitation process and their condition did not change.

C. Mobility assessment and proposed test

As commented, clinicians provided the Tinetti Mobility
Test[14] for our volunteers. This test is divided into two
steps: one to measure the balance (TBAL), and another to
evaluate the gait function (TGAIT ). TBAL is related with
fall risk and equilibrium issues. TGAIT depends on how users
walk. A healthy volunteer can obtain a maximum of 28 point:
16 point for a perfect balance and 12 point for a perfect gait
function.

Fig. 2. Rehabilitation room map (approximately 128m2)

After finishing their Tinetti Mobility Test, volunteers
walked freely around in the rehabilitation room (Fig. 2) for
3 minutes. Their paths needed to include steering right and
left at least once smoothly and once sharply, plus a 10 meter
straight walk. Further than that, the path changed during the
sessions, depending on obstacles around and users’ decisions.
Other patients and the medical staff were allowed to walk
freely in the same room during tests on purpose.

III. PREDICTING GAIT AND BALANCE FROM
SPATIOTEMPORAL GAIT PARAMETERS

This section proposes a methodology to predict the gait
and balance indicators proposed in Tinetti Mobility Assess-
ment using only spatiotemporal gait parameters that can be
extracted anytime on the fly from the onboard sensors of a
smart rollator. The main advantage of this approach is that
no medical intervention nor previous training is required to
estimate how much help users may need depending on their
gait and balance. Thus, this estimation can be obtained in a
continuous, unsupervised way.

A. Data preprocessing

As commented, spatiotemporal gait parameters
{P1, P2, ..., Pn} are affected by the user’s body size,
e.g. tall people tend to walk with larger SpL and lower
CAD than smaller people and UrS obviously depends on
the people weight. [21] proposes to scale all gait data using
only leg length l0 and user weight w0.

Following the guidelines provided by [21], we divided our
spatial parameters (SdL, SpL) by the leg length l0. Also,
temporal parameters (SdT, SpT,CAD) have been divided
by
√

lo
g . This factor is obtained from the rate of acceleration

with respect to space. WV is a spatio-temporal parameter;
therefore it has been divided by l0 and multiplied by

√
l′o
g .

Also, force parameter UsR has been divided by 1
m0g

. After
scaling, we have normalized parameters {P ′1, P ′2, ..., P ′n}.



TABLE I
SPATIOTEMPORAL GAIT PARAMETERS

Name Acronym Description Unit Side

Cadence CAD Number of steps per minute step
min

No

Stride Time SdT Time difference between one step and the next in the same side s
Left

Right

Step Time SpT Time difference between one step and the next one s
Left

Right

Stride Length SdL Length difference between one step and the next in the same side m
Left

Right

Step Length SpL Length difference between one step and the next one m
Left

Right
Walking Velocity WV Number of steps per minute m

s
No

User Support UrS Amount of weight that users support in rollators. Directly related with weight-bearing. N
Left

Right

TABLE II
USERS CONDITION AND BODY SIZE

Age Gender Neurological Physical TBAL TGAIT w0 l0

65 W - Periprosthetic femur fracture (Left) 13-15 10-12 75kg 0.9m
63 W - Hip arthroplasty (Right) 4-5 2-6 86.4kg 0.96m
74 M - Hip fracture, calcaneal and metacarpal (Left) 14-16 8-10 57kg 0.85m
68 W - Left above-knee amputation. CREST syndrome 7-12 3-6 56kg 0.95m
58 M Intellectual disability Right above-knee amputation 9 7-8 96.7kg 1.1m
70 M Mild parkinson - 13 12 75kg 0.93m
80 W Mild parkinson - 14 10 63kg 0.75m
63 M Moderate parkinson - 8 12 91kg 0.97m
78 W Moderate parkinson - 10 10 61kg 0.0.81m
67 W Moderate dementia - 11 10 55kg 0.85m
74 M Mild parkinson - 13 12 73kg 0.83m
71 M Isquemia (Left) - 12 6 72kg 0.99m
71 W Mild parkinson - 13 11 68kg 0.75
73 W Mild parkinson - 15 11 74kg 0.86m
78 W Mild dementia - 15 11 74kg 0.86
78 W Mild dementia - 16 12 52kg 0.79

At this point, there is a high degree of correlation exist in
the normalized parameters that we plan to use for prediction.
For example, WV depends on SpL and CAD. Other param-
eters like SdL and SpL are also correlated. The Variance
Inflation Factor (VIF) for our parameter after scaling is
883.43 in average (Fig. 3). It indicate a high multicollinearity
in our data. Multicollinearity reportedly makes estimation
very sensitive to slight changes[22].

Fig. 3. VIF of gait parameters

B. Multivariate regression: PCR and PLS

In order to reduce multicollinearity and check the corre-
lation between our gait parameters and Tinnetti TBAL and
TGAIT , we have analyzed two potential multivariate regres-
sion methods: the principal component regression (PCR)
[23] and partial least squares (PLS) [23]. These methods

have been designed to deal with situations with correlated
dependent variables and few samples. We use the pls R
package implementation of both methods [24].

