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Abstract

Production companies use raw materials to compose end-products. They often
make different products with the same raw materials. In this research, the focus
lies on the production of two end-products consisting of (partly) the same raw
materials as cheap as possible. Each of the products has its own demand and
quality requirements consisting of quadratic constraints.

The minimization of the costs, given the quadratic constraints is a global opti-
mization problem, which can be difficult because of possible local optima. There-
fore, the multi modal character of the (bi-) blend problem is investigated. Stan-
dard optimization packages (solvers) in Matlab and GAMS were tested on their
ability to solve the problem. In total 20 test cases were generated and taken from
literature to test solvers on their effectiveness and efficiency to solve the problem.

The research also gives insight in adjusting the quadratic constraints of the
problem in order to make a robust problem formulation of the bi-blend problem.
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Chapter 1

Introduction

1.1 General goal

This master thesis is written for Wageningen University and the University of
Almeria. In order to write a good report the University of Wageningen has set
some predefined standards. These standards are described in the Msc Thesis
protocol of the WUR. The general goal of a thesis written by a WUR-student is
the following: “The overall goal of the thesis is the development of research skills
and the ability to analyze and present research results in a systematic and clear
way. The thesis is the culmination of the MSc study program in which the student
will have to show that he/she is able to design and conduct social science research
at an academic level and is able to theoretically reflect on a particular field of
research relevant to the MSc program at hand.” [1]

1.2 Global optimization

This thesis is about a specific global optimization problem. The objective of a
global optimization method is to find the best possible solution (global optimum)
of a problem by modifying decision variables in order to minimize (or maximize)
an objective function, while there may also exist some local optima. Sometimes
the decision variables have to fulfil some requirements.

This can be compared with the search of the highest point above sea level in
the world. When we want to maximize the height (objective) of mountains in the
world we can vary the location by adjusting the longitude and the latitude. These
are the decision variables for this problem. A local optimum in the region of the
Alps will be Mont Blanc, in the region of Africa this will be the Kilimanjaro and in
the region of Asia the Mount Everest. The global optimum however is the Mount
Everest since this is the highest mountain in the world. In Table 1.1 the main
characteristics of optima are described. We can see that the local optimum for
Asia is also the global optimum for the world. This gives us the following property:

Global optimum ⊂ Local optima.
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Chapter 1: Introduction

Global optimization problems can be difficult because of the existence of local
optima. When one would only search in the Alps and conclude Mont Blanc is
highest in that region, one could easily think this is the highest mountain of the
world since in its direct neighbourhood there is no mountain which is higher than
Mont Blanc.

Table 1.1: Optima

Type Corresponding mountain
Global optimum Mount Everest
Local optimum Mont Blanc, Kilimanjaro, Mount Everest

This thesis is about a global optimization problem in which minimizing a
function given some decision variables is the objective. We will use the global
optimization problem formulation from [5] to describe optimization problem in a
mathematical way as is shown in (1.1).

min{f(x)}, x ∈ X ⊂ Rn, (1.1)

in which f(x) is a real valued continuous function and x varies in a continuous
way in a set X with a dimension n. Formula (1.1) describes the minimization of a
function f . We are trying to find the global minimum, where there also may exist
local minima.

In Figure 1.1, function f(x) is plotted of which we want to know the minimum
value on the interval 0 ≤ x ≤ 20. In the figure we can see four local optima
that are minimal in their environment. The lowest local optimum is the global
optimum and the value we want to know.

-3

-2

-1

0

1

2

3

4

5

6

7

0 5 10 15 20

Global 
optimum

Local optima

Local 
optimum

Figure 1.1: Four local optima for f(x) = 2 cos(x)− x
4 + 4, 0 ≤ x ≤ 20.

In this thesis, the global optimization problem of mixing raw ingredients in
order to produce two different products will be discussed; the so-called bi-blending
problem.
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Chapter 1: Introduction

1.3 Problem statement

Companies use raw materials to make products. In fact, they often make different
products with the same raw materials. In this research we focus on a problem with
two products consisting of (partly) the same raw materials. Each of the products
has its own demand and quality requirements consisting of quadratic constraints.
In order to optimize this so called bi-blending problem we need to find robust
solutions. To decide whether a solution is robust the following definition of a
robust decision is used: “A robust decision is the best possible choice, one found
by eliminating all the uncertainty possible within available resources, and then
choosing, with known and acceptable levels of satisfaction and risk” [11]. This
means for example that a found optimal solution must stay feasible despite some
known variation in dosage of a raw material.

1.4 Vision

The main goal of the project is to investigate methods to optimize and find robust
solutions of bi-blending problems with quadratic constraints. We need to develop
a way to generate (robust) solutions numerically. This can either be done with
existing software and/or by designing new algorithms. The vision of this thesis is
to find a standard procedure to optimize bi- blending problems in a robust way.

1.5 Research questions

Corresponding to the problem statement and vision the main question of this
thesis is:

• Which methods can be used to optimize and find robust solutions of bi-
blending problems with quadratic constraints?

This question is subdivided in four sub questions:

1. How can the optimization problem be described?

2. What is the multimodal character of the problem?

3. What is the potential of existing standard software?

4. How can the robustness of solutions be determined?

1.6 Structure of this report

In Chapter 2, the blending problem is discussed, in Chapter 3 the bi-blending prob-
lem. Chapter 4 gives results of standard optimization software on (bi-) blending
problems and in Chapter 5 the robustness problem is further investigated.
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Chapter 2

Blending with quadratic
constraints

In the food industry, raw materials are put together and processed to produce
products. The easiest way of processing is done by putting different raw materials
together to mix them. These mixing processes do not only occur in the food sector
but also in other types of industries.

2.1 Unit simplex and Cost function

The blending of raw materials can be described in a mathematical way. A vector
x with a number of elements equal to the amount of raw materials is used to
indicate the fraction (xi) of every raw material (i) used in the mix. All fractions
in the mix have to add up to 1. A recipe (of a mix) is mathematically defined by
the unit simplex:

S = {x ∈ Rn |
n∑
i=1

xi = 1; xi ≥ 0}. (2.1)

where n denotes the number of raw materials. In Figure 2.1b, the unit simplex
is given in R3 (three raw materials). In this simplex we can find 7 possible sets
depending on the composure and the number of raw materials involved. Namely,
a recipe consisting of only: x1, x2 or x3, denoted by the points; a recipe consisting
of: x1 and x2, x1 and x3 or x2 and x3, denoted by the lines; and a recipe consisting
of x1, x2 and x3, denoted by the triangular area.
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Chapter 2: Blending with quadratic constraints
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Figure 2.1: UnitSimplex in R2 and R3

In blending problems, the objective is to find a recipe x that minimises the
cost of the material. The cost function is given by (2.2).

f(x) = cTx, (2.2)

where vector c gives the cost of the raw materials.

In Figure 2.2 we sketch the triangular area of Figure 2.1b in two dimensions.
The value of x as well as the costs can be read from this triangle. Figure 2.2a
shows a grid over the unit simplex so we can read the value of x. Figure 2.2b
shows a cost vector c = (100, 300, 200)T using iso-cost lines.

C

X = (0,0,1)

X = (1,0,0)X = (0,1,0)

B

AX = (0,0.5,0.5)

X = (0.25,0,0.75)

(a) Grid: A: x = (0.25, 0.25, 0.5)T , B: x =
(0.25, 0.5, 0.25)T , C: x = (0.5, 0.25, 0.25)T .

€200

€100 €300

€250          €200           €150   

- f(x)

(b) Contours of the cost function

Figure 2.2: 3-Dimensional unit simplex sketched in two dimensions.

