
Charla invitada, Dpto. Matemática Aplicada,
a las 12:15 del lunes 12 de Septiembre de 2016
en la Sala de Grados B de Telecomunicaciones

Abstract:
Integer Linear Programming for Sequence Problems: A general
approach to reduce the problem size
Peter Zörnig
University of Brasília, Department of Statistics
(e-mail: peter@unb.br, or peter.zoernig@gmx.net

Sequence problems belong to the most challenging interdisciplinary topics
of the actuality. They are ubiquitous in science and daily life and occur, for
example, in form of DNA sequences encoding all information of an
organism, as a text (natural or formal) or in form of a computer program.
Therefore, sequence problems occur in many variations in computational
biology (drug development), coding theory, data compression, quantitative
and computational linguistics (e.g. machine translation).
 In recent years appeared some proposals to formulate sequence
problems like the closest string problem (CSP) and the farthest string
problem (FSP) as an Integer Linear Programming Problem (ILPP). In the
present talk we present a general novel approach to reduce the size of the
ILPP by grouping isomorphous columns of the string matrix together. The
approach is of practical use, since the solution of sequence problems is very
time consuming, in particular when the sequences are long.

About the invited speaker:
Peter Zörnig studied mathematics and physics at the University of
Dortmund and received his PhD at Fernuniversität Hagen/Germany in
1990. He is currently associate professor at the Statistical Department of
the University of Brasília/BRAZIL. He has published several books and
research papers in the areas of linear programming, mathematics for
economists, graph theory, probability and quantitative linguistics. More
information is available on the home page of his department:
www.est.unb.br

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62909352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:peter@unb.br
http://www.est.unb.br/
mailto:%20peter.zoernig@gmx.net

1

Integer Linear Programming for Sequence Problems:

A general approach to reduce the problem size

Peter Zörnig

University of Brasília, Department of Statistics

1 Introduction:
Examples for (information) sequences:

DNA: ACAGTCAGT.... (alphabet with 4 nucletides)

 Codifies the entire information of an organism

Proteins: 2, 1, 15, 2, 20, 14, 12... (alphabet with 20 aminoacids)

Formalized text: 5, 4, 3, 4, 6, 2...

The elements represent e.g. the word type (adjective, verb...)

Computer program: ...

Areas of application:
Molecular Biology

 (e.g. development of generic drugs and diagnostic methods)

Coding Theory

Data compression

Quantitative and Computational Linguistcs (e.g. automatic translation)

Given the alphabet },...1{  and a set of sequences (strings)
 = { 1s ,…, ns }

m with

1s = (

1

1s ,…,
1

ms)

  

ns = (

ns1 ,…,
n

ms)

One seeks for a sequence t = (t1,…,,tm) that is as similar or as different as

possible to the given sequences

(for example, an insecticide must be as harmful as possible to insects and

as harmless as possible for persons and pets) .

2

2 Example of a String Problem

Definition: Let },...1{  be an alphabet. For s, t mΩ the Hamming

distance d(s, t) is defined as the number of positions at which s and t differ.

Example: }4,...1{ , m=8

s =(A, C, G, A, T, A, T ,G)

t = (A, T, G, A, G, C, T ,A) d(s, t) = 4

d(s, s) = 0

d(s, t) = d(t, s)

d(s, t) + d(u, t)  d(s, u)

Closest String Problem (CSP):

Given the string set  {s
1
,...,s

n
}with .),...,(1

mi

m

ii sss 

Determine a mt  that minimizes D(t) := ni ,...,1

max

 d(s
i
, t).

The problem is NP-hard.

3

3 The conventional model

Example: Given the following CSP with n=3,  4 and m=10:

 S =
















3

2

1

s

s

s

 =
















4112124132

4323434244

1124243443

LetVj be the set of characters appearing at position j (j=1,...,10).

For example, V1 = {2, 3, 4}, V2 = {3, 4}.

A sequence t = (t1,…,t10) can only be a candidate for a solution of the CSP,

if jj Vt  for j = 1,…,10.

Such a candidate (feasible solution) is codified by means of the variables

xi,j.