PCR is a multivariate regression that uses principal com-
ponent analysis (PCA) to reduce multicolinearity before
applying a linear regression to resulting data. PCA is a
statistical procedure that uses an orthogonal transformation
to maximize variability in analyzed data by returning a new
set of variables called principal components. The (chosen)
number of principal components m is lower or equal to
the original number of parameters n. If m increases, then
the multivariate variability increases too. In our case, PCA
generates linear factors (loading)

{
αC1
1 , αC1

2 , ..., αCm
n

}
to

transform the scaled spatiotemporal gait parameters for user
j
{
P ′j1 , P

′j
2 , ..., P

′j
n

}
to the new PCA components (scores){

Cj
1 , C

j
2 , ..., C

j
m

}
. Equation 1 shows the transformation for

component Ck and user j.

Cj
k = αCk

1 P ′j1 + αCk
2 P ′j2 + αCk

3 P ′j3 ...α
Ck
n P ′jn (1)

Afterwards, PCR does linear regression using the obtained
components. A m regression coefficients are obtained from
the linear regression {β1, β2, ..., βm}. Using these coeffi-
cients, the Tinetti Mobility factors for new user i with
scaled spatiotemporal gait parameters

{
P ′i1 , P

′i
2 , ..., P

′i
n

}
can



be estimated using equation 2.

Tpred = β1

(
αC1
1 P ′i1 + αC1

2 P ′i2 + ...+ αC1
n P ′in

)
+β2

(
αC2
1 P ′i1 + αC2

2 P ′i2 + ...+ αC2
n P ′in

)
...

+βm

(
αCm
1 P ′i1 + αCm

2 P ′i2 + ...+ αCm
n P ′in

) (2)

PLS works like PCR, but uses a different approach. PLS
searches for directions that have high variance and correla-
tion with respect to the dependent variable, in opposition to
PCA which focus only on high variance [25]. PCR does not
take into account correlation between the dependent and the
independent variables and hence, it is usually suboptimal for
prediction.

PLS also represents dependent variables using a new base
with a number of components m. It also has a loading factor
to transform scaled spatiotemporal gait parameters into the
scores. Then, it uses these scores to find a linear regression
model.

C. Evaluating our models

An important aspect when modeling a response variable is
the cross validation (CV) technique. CVs split observations
in two: a part for learning purposes and another part for
testing purposes. These techniques limit overfitting in the
resulting models. In this paper, we apply a k-fold cross
validation with k = 10 to evaluate the regression with all
users [26].

We are going to evaluate 2 models (TBAL and TGAIT )
using 2 multivariate regression (PCR and PLS) with a
number of components 1 ≤ m ≤ 18. We are going to use
the root mean squared prediction error (RMSEP) [27] and
the multiple coefficient of determination (R2) [24] to select
the best possible combination.

Let Tpred be the prediction function for PCR or PLS, Lk

the test set in our k-folder cross validation,
{
Cj

1 , C
j
2 , ..., C

j
m

}
the independent variables and yj the response variable. The
RMSEP is calculated as:

RMSEP =

√√√√ K∑
k=1

1

|Lk|
∑
j∈Lk

(
Tpred(Cj

1 , ..., C
j
m)− yj

)2
(3)

Let ȳ be the mean of the response variables. The R2
is defined as the ration between the variances of the fitted
values and real values of the dependent variable:

R2 =

K∑
k=1

1

|Lk|

∑
j∈Lk

(
Tpred(Cj

1 , C
j
2 , ...)− ȳ

)
∑

j∈Lk
(yj − ȳ)

(4)

Low values of RMSEP represent a better model, i.e. fitted
values are more similar to the real ones and it is not bounded.
On the other hand, R2 is bounded between 0 and 1 and
any value close to 1 means that the dependent variable can

(a) RMSEP TBAL (b) R2 TBAL

(c) RMSEP TGAIT (d) R2 TGAIT

Fig. 4. R2 and RMSEP metrics for TBAL and TGAIT using PCR and
PLS with all posible number of components

be predicted from the independent variables with a minimal
error.

Fig.4 shows R2 and RMSEP metrics for TBAL and
TGAIT using PCR and PLS with all possible numbers of
components. The best combination is the one presenting the
highest R2 value and the lowest RMSEP value.

For TBAL, PLS provides better result. A low RMSEP
value and high R2 value indicates that the depended variables
can be predicted with an acceptable error. We observe four
possible m values in R2 priority (Fig. 4(b)): 4, 12, 13 and 16.
In RMSEP we also observe the same four possible m values
(Fig. 4(a)). The error difference from selecting 4 components
to selecting more is less than 1% in R2 and less than 0.0368
in RMSEP. These small improvements do not compensate an
increase in the number of components, so we set for m = 4.