2.2 Linear constraints

Recipes have to satisfy some requirements to become the intended end product.
For relatively simple blending problems these requirements are bounds on an in-
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Chapter 2: Blending with quadratic constraints

gredient or linear constraints. Together with the unit simplex these requirements
determine the feasible area X, as in (1.1); If x ∈ X, x is a feasible recipe.

Example 2.1
A sports drink manufacturer wants to minimize the costs of his drinks. The product
consists of two raw materials; syrup and water. Syrup costs 2 euro per liter whereas
water costs only 0.01 euro per liter. If the recipe contains more than 80% water, the
recipe is too watery. If the recipe contains more than 40% syrup, the recipe becomes
too sweet. Mathematically the problem can be solved by Linear Programming:

min f(x) = cTx (Cost (2.2))
s.t. x ∈ S (Unit Simplex (2.1))

xwater ≤ 0.8 (Water constraint)
xsyrup ≤ 0.4 (Syrup constraint)

where x =

(
xwater
xsyrup

)
and c =

(
cwater
csyrup

)
=

(
0.01

2

)
.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0 0,2 0,4 0,6 0,8 1,0 1,2

x2

x1

Figure 2.3: The green area denotes the feasible set X. The optimal solution to the
‘water-syrup’ problem lies in xT = (xwater, xsyrup) = (0.8; 0.2) f(x) =
0.408.

2.3 Quadratic constraints

In practice there are more difficult blending problems to solve. These problems can
have higher dimensions, which depend on the amount of ingredients, and besides
linear constraints also have quadratic constraints. An example of a 3-dimensional
problem with quadratic constraints is given in [6] with the ‘Rum-coke’ problem
(see Example 2.2). Blending problems with quadratic constraints are also referred
to as Quadratic Mixture Design Problems (QMDP). Quadratic constraints are
written as:
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Chapter 2: Blending with quadratic constraints

gp(x) = xTApx+ bTp x+ dp ≤ 0; p = 1, . . . , P, (2.3)

in which Ap is a symmetric n by n matrix, bp is an n-vector and dp is a scalar.
The quadratic constraints can be summarized in Q = {x ∈ Rn | gp(x) ≤ 0; p =
1, . . . , P}[2].

2.4 Formulation of blending problem

In a blending problem we want to minimize the costs of a product. We do this by
minimizing the cost function (2.2) over a set x ∈ X (1.1). In a blending problem
X is defined as:

X = S ∩Q. (2.4)

The blending problem is summarized by (2.5). In Example 2.2 a blending
problem is formulated.

min {f(x) = cTx} (Cost (2.2))
s.t. x ∈ S (Unit simplex (2.1))

x ∈ Q (Q.constraint(s) (2.3))
(2.5)

Example 2.2 (The ‘Rum-coke’ problem)
A bar owner sells rum-coke which consists of three ingredients, namely rum (x3),
coke (x2) and ice (x1). The rum-coke has to be strong enough (but not too strong)
and cold enough in order to sell it. These requirements are given by two quadratic
constraints. The costs for the bar owner have to be minimized, given cost-vector
c = (0.1, 0.7, 4.0)T .

The other parameters are as follows:

A1 =

 0 −16 0
−16 0 0

0 0 0

 , b1 =

 8
8
0

 , d1 = −1

A2 =

 10 0 2
0 0 0
2 0 2

 , b2 =

 −12
0
4

 , d2 = 3.7

Using all parameter values for (2.1), (2.2) and (2.3) results into instance:

min f(x) = (0.1, 0.7, 4.0)Tx (Cost (2.2))

s.t.
∑3

i=1 x1 = 1; (Unit simplex (2.1))
x1, x2, x3 ≥ 0. (Unit simplex (2.1))
g1(x) = −32x1x2 + 8x1 + 8x2 − 1 ≤ 0; (Q.constraint (2.3))
g2(x) = 10x2

1 + 2x2
3 + 4x1x3 − 12x1 + 4x3 + 3.7 ≤ 0; (Q.constraint (2.3))

(2.6)
This problem can be plotted in a 2-dimensional way. In [6] this is done by

Figure 2.4.
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Chapter 2: Blending with quadratic constraints

Figure 2.4: The ‘Rum coke’-problem sketched in two dimensions. The axis for ice is
perpendicular to the 2-dimensional x1, x2 - plain in (0, 0); this means for
x1, x2 = (0.3, 0.5); x3 = 0.2, given the unit simplex. X denotes the feasible
area of the problem.

We can also plot this problem according to the notation used in Figure 2.2.
Using this notation the ‘Rum-coke’ problem is depicted in Figure 2.5.

(a) Constraints. (b) Feasible area.

Figure 2.5: The ‘Rum coke’-problem sketched in two dimensions. The green area
denotes the feasible area.

2.5 Global and local optima

Like many global optimization problems, blending problems can have several local
optima. This can be caused by a feasible area consisting of several compartments
or by a feasible compartment which is non-convex.
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Chapter 2: Blending with quadratic constraints

2.5.1 Feasible area with two compartments

In Example 2.3 a blending problem with two local optima is given. Of these
optima only one is the global optimum.

Example 2.3 (A feasible area consisting of two compartments.)
We have a concave quadratic constraint which lies on the unit simplex, the param-
eters of this problem are:

c =

(
2
1

)
, A1 =

(
−5 1

1 −1

)
, b1 =

(
3

0.5

)
, d1 = −0.6

This problem is plotted in Figure 2.6 where we can see that the feasible area
consists of two compartments. Corresponding to the compartments two local op-
tima exist; the global optimum A in x = (0, 1)T and a local optimum B. B is local
since it is more expensive than A (because x1 is more expensive than x2).

X
2

X1X1

X
2

0 1

1

B

A

Figure 2.6: The feasible area has two separate compartments denoted by the bold lines
on the unit simplex.

2.5.2 Non-convex feasible compartment

When a feasible area of a blending problem is non-convex, a problem can have local
optima. This is illustrated in Figure 2.7. Towards x2 the costs decrease, which
means that when we move the contour line to the left, the recipe gets cheaper.
While doing this, we obtain different extreme points of the feasible area. In Figure
2.7 this will cause local optima A and B, which in each of their neighbourhoods
are the best optima. A will be the global optimum since this is the cheapest local
optimum.
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Chapter 2: Blending with quadratic constraints

€200

€300 €100

- f(x)

A

B

Figure 2.7: Two local optima for a non-convex function.

2.6 Test cases

In Chapter 4 we test different solvers on several blending problems. Therefore we
use the 2-dimensional example from Figure 2.6 (test case 11), 11 3-dimensional
test cases from [7] and [9] and two 7-dimensional test cases from [4]. An overview
of these test cases is made in Table 2.1. The first two headers of the table describe
the test case and its dimension. Header ‘Characteristics’ says something about
the multi modality of the corresponding test case. When a test case is indicated
with a ‘-’ this means that the test case has only one (global) optimum.

Table 2.1: Test cases

Test case Dimension Characteristics
1 3 Non-feasible
2 3 Non-convex
3 3 Non-feasible
4 3 Non-feasible
5 3 -
6 3 -
7 3 Non-convex
8 3 Two compartments & non-convex
9 3 Two compartments
10 3 Two compartments
11 2 Two compartments
Rumcoke 3 -
7dimensionA 7 -
7dimensionB 7 -

The parameters of all the test cases are described in Appendix A, as well as
plots for all feasible 3-dimensional cases. The 3 dimensional test cases are plotted

13



Chapter 2: Blending with quadratic constraints

using the 3 dimensional unit simplex from Figure 2.2.
For the 3-dimensional cases we have the ’Rum-coke’ problem and 10 other test

cases. Test case 1 to 6 are ‘regular’ blending problems with a feasible area which
consists of one compartment or where no feasible solution exists. Test cases 7 to
10 are extreme cases. Test case 7 is the non-convex problem from Figure 2.7; it
may have multiple local optima when an appropriate cost vector c is chosen. Test
case 8 to 10 each have two compartments for their feasible area and thus certainly
contain local optima, like Example 2.3.