For j = 1,…,10 and iVj we define:

xi,j = 1 for tj = i,

xi,j = 0 otherwise

For the above example we obtain the variables

x3,1 x4,2 x4,3 x3,4 x4,5 x2,6 x4,7 x2,8 x1,9 x1,10

x4,1 x3,2 x2,3 x4,4 x3,5 x4,6 x3,7 x1,8 x3,9 x4,10

x2,1 x1,3 x2,5 x1,6 x2,7

and e. g. the feasible solution t = (3,4,1,4,3,2,2,2,3,4) is codified by

1 1 0 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0 1 1

0 1 0 0 1

4

Integer Linear Programming Model

 min d

 s.t.

d(t, s
1
) = 10 – x3,1 –x4,2 –x4,3 –x3,4 –x4,5 –x2,6 –x4,7 –x2,8 –x1,9 –x1,10  d

d(t, s
2
) = 10 – x4,1 –x3,2 –x2,3 –x4,4 –x3,5 –x4,6 –x3,7 –x1,8 –x3,9 –x3,10  d

d(t, s
3
) = 10 – x2,1 –x3,2 –x1,3 –x4,4 –x2,5 –x1,6 –x2,7 –x1,8 –x1,9 –x4,10  d

 
 jVi

jix , = 1 for j = 1,…,10

 xi,j  {0; 1}

Number of variables: 1+


m

j
jV

1
= 26

Number of constraints: n + m = 13

4 The improved model

Basic idea: “normalize” the problem and treat isomorphic columns

simultaneously by assigning them to the same group

Definition: Two vectors v = (v1,...,vn)
T
 and w = (w1,...,wn)

T
 over  are

called isomorphic, if and only if

 vi = vj  wi = wj for all i, j (1,…,n}.

Example:























2

1

4

4

1

 isomorphic























1

2

3

3

2

 not isomorphic























1

2

3

4

2

An isomorphism class corresponds to a partition of the set {1,...,n} of lines.

5

For n=3 exist at most 4 non-isomorphic columns, represented by:

















2

1

1

,
















1

2

1

,
















2

2

1

 and
















3

2

1

By substituting the columns of a CSP by its representation vectors, we can

normalize a CSP:

 Matrix of a CSP and normalized problem

Position 1 2 3 4 5 6 7 8 9 10

 S

1s

 3 4 4 3 4 2 4 2 1 1

2s

4 4 2 4 3 4 3 2 3 4

3s

2 3 1 4 2 1 2 1 1 4

Position 1 2 3 4 5 6 7 8 9 10

 T

1t 1 1 1 1 1 1 1 1 1 1
2t 2 1 2 2 2 2 2 1 2 2
3t 3 2 3 2 3 3 3 2 1 2

To a sequence s de S corresponds biuniquely a sequence t of T such that

d(s, is) = d(t, it) for all i 

A solution of T provides a solution of S.

6

Solution of a normalized CSP normalized (example):

By ordering the columns of T we obtain

 Normalized problem with reordered columns

Position 1 2 3 4 5 6 7 8 9 10

 T

1t 1 1 1 1 1 1 1 1 1 1
2t 1 1 2 2 2 2 2 2 2 2
3t 2 2 1 2 2 3 3 3 3 3

isomorphism

class

 1 2 3 4

A feasible solution t can be represented by means of the frequencies yi,j of

the character i in group j.

For example, the feasible solution t = (1,1│1│2,2│1,1,2,3,3) is codified by

 y1,1 = 2, y1,2 = 1, y1,3 = 0, y1,4 = 2,

 y2,1 = 0, y2,2 = 0, y2,3 = 2, y2,4 = 1,

 y3,4 = 2.

We obtain the integer linear programming problem

 min d

 s.t.

 10 – y1,1 – y1,2 – y1,3 –y1,4
 d

 10 – y1,1 – y2,2 – y2,3 – y2,4
 d

 10 – y2,1 – y1,2 – y2,3 – y3,4
 d

 y1,1 + y2,1 = 2,

 y1,2 + y2,2 = 1,

 y1,3 + y2,3 = 2,

 y1,4 + y2,4 + y3,4 = 5

 yi,j non-negative integers.

Obs.: For three given strings this model has only 10 variables and 7

constraints, independently of the sequence length!
In the conventional model the size increases linearly with the sequence

length.