For TGAIT , PCR provides better results. We observe three
possible m values in R2 priority (Fig. 4(d)): 3, 4 and 5.
In RMSEP we observe the same three values (Fig. 4(c)).
As in the previous case, the difference between selecting 3
components or more is less than 0.5% in R2 and less than
0.0123 in RMSEP. Therefore we set for m = 3.

Fig. 5 shows the prediction using the selected number
of components in both cases. TGAIT predictor outperforms
TBAL predictor. It has a lower RMSEP value and a higher
R2 value. This difference was expected. We are using spa-
tiotemporal gait parameters to measure equilibrium and fall
risk in TBAL, wheras TGAIT focuses on the user gait, and
hence, it can be predicted more accurately by using these
parameters.



(a) TBAL prediction m = 4 (b) TGAIT prediction m = 3

Fig. 5. Cross validated prediction for Tinneti mobility test

D. Extracting the model

Once the number of components for TGAIT and TBAL

is selected and results have been validated, our model for
estimating a new dependent variables using the proposed
spatiotemporal gait parameters can be obtained. Using the
loading αCm

n and the regression coefficients βm values we
can rearrange the equation 2 in order to obtain a compact
equation:

Tpred = P ′i1

(
m∑
r=1

βrα
Cr
1

)

+P ′i2

(
m∑
r=1

βrα
Cr
2

)
...

P ′is

(
m∑
r=1

βrα
Cr
s

)
(5)

It only needs to store the
(∑m

r=1 βrα
Cr
s

)
values to use

the predictor function with the scaled parameters. Table III
shows these factor for the TGAIT and TBAL prediction
function. Any new user condition could now be estimated
as the product of their scaled spatiotemporal gait parameters
(obtained at any moment of a walk using a time shifting
window) by the factors described in table III.

We noticed in our tests that the model fitted volun-
teers affected by neurological disability (RMSE(T gait

pred) =

1.51 and RMSE(T bal
pred) = 1.97) better than the rest (

RMSE(T gait
pred) = 2.3 and RMSE(T bal

pred) = 3.4). This
happens because all people in the neurological disability
group were tested at the end of their rehabilitation process.
At that point, they were already better and their physical
condition allowed them to walk almost like healthy users
(TGAIT = 10.56 ± 1.94, TBAL = 12.44 ± 2.51). The other
volunteers had poorer parameter values (TGAIT = 7.05±2.6,
TBAL = 10.84±4.07) and a much larger parameter variance,
because they were at different states of recovery. Hence, the
model provides a better fit for the neurological disability
group in average.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented a methodology to estimate
user condition from gait parameters in challenged people

TABLE III
LOADING FACTORS

Pmter. T gait
pred T bal

pred

CAD 0.2707 -1.7109
SdTav -0.3089 -0.2942
SdTsd -0.2852 -0.7359
SdLav 0.3216 0.6483
SdLsd 0.0642 0.5542

SpTLeft
av -0.3256 -0.3405

SpTLeft
sd -0.2625 -0.1382

SpTRight
av -0.2527 -0.2129

SpTRight
sd -0.2878 -1.0209

SpLLeft
av 0.2109 0.9142

SpLLeft
sd 0.0606 -0.0529

SpLRight
av 0.2314 0.4968

SpLRight
sd 0.0626 0.1038

WV 0.2338 1.4451
UrSLeft

av 0.1128 0.5096
UrSLeft

sd -0.0545 -0.7104
UrSRight

av 0.1202 0.6676
UrSRight

sd -0.0669 -1.0508

using a rollator equipped with force sensors and odometry.
Unlike other works, our method does not require feedback
from medical staff and estimation can be performed unsuper-
visedly, anytime and when users are performing any ADL.
Our methodology imposes a single restriction to rollator
users: they must support some weight on the platform. This
is a loose restriction because, otherwise, they would not
need the platform to walk. Our rollator can be used for long
term monitoring and during the whole rehabilitation process.
Our method is not as accurate as medical staff feedback.
It has two errors in the response variable. The first one
is introduced by the gait analysis algorithm, which has a
small error associated to the spatial 3.53±0.0068%, temporal
67.26±50.38ms and support 0.98N parameters. The second
one is introduced by the regression, the RMSEP values are
TGAIT = 1.34 and TBAL = 2.31. Nevertheless, results have
proven that estimation is valid for a wide range of conditions:
it has been validated with 19 volunteers presenting a variety
of cognitive and physical disabilities.

Results have successfully proven that user condition pre-
diction can be defined using the Tinetti Mobility Assessment,
i.e. we could provide continuous assessment of TGAIT and
TBAL to users and/or medical staff and we could use those
values to adjust assistance on a need basis in the future.
Hence, these results validate our proposal to estimate the
user condition using only the spatiotemporal gait parameters
on a rollator.

Future work will focus on extending this method to other
mobility assessment tests as Berg Balance Scale [28] or
balance evaluation system test [29], so we can explore the
full potential of smart rollators as unsupervised evaluation
tools. We will also use the user condition prediction in a
collaborative control system [30] to continuously adapt the
amount of help provided to users to their needs.
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