Although the plot in Figure 2.5 seems straightforward in finding a feasible area,
solving a blending problem is not easy. Making a plot can be time consuming and
for dimensions higher than 3 a plot cannot be made. Therefore, algorithms are
used for solving quadratic blending problems. In some software, like Excel, Matlab
and GAMS, solvers exist which can help us solving the problems. In Chapter 4
several of these solvers will be tested and compared with each other.

In the next chapter the concept of bi-blending is explained. In many industries,
several products are made simultaneously with use of the same raw materials,
which creates a new problem when certain raw materials become scarce.

14



Chapter 3

Bi-Blending

3.1 Introduction

The focus of this research is on bi-blending. The concept of bi-blending is taken
from multi-blending where multiple products are made from the same (scarce) raw
materials. For this research, the focus is on two products; this is called the bi-blend
problem. In industry manufacturers sometimes face the problem of scarcity of raw
materials for the products they want to make. As with the blending problem, this
can be solved by adding a bigger dosage of another ingredient. For the description
of the two recipes, we use the variables x and y for product 1 and product 2
respectively. The scarcity of raw materials is described by a capacity constraint.

3.2 Capacity constraint

The availability of raw materials is described by the capacity constraint. This
constraint is given by (3.1).

D1xi +D2yi ≤ Bi i = 1, . . . , n, (3.1)

where D1 and D2 represent the amount of respectively product 1 and product
2 to be made. The amount of available raw material i is given by Bi.

Example 3.1
A farmer wants to grow 10 pigs and 3 cows. A pig needs fodder consisting of
80% corn (i = 1) and 20% water (i = 2) and a cow respectively 70% and 30%.
However, one cow uses twice the amount of raw materials. The farmer has a silo
with a capacity of 15 units of corn. Water is unlimited. The farmer wants to know
if his silo is big enough to grow the pigs and the cows.

When we enter the values for the variables and data (x, y,D and B) we can
easily decide if the silo is big enough:

x =

(
0.8
0.2

)
, y =

(
0.7
0.3

)
, D1 = 10, D2 = 3 ∗ 2 = 6, B =

(
15
∞

)
.
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Substitution in (3.1) gives:

10 ∗
(

0.8
0.2

)
+ 6 ∗

(
0.7
0.3

)
≤
(

15
∞

)
.

The sum of the used corn (i = 1) is: 10 ∗ 0.8 + 6 ∗ 0.7 = 12.2 ≤ 15. The silo is
big enough so there are no problems for the farmer.

3.3 Cost function

With the capacity constraint added to the problem, the cost function changes
since we are now taking two products into account with their individual demands.
The cost function of the bi-blending problem can be written as:

f(x, y) =
n∑
i=1

ci(D1xi +D2yi). (3.2)

We can add the capacity constraint and the new cost function to quadratic
constraints for each individual product to formulate the bi-blend problem.

3.4 Formulation of the Bi-blend problem

The Bi-Blending problem is described by (3.3).

min {f(x, y) =
∑n

i=1 ci(D1xi +D2yi)} (Cost (3.2))
s.t. x, y ∈ S (Blending (2.1))

x ∈ Q1, y ∈ Q2 (Feasibility (2.3))
D1xi +D2yi ≤ Bi i = 1, . . . ,m (Capacity constraint (3.1)).

(3.3)

Note that the ingredients are denoted by i. This means that xi and yi (for the
same i) are fractions of the same ingredient; only the amount of the ingredient
varies. We give an easy example of a bi-blend problem with only bounds on the
use of raw materials for product 1 and product 2 and a capacity constraint.

3.5 A 2-dimensional example

We have an instance with bounds on the mixtures for product 1 and 2. The
parameters for this problem are:

c =

(
1
2

)
, D1 = 2, D2 = 4, x ≤

(
0.8
0.4

)
, y ≤

(
0.4
0.8

)
, B =

(
5
5

)
.

The problem is sketched in Figure 3.1.
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Figure 3.1: Bi-blend problem 1

Table 3.1: Data and solution of Bi-blend instance 1

i xi D1 yi D2 Totali Bi
1 0.8 2 0.4 4 3.2 5
2 0.2 2 0.6 4 2.8 5

f* = 3.2 * 1 + 2.8 * 2 = 8.8

We can see that the capacity constraint is not binding in Figure 3.1 and from
Table 3.1. Of raw material i=1, 2*0.8 + 4*0.4 = 3.2 is used and of raw material
i=2, 2*0.2 + 4*0.6 = 2.8 is used while the capacity is BT = (5, 5). In both product
1 and 2 the maximum amount of i = 1 is used since this is the cheapest ingredient.
This means that for product 1 and 2 the cheapest mixtures could be made. This
means that when the capacity constraint is not binding we can write the bi-blend
problem as two separate blending problems as in (3.4).

min
x,y∈Q∩S

{f(x, y) =
n∑
i=1

ci(D1xi +D2yi)} = min
x∈Q1∩S

{D1c
Tx}+ min

y∈Q2∩S
{D2c

Ty} (3.4)

When the capacity constraint is binding, the problem is more interesting. Lets
set BT = (3, 5) (so that B1 ≤ 3.2 since i = 1 is the cheapest ingredient) and
observe what happens. Figures (and corresponding Tables) 3.2 and 3.3 give local
optima that are extreme points for this example.
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Figure 3.2: Extreme point 1 for Bi-blend problem 1

Table 3.2: Extreme point 1 for Bi-blend instance 1

i xi D1 yi D2 Totali Bi
1 0.7 2 0.4 4 3 3
2 0.3 2 0.6 4 3 5

f* = 3 * 1 + 3 * 2 = 9
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Figure 3.3: Extreme point 2 for Bi-blend problem 1

Table 3.3: Extreme point 2 for Bi-blend instance 1

i xi D1 yi D2 Totali Bi
1 0.8 2 0.35 4 3 3
2 0.2 2 0.65 4 3 5
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f* = 3 * 1 + 3 * 2 = 9

From Figures 3.2 and 3.3 we can conclude that there are infinitely many local
optima. This is caused by the binding capacity constraint on the cheapest ingre-
dient (i = 1). The sum of x1 and y1 will always be 3 (and accordingly the sum
of x2 and y2 will always be 3), but these ingredients can be distributed among
product 1 and 2 according to their individual linear constraints in any way we
want. The above mentioned local optima are boundaries of possible recipes. The
set of global optimal solutions is a line piece. More alternative solutions are given
in Table 3.4. When we have a multidimensional problem, we can get a set of global
solutions which covers a multidimensional area when all most cheapest ingredients
are binding on the capacity constraint and there exists a feasible solution.