Suppose e.g. that any column of the above table appears with frequency

300 (i.e. m=1200), the improved model solves the CSP easily, while the

conventional has 2701 variables and 1203 constraints.

7

General case:

 min d

 m- 


k

j

i
j jty

1

),( d for i=1,…,n

 


iv

i
jiy

1
, = mj for j=1,…,k

 yi,j non-negative integer

Solution Process in two phases

1) Solve the Linear Relaxation

2) Determine an (approximate) integer solution via rounding

Obs.: Only a small part of the solutions of the relaxation is non-integer.

Test problems for n=4
No. m N drelax dapprox dopt It.LP It. B&B

1 1554 6 683,25 684 684 16 50

2 1511 4 676 677 676 15 34

3 1584 4 701 702 701 15 28

4 1441 2 639,5 640 640 12 66

5 1336 6 596,25 597 597 15 42

6 1563 6 708,25 709 709 16 74

7 1751 6 800,75 801 801 17 31

8 1882 0 860 860 860 18 19

9 1973 2 890,5 891 891 16 24

10 1782 6 804,75 805 805 13 25

11 1616 4 728 729 728 12 91

12 1542 6 695,75 696 696 12 27

13 1425 4 641 642 641 12 31

8

14 1316 6 591,25 592 592 12 25

15 1231 2 553,5 554 554 12 25

16 1144 6 513,25 514 514 12 24

17 1028 4 461 462 461 13 18

18 1228 6 551,25 552 552 14 25

19 1356 4 608 609 608 14 34

20 1438 2 644,5 645 645 12 26

N: number of non-integer variables

drelax: objective value of the “relaxed solution”

dapprox: objective value of the approximate solution obtained by rounding

dopt: optimal value of the CSP

n=5 (In all cases it holds dapprox = dopt !):

No m N drelax dapprox It.LP

1 2974 8 1494,6 1495 61

2 3058 8 1543,8 1544 63

3 3005 8 1515,6 1516 68

4 3085 8 1556,8 1557 66

5 3148 8 1589,8 1590 71

6 3235 8 1634,8 1635 63

7 3328 8 1681,2 1682 59

8 3278 6 1655,8 1656 63

9 3034 8 1540,6 1541 62

10 2723 6 1384,6 1385 69

9

5 Farthest String Problem (FSP):

Given  = { 1s ,…, ns } with
is = (

is1 ,…,
i

ms) m .

Determine a string t that maximizes D(t) := ni ,...,1

min

 d(s
i
, t)

Case a) tV1
…Vm

 Case b) tV
m
 with V= V1 ... Vm

Example: S =
















2212122131

2323331212

1123211313

Case a) t{1,2,3}{1,3}{1,2,3}{1,2}{1,2,3}{1,2,3}

 {2,3}{1,2}{1,2,3}{1,2}

 Case b) t{1,2,3}
m
 V={1,2,3}

Def.: A column j is called incomplete, if Vj V

Incomplete columns can be easily handled, so we can restrict ourselves to

case a)

Model:
 max d

 m- 


k

j

i
j jty

1

),( d for i=1,…,n

 


iv

i
jiy

1
, = mj for j=1,…,k

 yi,j non-negative integers

10

Test Problems

 no. m N drelax dapprox max. error

 n=6,
 =5

k=15

 21 2794 8 2328.333 2328 0

 22 3305 10 2754.167 2754 0

 23 4394 9 3515.5 3514 1

 24 5487 12 4398.333 4398 0

 25 6034 11 5068.833 5067 1

 26 7856 10 6284.667 6282 2

 27 8698 6 7393.333 7393 0

 28 9482 8 7775.167 7773 2

 29 10670 10 8962 8961 1

 30 11355 8 9084.833 9084 0

 n=8,
 =7

k=28

 31 5530 13 4838.75 4838 0

 32 10420 14 8336.625 8335 1

 33 19673 10 17705.875 17705 0

 34 38912 13 33075.375 33074 1

 35 78452 9 67468.75 67468 0

 36 150230 8 130700.13 130698 2

 37 230722 10 189192.25 189189 3

 38 295015 12 236012.38 236012 0

 39 450723 8 396636.88 396633 3

 40 950643 13 751007.75 751006 1

Conclusões
The reduction principle applies also to other tyypes of sequence problems:

---closest substring problem

---farthest substring problem

---far from most strings problem

---problems with multiple criteria

Open questions:

---test the models for large numbers of strings

---what is the distribution of the number of incomplete columns and

 of the number k of isomorphism classes

---distributions of the parameter mj (size of isomorphism class j)?