Table 3.4: Alternative solutions for Bi-blend instance 1

i xi D1 yi D2 Totali Bi
1 0.8 2 0.35 4 3 3
2 0.2 2 0.65 4 3 5
1 0.775 2 0.3625 4 3 3
2 0.225 2 0.6375 4 3 5
1 0.75 2 0.375 4 3 3
2 0.25 2 0.625 4 3 5
1 0.725 2 0.3875 4 3 3
2 0.275 2 0.6125 4 3 5
1 0.7 2 0.4 4 3 3
2 0.3 2 0.6 4 3 5

f* = 3 * 1 + 3 * 2 = 9

3.6 Test cases

We construct bi-blend cases using quadratic constraints from Appendix A.1 to
make restrictions on product 1 and product 2. We add a cost function and a
capacity constraint. The demand D in all these cases will be DT = (1, 1). We
made five 3-dimensional bi-blend test cases which are described in Table 3.5. In
every row of the table a test case is given with their corresponding quadratic
constraints on x and y and the used cost function and capacity constraint.
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Table 3.5: Bi-blend test cases

test case Q.constraints on x Q.constraints on y Cost function Capacity vector BT

1 1, 2 22, 24 (1.1, 1.7, 2.0) (2, 2, 2)
2 1, 2 22, 24 (1.1, 1.7, 2.0) (0.5, 2, 2)
3 1, 2 22, 24 (1.1, 1.7, 2.0) (0.5, 0.75, 2)
4 1, 10 11, 15 (3.0, 2.0, 1.0) (2, 2, 2)
5 1, 10 11, 15 (3.0, 2.0, 1.0) (2, 2, 0.7)
6 1, 10 11, 15 (3.0, 2.0, 1.0) (2, 0.7, 0.7)
7 22, 24 2, 6 (3.0, 2.0, 1.0) (2, 2, 2)
8 22, 24 2, 6 (3.0, 2.0, 1.0) (2, 2, 0.5)
9 22, 24 2, 6 (3.0, 2.0, 1.0) (2, 0.9, 0.5)
10 22, 24 2, 6 (3.0, 2.0, 1.0) (0.42, 2, 0.73)

In the next chapter, optimization algorithms are tested on the test cases we
made on (bi-) blending.

20



Chapter 4

Solvers

There is no use of programming a new algorithm when there already exists a good
optimization algorithm (solver) that can get the same results. In this chapter
the potential of some existing solvers is examined. This chapter distinguishes two
types of solvers; solvers that find local optima and solvers that find the global
optimum. Instances of the (bi-) blending problem will be examined with different
non-linear programming (NLP) solvers in GAMS and Matlab. In Table 4.1 the
used solvers are given with their corresponding access language. Also the type of
solver is indicated, which will be further explained in this chapter. There are more
standard software packages which contain NLP solvers we did not consider.

Table 4.1: Solvers

Solver Access language Type of solver
BARON GAMS Global
LGO GAMS Global
OQNLP GAMS Multi start Local
MINOS GAMS Local
SNOPT GAMS Local
CONOPT GAMS Local
Fmincon Matlab Local
Fmincon-multi Matlab Multi start Local

4.1 Local solvers

Many standard solvers search for local optima. This means that given a starting
point the solver tries to converge to a local optimum using a local search method.
A local search may return a local optimum where there may also exist better
optima. These solvers are tested to observe how difficult (bi-) blending problems
are, and whether they might be solved by a local solver.
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4.1.1 Multi start

In the case we want to find the global optimum of an instance while using a local
solver, several local searches can be applied with new starting points for each
search. In [9] a multi start method is used by placing a grid over the unit simplex
to perform a local search from each point in the grid. Another way of doing many
local searches is to use randomly chosen starting points. In this research this
stochastic multi start method is applied in GAMS and Matlab. We can try to
find all local optima using the multi start method and pick the best; however this
does not guarantee to find the global optimum. “If after some calculation time no
solution of the inequality problem has been found, it is not certain whether there
exists one [5].” If on the other hand many local searches are done, the chance of
not finding an existing global optimum becomes very small.

With use of a loop a multi start can be done while generating the starting
points randomly for each new iteration (a local search) of the loop. In Matlab this
is easy using a for-loop with randomly chosen starting points on the unit simplex
(2.1). We can generate uniformly distributed starting points on the unit simplex
using Algorithm (1) from [10]. For Fmincon-multi, 200 random starting points
were chosen per instance. Figure 4.1 shows the 3-dimensional unit simplex with
the notation used in Figure 2.4 with 200 randomly generated starting points.

Algorithm 1 : Generating uniform random points on the unit simplex

Funct S(n)

1. for ( i = 1 : n )
ai ∼ Ne(1)

2. for ( i = 1 : n )
Si = ai∑n

j=1 aj

3. return S
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Figure 4.1: 200 uniformly distributed starting points on the unit simplex.
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In GAMS it is not straightforward to implement a for-loop, That is why no
manual loop is implemented in GAMS. However, in GAMS exists a stochastic
multi start solver named OQNLP in which the local solvers of GAMS chosen
for this research can be implemented. A disadvantage in using this multi start
algorithm is that it generates random starting points over a box, where we would
like to have random starting points which are on the unit simplex. We can set
bounds on the starting points so it will be near the unit simplex with 0 ≤ x ≤ 1
to give a solution to this problem.

4.2 Global solvers

Global solvers are solvers which use information from the whole search region
to find the global optimum. With this global information the global character
of a found optimum can be guaranteed. In this research GAMS/BARON and
GAMS/LGO are solvers which claim to be global optimizers using different meth-
ods. This means that they should return the global optimum if a problem has
one.

4.3 Performance indicators

4.3.1 Effectiveness

The performance of a solver can be measured with different indicators. The most
important indicator for solvers is whether the solver is able to solve a given blend-
ing problem; this is called the effectiveness. The way solving ability is hard to
measure. For instance a (bi-) blending problem can be feasible or infeasible. Be-
fore we can say a problem has a feasible solution or not, we have to find one or we
have to prove there is none. If we do find a feasible optimum with a given solver
we do not know whether it is global unless the solver can prove it. Only global
solvers can make this guaranty, for example by exploring lower bounds over the
whole search region. Multi-start local solvers can be very good as well in finding
a global optimum, but where globallity of a solution might be assumed it is hard
to prove it.

4.3.2 Efficiency

An important indicator on efficiency is the computing time a solver needs to solve
an instance. This can be measured for example by the number of function evalua-
tions, the number of iterations or simply in real time (given system specifications).
In this research the number of iterations is used as a way to measure the efficiency
of the solvers. Note that the number of iterations may not be a strong indicator,
since for one solver a iteration may take longer than for the other. However, with
this measure, we can make a distinction between easier or more difficult test cases.
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4.4 Blending cases

To measure the performance of the chosen solvers we implemented the test cases
from Section 2.6.

4.4.1 Experimental specifications

To be able to repeat all test cases in a fair way for all solvers, some rules are
followed.

• Input parameters for the solver are untouched (default settings).

• For non-multi start solvers the starting point for x is the middle of the unit
simplex:

xi =
1

n
; i = 1, . . . , n (4.1)

In Table 4.2 the best found optimum (f*) for each test case is given with their
corresponding recipe (x*). These results come from the solvers which had found
these optima. For the two and three dimensional test cases we can conclude that
these optima are actually global using the plots (Appendix A) we had for all the
3-dimensional cases. For the 7 dimensional cases, the found optima were compared
to the (global) optima from [4]; the results in our research were the same. Some
of the cases contain local optima. These could be found by the multi start solvers.

Table 4.2: Best found optima for blending cases

Testcase f* x*
1 Infeasible -
2 1.5578 (0.442, 0.558, 0)
3 Infeasible -
4 Infeasible -
5 1.5289 (0.580, 0.311, 0.109)
6 1.3599 (0.630, 0.245, 0.126)
7 2.214 (0.313, 0.099, 0.588)
8 2.350 (0.027, 0.623, 0.350)
9 1.633 (399, 0.569, 0.032)
10 1.230 (0, 0.230, 0.770)
11 1 (0, 1)
RumCoke 0.5668 (0.591, 0.342, 0.067)
Unispec1 110.8458 (0.413, 0, 0.468, 0, 0.119, 0, 0)
Unispec5b 115.2454 (0.189, 0, 0.048, 0.068, 0.694, 0, 0)

4.4.2 Local solutions

The multi start algorithm OQNLP is applied to find the local optima of the test
cases. If specified by the user, OQNLP can return all local optima in a table. Since
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in OQNLP the user can specify which local solver to use, all three GAMS local
solvers from this research are implemented (MINOS, CONOPT and SNOPT). The
results for the three different solvers were the same for all tested cases. In Table
4.3 the local optima for the multi modal cases are given indicated by a ‘Rank’;
this clarifies whether it is the best, second-best or third-best optimum. Note that
a multi start algorithm may miss a local solution (by missing a starting point in a
region of attraction), so there is no guarantee that there do not exist more optima.
In this research however, we can judge whether there may exist more local optima
for a test case since we have plots of all cases. OQNLP did not miss any of the
local optima in the two and three dimensional test cases. All these local optima
were also found using Fmincon-multi.

Table 4.3: Found optima with OQNLP for multi modal test cases

Testcase Rank f* x*
7 1 2.214 (0.313, 0.099, 0.588)

2 2.270 (0.580, 0.310, 0.110)
8 1 2.350 (0.027, 0.623, 0.350)

2 2.599 (0, 0.401, 0.599)
3 2.644 (0.159, 0.197, 0.644)

9 1 1.633 (0.399, 0.569, 0.032)
2 2.279 (0.360, 0, 0.640)

10 1 1.230 (0, 0.230, 0.770)
2 1.494 (0, 0.494, 0.506)

11 1 1 (0, 1)
2 1.570 (0.572, 0.428)

4.4.3 Performance

All problems implemented in Fmincon and GAMS can be solved within a second.
Fmincon-multi uses more real time (approximately 30 seconds per instance) but
we can reduce this time by reducing the amount of local searches. In Table 4.4 the
number of iterations needed to solve the instances are given for each GAMS solver
per test case. For OQNLP the performance is always the same. The number of
iterations is fixed at 1000 and the global optimum is always found. For this reason,
OQNLP is not in the performance table. MINOS and SNOPT distinguish major
and minor iterations and also give the number of function evaluations. That is
why in their columns three values are given; the major iterations (‘major’), the
minor iterations (‘minor’) and the function evaluations (‘fun’).

In Table 4.5 the results for the Fmincon and Fmincon-multi are given. Fmincon
(multi) distinguish iterations (‘iterations’) and function evaluations (‘fun’). In the
multi start column the number of times the global optimum is found is indicated
by ‘G!’ since this could be determined with Matlab and it may be an interesting
statistic. When an instance does not have local optima but neither found the
global optimum 200 times, the solver converged to infeasible points on the rest of
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the searches. That is why for some instances with only one optimum ‘G!’ is not
200.

When a performance is indicated with ‘2’ the second-best optimum is found,
not the global. When a performance is indicated with ‘3’ the third-best optimum
is found, not the global. When a performance is indicated with ‘inf ’ the solver
converges to an infeasible point while there exists a feasible optimum. For all
performance measures (iterations) without an indication mark, the best solution
from Table 4.2 is found.

Table 4.4: Iterations and convergence of GAMS solvers

Testcase CONOPT MINOS SNOPT LGO BARON
major, minor, fun major, minor, fun

1 10 6, 44, 57 6, 8, 11 4421 1
2 22 6, 10, 19 10, 10, 18 4 1
3 8 6, 61, 106 23, 12, 46 5537 1
4 8 11, 64, 85 17, 12, 34 5364 1
5 8 9, 19, 58 14, 5, 31 4 1
6 7 10, 24, 79 3, 2, 5 4 1
7 172 7, 54, 96inf 11, 13, 292 4 1
8 302 7, 64, 109inf 8, 7, 253 42 1
9 5 7, 16, 29 8, 7, 22 4 1
10 82 9, 23, 712 3, 3, 52 4 1
11 52 14, 19, 612 3, 1, 52 4 1
RumCoke 12 8, 10, 29 23, 9, 60 4 1
Unispec1 12 8, 34, 74 4, 10, 6 4 1
Unispec5b 11 9, 18, 40 7, 13, 16 4 1
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Table 4.5: Iterations and convergence of Matlab solvers

Testcase Fmincon Fmincon-multi
iterations, fun iterations, fun, G!

1 70, 301 -, -, -
2 5, 24 969, 4726, 174
3 70, 301 -, -, -
4 70, 301 -, -, -
5 6, 30 1137, 5564, 200
6 4, 20 1310, 5962, 180
7 6, 292 1144, 5589, 63
8 8, 363 1151, 5420, 85
9 5, 24 1072, 5356, 103
10 4, 202 1466, 6548, 81
11 5, 182 773, 2919, 85
RumCoke 10, 47 1444, 7891, 173
Unispec1 6, 56 985, 9480, 200
Unispec5b 7, 64 1259, 11689, 150

4.4.4 Conclusion

From these results we can conclude that three solvers were able to find the global
optimum for all test cases. Namely, OQNLP, BARON and Fmincon-multi. A
big surprise was the local solution LGO returned on test case 8. This makes this
‘global’ solver unreliable for finding global solutions.

The results for the local solvers were as expected; When a global solution lies
in the region of attraction of the starting point (4.1), the global optimum is found.
It shows us that many of the tested cases are easy to solve since it has only one
optimum or the optimum was ‘near’ the middle of the unit simplex. Four out of
14 test cases have two local optima and one testcase has 3 local optima. All these
cases were designed to be ‘extreme’. The multi modal character of 3-dimensional
blending problems is not high. For only one of the five extreme cases the global
optimum was found using a local solver.

We can see from the results that the local solvers use different strategies since
the found local optimum was not always the same for one test case. For test case
8, MINOS converged to an infeasible point, where CONOPT found the second
best optimum and SNOPT and Fmincon found the third best optimum. When
one would want to find the global optimum of a blending problem with several
local optima, a local solver is not the appropriate optimization tool to use.

Except for LGO, the other global optimizers were successful. BARON uses only
one iteration for each test case, but in this iteration a multi start is performed,
which means that despite only using one iteration we cannot conclude that it is
more efficient than OQNLP. Neither we can conclude that Fmincon-multi is less
efficient for the higher ‘real’ time it uses, because the number of local searches is
much higher than in OQNLP. Furthermore, it is easier to get information (like
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‘G!’) from a more customized solver like Fmincon-multi than from the other two.
Another big advantage of Fmincon-multi over OQNLP is that the starting points
could be set on the unit simplex. Nonetheless, OQNLP also found all local optima.
The ability to find local optima by OQNLP and Fmincon-multi was not seen as an
advantage, since the goal of solving a blending case is to find the global optimum.
For other researches this ability could give the multi start solvers an advantage
over BARON. We conclude that BARON, OQNLP and Fmincon-multi are the
best solvers for solving the tested instances.

4.5 Bi-blend cases

The bi-blend testcases from Table 3.5 were solved using the described GAMS
solvers from Table 4.1.