Zornig examples

/* ZORN(2011), n=3<=w, Example 1 */

/* Objective function */

min: +d;

/* Constraints */

D1: 10-y11-y12-y13-y14 <= d;

D2: 10-y11-y22-y23-y24 <= d;

D3: 10-y21-y12-y23-y34 <= d;

E1: y11+y21=2;

E2: y12+y22=1;

E3: y13+y23=2;

E4: y14+y24+y34=5;

/* Integer definitions */

int d,y11,y12,y13,y14,y21,y22,y23,y24,y34;

/* ZORN(2011), n=3<=w, Example 2 */

/* Objective function */

min: +d;

/* Constraints */

D1: 1200-y11-y12-y13-y14 <= d;

D2: 1200-y11-y22-y23-y24 <= d;

D3: 1200-y21-y12-y23-y34 <= d;

E1: y11+y21=300;

E2: y12+y22=300;

E3: y13+y23=300;

E4: y14+y24+y34=300;

/* Integer definitions */

int d,y11,y12,y13,y14,y21,y22,y23,y24,y34;

Page 1 of 2

Zornig examples

/* ZORN(2011), n=4<=w, Example 3 */

/* Objective function */

min: +d;

/* Constraints */

D1: 1495-y11-y12-y13-y14-y15-y16-y17-y18-y19-y110-y111-y112-y113-y114

<= d;

D2: 1495-y11-y22-y23-y24-y25-y16-y17-y18-y29-y210-y211-y212-y213-y214

<= d;

D3: 1495-y21-y12-y23-y24-y15-y26-y17-y28-y19-y310-y211-y312-y313-y314

<= d;

D4: 1495-y21-y22-y13-y24-y15-y16-y27-y38-y39-y110-y311-y212-y313-y414

<= d;

E01: y11+y21=72;

E02: y12+y22=75;

E03: y13+y23=75;

E04: y14+y24=68;

E05: y15+y25=73;

E06: y16+y26=75;

E07: y17+y27=68;

E08: y18+y28+y38=141;

E09: y19+y29+y39=134;

E10: y110+y210+y310=138;

E11: y111+y211+y311=145;

E12: y112+y212+y312=142;

E13: y113+y213+y313=148;

E14: y114+y214+y314+y414=141;

/* Integer definitions */

int d,y11,y12,y13,y14,y15,y16,y17,y18,y19,y110,y111,y112,y113,y114,

 y21,y22,y23,y24,y25,y26,y27,y28,y29,y210,y211,y212,y213,y214,

 y38,y39,y310,y311,y312,y313,y314,y414;

Page 2 of 2

Improved optimization modelling for the closest string
and related problems

Peter Zörnig ⇑
Department of Statistics, Institute of Exact Sciences, University of Brası́lia, 70910-900 Brası́lia-DF, Brazil

a r t i c l e i n f o

Article history:
Received 3 February 2011
Received in revised form 6 May 2011
Accepted 8 May 2011
Available online 1 June 2011

Keywords:
Closest string problem
Motif finding
Computational biology
Mathematical programming
Modelling

a b s t r a c t

We present a new integer linear programming model for the closest string problem. This
model requires considerably less variables and constraints than the popular binary linear
programming model used for this purpose. Due to the reduced size it is easier to handle
rounding errors when an LP relaxation technique is used to solve the problem.

The proposed model is particularly useful for closest string problems where a small set of
long sequences is given. In this case, the optimal string or a good approximate solution can
be usually obtained by rounding the optimal solution of the LP relaxation to the nearest
integers.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The closest string problem (CSP), also known as the motif finding problem, represents an active research topic of combi-
natorial optimization with many practical applications, especially in computational biology and coding theory, see e.g. [1–9].