Table 4.6: Best found solutions for bi-blend cases

Testcase f* x* y*
1 2.748 (0.591, 0.342, 0.067) (0.594, 0.275, 0.131)
2 3.249 (0.481, 0.385, 0.134) (0.019, 0.619, 0.362)
3 3.325 (0.481, 0.385, 0.134) (0.019, 0.365, 0.616)
4 3.753 (0.251, 0, 0.749) (0.375, 0.500, 0.125)
5 3.854 (0.228, 0.087, 0.685) (0.327, 0.658, 0.015)
6 3.900 (0.245, 0.080, 0.675) (0.355, 0.620, 0.025)
7 3.576 (0.008, 0.384, 0.609) (0.415, 0.348, 0.238)
8 3.994 (0.027, 0.624, 0.348) (0.466, 0.382, 0.152)
9 4.100 (0.178, 0.545, 0.277) (0.422, 0.355, 0.223)
10 Infeasible - -

4.5.1 Local solutions

In Table 4.7 the local optima of the bi-blending cases are given. The table can be
read in the same way as Table 4.3 but the ‘Rank’ can have a value ‘infinite’. This
means that there exist infinitely many alternative solutions, which is also depicted
in column ‘x*’.
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Table 4.7: Found optima with OQNLP for multi modal test cases

Testcase Rank f* x* y*
3 infinite 3.325 Alternative optima
4 1 3.753 (0.251, 0, 0.749) (0.375, 0.500, 0.125)

2 4.530 (0.500, 0.125, 0.375) (0.375, 0.500, 0.125)
5 1 3.854 (0.228, 0.087, 0.685) (0.327, 0.658, 0.015)

2 4.530 (0.500, 0.125, 0.375) (0.375, 0.500, 0.125)
6 infinite 3.900 Alternative optima
9 infinite 4.100 Alternative optima

4.5.2 Performance

All problems implemented in GAMS can be solved within a second. In table 4.4
the number of iterations needed to solve the problem are given for each solver.
MINOS and SNOPT makes the distinction between major and minor iterations
and also give the number of function evaluations. In Table 4.8 the number of
iterations needed to solve the instances are given for each GAMS solver per test
case. The results can be read in the same way as in Table 4.4.

Table 4.8: Iterations and convergence of GAMS solvers

Testcase CONOPT MINOS SNOPT LGO BARON
major, minor, fun major, minor, fun

1 16 10, 35, 88 19, 29, 42 4 1
2 18 11, 20, 47 6, 8, 10 4 1
3 16 7, 14, 24 12, 27, 24 4 1
4 122 7, 67, 120inf 24, 33, 76inf 42 15
5 8 11, 33, 682 36, 28, 162inf 42 1
6 23 10, 30, 53 10, 24, 21 4 1
7 24 91, 264, 757 18, 10, 42 4 1
8 22 101, 283, 843 11, 6, 22 4 1
9 19 52, 88, 315 4, 2, 6 4 1
10 14 12, 23, 39 3, 6, 5 9527 1

4.5.3 Conclusion

From these results we can conclude that two solvers were able to find the global
optimum for all test cases. Namely, OQNLP and BARON. LGO again returned
local optima on test case 4 and 5. This makes this ‘global’ solver unreliable for
finding global solutions.

Local solvers behaved in the same way as on the blending test cases. This
means that they found the ‘nearest’ optimum. Again we can see from the results

29



Chapter 4: Solvers

that the local solvers use different strategies since the found local optimum was not
always the same for one test case. For test case 4, MINOS and SNOPT converged
to an infeasible point, where CONOPT found the second best optimum. When
one would want to find the global optimum of a bi-blending problem with several
local optima, a local solver is not the appropriate optimization tool to use.

Except for LGO, the other global optimizers were successful. In test case 4,
BARON made some branching iterations; this was the only test case from this
research which was ‘difficult’ for BARON in such a way that the global solution
was not found (and verified) in the first iteration. OQNLP found all local optima
and thus also found the global optimum to each test case. We conclude that
BARON and OQNLP are the best solvers for solving the tested instances.
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Robustness

5.1 Introduction

We would like to develop an algorithm that is able to identify solutions that
have an ε-robustness with respect to the quadratic requirements. From practical
considerations, one can define robustness R(x) of a design x ∈ X (2.4) with respect
to X as

R(x) = max{R ∈ R+ | (x+ h) ∈ X, ∀h ∈ Rn, ‖h‖ ≤ R}. (5.1)

This ε-robustness concept is depicted in Figure 5.1. We want to find a solution
to (bi-) blending while all solutions within a distance ε are feasible points as well.
In the figure we can see that all points on the circle with a radius ε lie in the area
g(x) ≤ 0, and thus are feasible. The centre point of the circle is in this case an
ε-robust point.

g(x) = 0

X

Figure 5.1: ε-robustness with respect to X.

Solving the robustness of a point is a global optimization problem which can
have local optima. We can measure the minimum distance of a point z to one
quadratic constraint gp using (5.2).
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rp(z) = min{
√∑n

i=1(zi − xi)2}
s.t. gp(x) = 0, p = 1, . . . , P

(5.2)

When we want to know the distance to the closest quadratic constraint in
a global optimization problem we take the minimum over all distances rp, p =
1, . . . , P :

R(x) = min
p
{rp(z)}, p = 1, . . . , P. (5.3)

Notice that (5.2) is in general hard to solve; it may have several local optima
and several KKT points that are not optimal [5].

5.2 ε -Robustness with respect to (bi-)blending

In this research all (bi-) blending problems were solved by standard solvers. It is
difficult to combine the (bi-) blending problem while being robust simultaneously.
In [4] a branch-and-bounds algorithm was designed to solve blending problems
with a given ε-robustness. In our thesis however, the focus is on standard solvers
which were really successful on non-robust (bi-) blending problems. That is why
we try to reformulate the blending problem to be robust. In that case we would
not have to change the optimization algorithm, but just the instances of the test
case. In the next section this approach is explained in more detail.

5.3 Some (heuristic) approaches

The idea of reformulating the blending problem is quite straight forward. The idea
is to lay circles with a radius r = ε on the feasible side of a quadratic constraint
and draw a new quadratic constraint through the centres of the circles. When we
could formulate the problem like this, we could use our standard solvers to find
an ε-robust optimum. In Figure 5.2 this approach is shown. The dotted lines are
the ‘ε-robust constraints’.
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Figure 5.2: ε-robustness may be achieved by reformulation of quadratic constraints.

The suggested approach would be a perfect method for solving the robustness
problem. The approach leads us to the next question. How can we compute an
ε-robust constraint?

5.3.1 Reformulation of quadratic constraints

In Section 2.3 there was already a short introduction on quadratic functions. In
this section we will give more insight on quadratic functions since we want to re-
formulate them. With this approach we have to distinguish definite and indefinite
quadratic functions (see Figure 5.3). A quadratic function is definite when ma-
trix A of the quadratic form (5.4) has only positive (positive definite) or negative
eigenvalues (negative definite).

gp(x) = xTApx+ bTp x+ dp (5.4)

X

X

X

X?

X? X?

X?

Positive 
definite

Negative 
definite Indefinite

Figure 5.3: Definiteness of quadratic functions.
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We tried to reformulate the problem by adjusting d (see (5.4)) or by adjusting
its eigenvalues. With the suggested method it appears impossible to lay equally
sized circles on an indefinite constraint. This is because the limit of an indefinite
function is always its eigenvector. In Figure 5.4 we sketch that laying equally
sized circles on a constraint may be difficult for an indefinite function using the
methods under investigation.

0

0

0

0

0

0

x1

x2

0

0

0

0

0 0.5 1 1.5
0

0.5

1

1.5

Figure 5.4: Circles with a different size on an indefinite function.

That is why the focus in this chapter was on (negative) definite quadratic
functions. At first, we tried to change a quadratic constraint by adjusting the
constant term d from (5.4). We did this for a 2-dimensional instance g1 with
parameters:

A1 =

(
1 0
0 3

)
, b1 =

(
0
0

)
, d1 = −1, d1ε = −0.5. (5.5)

This gave us the result as shown in Figure 5.5 from which we can see that
the found ellipse does not have equal distance from g1ε to g1 for all points on
the ellipse. Since distance ‘A’ is much bigger than distance ‘B’ this is not the
appropriate reformulation. In Figure 5.6 the cross section of Figure 5.5 on g1 is
given in direction v2, with ε-robustness on v2.
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x1

x2
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Figure 5.5: Reformulation by adjusting d.
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Figure 5.6: Reformulation by adjusting d.

[3] reformulates a quadratic function as (5.6).

g(x) = (x− xc)TA(x− xc) + constant (5.6)

in which xc is the stationary point of f(x) and constant is the function value
of g(x) in the origin (g(xc)). One can derive that xc is given by (5.7) and constant
is given by (5.8):

xc = −1

2
A−1b, (5.7)

constant = d− 1

4
bTA−1b. (5.8)

When we look at this notation we can see that only A determines the shape
of the quadratic function, b determines (together with A) the origin and d only
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affects the function value (together with A) with the addition of a constant. The
eigenvalues and eigenvectors determine the ‘shape’-characteristics of a quadratic
function. The ‘eigenvalue decomposition’ of Matrix A is written in (5.9):

A = V DV T , (5.9)

with V representing a matrix with the eigenvector vi on Vi., and D a diagonal
matrix with the eigenvalues λi on the diagonal.

When we decompose matrix A1 from (5.5) we get:(
1 0
0 3

)
=

(
1 0
0 1

)(
1 0
0 3

)(
1 0
0 1

)
.

From this decomposition we can conclude that on v1 = (1, 0), λ1 = 1. For v2

= (0, 1), λ2 = 3. With this data we can adjust λ1 and λ2, in such a way that the
new λ’s can get us ε-robustness where the eigenvectors are intersecting g(x) = 0.

In Figure 5.7 the cross section of Figure 5.5 on g1 is given in direction v2, with
ε-robustness on v2. k is the distance from xc to g(0) in the direction v2.

-1.2

0

g(x)

K
V2�

Figure 5.7: Cross section of g1 on r2

By adjusting λ we can get the ε-robustness on r. This is derived in (5.10).

k =
√
−g(xc)
λ

if pos.def: kε = k − ε, if neg.def: kε = k + ε

λε = −g(xc)
k2
ε

(5.10)

When we do this for λ1 and λ2 from (5.5) we get the following robust matrix
Dε of adapted eigenvalues using ε = 0.05:

Dε =

(
1.1080 0

0 3.5959

)
.
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With (5.9) we obtain a matrix A1ε which is equal to Dε since V is still the
identity matrix. The ‘regular’ quadratic function g1 is given by (5.5), while g1ε is
given by:

A1ε =

(
1.1080 0

0 3.5959

)
, b1ε =

(
0
0

)
, d1ε = −1. (5.11)

Figure 5.8 shows us that g1ε gives robust solutions on its eigenvectors.
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x2
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1.5

r2

r1

Figure 5.8: Robustness on the eigenvectors.

The robust constraint seems to have an equal distance to the non-robust con-
straint as we desired. We can test this by solving the global optimization problem
(5.2) with points z on g1ε. We can generate z by (5.12). We have to choose a
vector v which is not an eigenvector of g(x).

α =
√
−g(xc)
V TAεV

z = αV
(5.12)

When we take V T = (1, 1) we obtain point zT = (0.4611, 0.4611) which lies
on g1ε = 0. Substituting z in (5.2) together with g1 gives a minimum robustness
of 0.0490 when we solve this problem with Fmincon. This is smaller than the
robustness we have obtained on the eigenvectors of 0.05. We can conclude that
with this method we cannot generate an ellipse that is exactly ε-robust, but it
comes close.

5.3.2 ε-robustness on X

In the previous section we tried to reformulate quadratic constraints but we did
not take the unit simplex into account. However, the feasible area of a blending
instance is defined by X (2.4), which also includes the unit simplex. We can see
what happens with the robustness on X when we apply the eigenvalue approach
from the previous section on test case 11 from Figure 2.6. In Figure 5.9 the
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robustness on the unit simplex in test case 11 is shown and it seems to be a good
approximation.

x1

x2

0 0.5 1 1.5
0

0.5

1

1.5

X

X

Figure 5.9: Robustness on test case 11.

Another example shows us that we should include the unit simplex in the
reformulation. This is shown in Figure 5.10. The difference between ε1 and ε2 is
really big and not desirable. If we would want to solve this problem, maybe we
should project the quadratic functions on the unit simplex beforehand using the
‘projection matrix’ from [2] . This is however not further researched in this thesis.
Although the heuristic approach from this research does not guarantee solving
the robustness problem with respect to (bi-) blending it can be used to generate
starting points for a procedure.

X1 �

X
2 
�

Figure 5.10: A big difference between ε1 and ε2.

5.4 Conclusion

Solving robustness on blending problems is a hard problem. Determining the
robustness of a point is already a global optimization problem with several optima.
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When we add this problem to the (bi-) blending problem it gets really hard. In
standard software it seems impossible to solve the problem directly. This is why
we tried to reformulate the quadratic constraints so we could use the old problem
formulation as used in Chapter 2 and 3.

Changing the quadratic constraints by adjusting the constant term or the eigen-
value approach is not appropriate for reformulating indefinite quadratic functions.
However, changing eigenvalues for (negative) definite functions seemed to work.
However, we found a polynomial that was ε-robust on its eigenvectors, but not on
the rest of its points.

We neither took the unit simplex into account. In order to reformulate a
blending problem you should consider the unit simplex at the same time since the
feasible area is defined as X = Q∩S. This may be done using a projection matrix.

39



Chapter 6

Conclusion

The bi-blending problem with quadratic constraints is a global optimization prob-
lem, which as all global optimization problems has a multi modal character. This
is however not the case for all bi-blending problems. Before we could determine
the multi modality of bi-blend problems we investigated the multi modality of
single blending problems. We concluded that a blending problem can have local
optima due to two characteristics.

1. Existance of several feasible compartments

2. Non-convex compartment in combination with an appropriate cost function.

These characteristics also apply to bi-blending problems. In the bi-blending
problem the capacity constraint influences the multi modality.

• When an instance of the bi-blending problem has a capacity constraint which
is binding on all of the cheapest ingredients, the problem has alternative
solutions for the global optimum.

The potential of existing optimization algorithms is tested on (bi-) blending
problems. Solvers in Matlab and GAMS are tested and evaluated. We tested
global solvers as well as (multi start) local solvers. The solvers which claimed to
be global solvers were LGO and BARON with GAMS as access language. The
local solvers were MINOS, SNOPT and CONOPT in GAMS and Fmincon in
Matlab. These local solvers were used to examine the multi modal character of
(bi-) blending problems; but also for examining the potential of local solvers on
(bi-) blending problems. The local solvers could be used as a global optimizer
with a stochastic multi start routine. For GAMS the existing multi start routine
OQNLP could be used, which generated random starting points on a box, which
can be determined by lower and upper bounds supplied by the user. For Matlab
a for-loop was used to uniformly generate starting points on the unit simplex.