We start with an alphabet X, i.e. a finite set of elements, called characters. Without loss of generality we assume to be
X = {1, . . . ,x} with x 2 IN. Let Xm denote the set of all sequences of length m with elements chosen from X. For any two
sequences s, t 2Xm the Hamming distance d(s, t) between s and t is defined as the number of positions in which s and t differ.
It can be easily shown that d(s, t) satisfies the properties of a distance, in particular the triangle inequality. The CSP is defined
as follows:

Given a set R = {s1, . . . ,sn} of sequences with si ¼ si
1; . . . ; si

m

� �
2 Xm for i = 1, . . . ,n, find a sequence t 2Xm such that

D(t) = maxi=1,. . .,nd(si, t) is minimal.
From the triangle inequality it follows immediately that D(t) can not be less than dHD(R)/2e, where HD(R) = maxs,t2Rd(s, t)

denotes the Hamming diameter of R [10, p. 2054], [11, Lemma 1]. Also, by dxe and bxc we will denote the smallest integer
greater than or equal to x and the largest integer less than or equal to x, respectively.

2. The conventional model

The most widely used approach to solve the CSP which is known to be NP-hard consists in modelling it as an integer linear
programming problem as follows, see e.g. [1,2,7,8]. Consider the CSP matrix

0307-904X/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.apm.2011.05.015

⇑ Fax: +55 61 31076768.
E-mail address: peter@unb.br

Applied Mathematical Modelling 35 (2011) 5609–5617

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://dx.doi.org/10.1016/j.apm.2011.05.015
mailto:peter@unb.br
http://dx.doi.org/10.1016/j.apm.2011.05.015
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm

Reduced-Size Integer Linear Programming Models

for String Selection Problems:

Application to the Farthest String Problem

PETER ZÖRNIG

ABSTRACT

We present integer programming models for some variants of the farthest string problem. The
number of variables and constraints is substantially less than that of the integer linear pro-
gramming models known in the literature. Moreover, the solution of the linear programming-
relaxation contains only a small proportion of noninteger values, which considerably simplifies
the rounding process. Numerical tests have shown excellent results, especially when a small set
of long sequences is given.

Key words: computational biology, far from most strings problem, farthest string problem,

mathematical programming, modeling.

1. INTRODUCTION

String selection and comparison problems have numerous applications, principally in computational

biology, but also in coding theory, data compression, and quantitative linguistics. For instance, genomic

and proteomic data can be modeled as sequences (strings) over the alphabets of nucleotides or amino acids; see,

for example, Blazewicz et al. (2005), Boucher (2010), and Pappalardo et al. (2013). The formalization of

problems like motif recognition and similar tasks leads to diverse combinatorial optimization problems like the

closest (sub) string problem, the farthest (sub) string problem, the close to most strings problem, the far from most

strings problem (FFMSP), and the distinguishing string selection problem; see, for example, Soleimani-damaneh

(2001), Lanctot et al. (2003), Meneses et al. (2005), Festa (2007), Zörnig (2011), and Ferone et al. (2013).

In the present article we study some variants of the farthest string problem (FSP) that are generally NP-

hard. The solution of these problems is very difficult, in particular in most biological applications where the

sequences are very long; see Blazewicz et al. (2005) and Zörnig (2011, p. 3). FSPs are frequently modeled

as (zero–one) integer linear programming (ILP) problems; see, for example, Lanctot et al. (2003), Meneses

et al. (2005), and Festa and Pardalos (2012). Our main objective is to generalize the size reduction approach

of Zörnig (2011), which has so far never been addressed in the literature, and apply it to the FSP. We show

that at least for a small set of sequences of arbitrary length, several variants of the FSP can be solved

(exactly or with a very small error in the optimal value), by merely solving the linear programming (LP)

relaxation of the ILP problem and subsequent rounding of noninteger solution values. After introducing the

necessary concepts, we model the FSP as an integer linear programming problem, considering two cases of

Department of Statistics, Institute of Exact Sciences, University of Brası́lia, Brası́lia, Brazil.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 22, Number 8, 2015

Mary Ann Liebert, Inc.

Pp. 729–742

DOI: 10.1089/cmb.2014.0265

729

	Charla Zornig RIUMA 00
	Charla Zornig RIUMA 01
	Charla Zornig RIUMA 02
	Charla Zornig RIUMA 03
	Charla Zornig RIUMA 04