• Local solvers solved the supplied test cases to the ‘nearest’ local optimum,
which in some cases was not the global optimum. This makes local solvers
inappropriate for solving multi modal (bi-) blending instances.
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• BARON, OQNLP and Fmincon with a multi start routine returned all global
optima for the blending test cases. BARON and OQNLP also returned all
global optima for the bi-blending test cases. The self proclaimed global
solver LGO found local optima on blending cases and bi-blending test cases
which makes it a unreliable solver.

Solving the robustness on blending problems is difficult. Determining the ro-
bustness of a point is already a global optimization problem with several optima.
We could not solve this problem through standard software, but tried to reformu-
late the problem by changing the quadratic term in the quadratic constraints of
the problem in order to solve it with standard optimization algorithms. The refor-
mulation was only tried for definite quadratic functions. We did this by changing
the eigenvalues of the quadratic form but we could only accomplish robustness
on the eigenvalues of its function and not on the other points of the polynomial.
Neither was the effect on the unit simplex taken into account which gave prob-
lems in the end. Reformulation of (bi-) blending problems is a hard procedure;
in this research we were not able to solve the robust (bi-) blending problem with
reformulation.

(Bi-) blending problems can be solved with standard software; the robustness
problem however not. The reformulation of the quadratic constraints can be used
for future research. With this procedure one can produce useful starting points
for solving (bi-) blending problems.
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Testcases

Table A.1: 3-Dimensional testcases

Testcase Costs Quadratic constraint
1 1.0, 2.0, 3.0 16, 17, 18
2 1.0, 2.0, 3.0 15, 19, 21
3 1.0, 2.0, 3.0 12, 13, 21
4 1.0, 2.0, 3.0 12, 21, 22
5 1.0, 2.0, 3.0 22, 21
6 1.1, 1.7, 2.0 3, 4, 5, 6, 7
7 3.0, 1.0, 2.0 2, 12, 13
8 2.0, 2.0, 3.0 4, 8, 12, 13
9 1.1, 1.7, 2.0 11, 14, 15
10 3.0, 2.0, 1.0 7, 8, 9, 10
11 2.0, 1.0 23

Rumcoke 0.1, 0.7, 4.0 1, 2

(a) Constraints. (b) Feasible area.

Figure A.1: Testcase 2.
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(a) Constraints. (b) Feasible area.

Figure A.2: Testcase 5.

(a) Constraints. (b) Feasible area.

Figure A.3: Testcase 6.

(a) Constraints. (b) Feasible area.

Figure A.4: Testcase 7.
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(a) Constraints. (b) Feasible area.

Figure A.5: Testcase 8.

(a) Constraints. (b) Feasible area.

Figure A.6: Testcase 9.

(a) Constraints. (b) Feasible area.

Figure A.7: Testcase 10.
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A.1 Quadratic constraints

Quadratic constraint(gi(x) = xTAix+ bTi x+ di ≤ 0; i = 1, . . . , 27):

A1[3× 3] =

 0 −16 0
−16 0 0

0 0 0


b1[3× 1] =

 8
8
0


d1 = −1

A2[3× 3] =

 10 0 2
0 0 0
2 0 2



b2[3× 1] =

 −12
0
−4



d2 = 3.7

A3[3× 3] =

 0.001 −0.001 0.0085
−0.001 0.008 −0.0105
0.0085 −0.0105 −0.021



b3[3× 1] =

 −0.0145
−0.0205

0.073



d3 = −0.0165

A4[3× 3] =

 −0.004 0.0005 0.002
0.0005 −0.001 −0.003
0.002 −0.003 0.014


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b4[3× 1] =

 0.0155
0.0515
−0.121



d4 = −0.006

A5[3× 3] =

 20.605 −5.087 −10.9885
−5.087 32.003 −43.476
−10.9885 −43.476 −81.278



b5[3× 1] =

 0.1995
−0.097

126.7685



d5 = −20.5063

A6[3× 3] =

 0.766 −0.1205 2.4735
−0.1205 0.528 1.9835
2.4735 1.9835 −7.822



b6[3× 1] =

 −2.432
−15.191
10.712



d6 = 3.21125

A7[3× 3] =

 116.75 −3.09 168.553
−3.09 −67.424 515.114

168.553 515.114 −845.215



b7[3× 1] =

 −287.43
−645.926
354.537


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d7 = 115.0953

A8[3× 3] =

 1.0 3.0 −0.5
3.0 −5.0 −3.5
−0.5 −3.5 −2.0



b8[3× 1] =

 0.832
0.832
0.832



d8 = 0.968

A9[3× 3] =

 2.0 −1.5 1.0
−1.5 1.0 −1.0
1.0 −1.0 3.0



b9[3× 1] =

 0.12
0.12
0.12



d9 = −1.60

A10[3× 3] =

 4.0 −1.5 −1.5
−1.5 4.0 −2.5
−1.5 −2.5 4.0



b10[3× 1] =

 −0.026
−0.026
−0.026



d10 = −2.141
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A11[3× 3] =

 −4.3 1.0 −3.0
1.0 1.0 −0.5
−3.0 −0.5 2.5



b11[3× 1] =

 −0.193
−0.193
−0.193



d11 = 0.193

A12[3× 3] =

 4.0 −1.0 −2.0
−1.0 5.0 −3.0
−2.0 −3.0 4.0



b12[3× 1] =

 1.05
1.05
1.05



d12 = −2.1052

A13[3× 3] =

 −4.0 1.5 1.5
1.5 −4.0 2.5
1.5 2.5 −4.0



b13[3× 1] =

 −1.48
−1.48
−1.48



d13 = 2.36

A14[3× 3] =

 1.0 3.0 −0.5
3.0 −5.0 −3.5
−0.5 −3.5 −2.0


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b14[3× 1] =

 0.83
0.83
0.83



d14 = −0.59

A15[3× 3] =

 4.0 −1.0 0.5
−1.0 1.0 3.5
0.5 3.5 0



b15[3× 1] =

 18.75
18.75
18.75



d15 = −19.5

A16[3× 3] =

 −2.0 −0.5 0.5
−0.5 2.0 −2.5
0.5 −2.5 0



b16[3× 1] =

 10.89
10.89
10.89



d16 = −9.69

A17[3× 3] =

 −5.0 1.0 −3
1 1 −0.5
−3 −0.5 3



b17[3× 1] =

 6.45
6.45
6.45


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d17 = −2.65

A18[3× 3] =

 5.0 −1.0 1.0
−1.0 0 −2.5
1.0 −2.5 1



b18[3× 1] =

 14.71
14.71
14.71



d18 = −14.88

A19[3× 3] =

 1.0 3.0 −0.5
3.0 −5.0 −3.5
−0.5 −3.5 −2.0



b19[3× 1] =

 0.83
0.83
0.83



d19 = −0.95

A20[3× 3] =

 −4.0 −3.0 −0.5
−3.0 −4.0 −2.5
−0.5 −2.5 3.0



b20[3× 1] =

 3.90
3.90
3.90



d20 = −0.69
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A21[3× 3] =

 −2.0 −0.5 0.5
−0.5 2.0 −2.5
0.5 −2.5 0



b21[3× 1] =

 2.08
2.08
2.08



d21 = 1.53

A22[3× 3] =

 −2.0 −0.5 0.5
−0.5 2.0 −2.5
0.5 −2.5 0



b22[3× 1] =

 2.08
2.08
2.08



d22 = −0.87

A23[2× 2] =

(
−5.0 1.0
1.0 −1.0

)

b23[2× 1] =

(
3.0
0.5

)

d23 = −0.6

UniSpec1

Dimension = 7; Raw material cost = (114, 115, 107, 127, 115, 106, 108)
Linear constraint:
h1(x) = 0.1493x1 + 0.6927x2 + 0.4643x3 + 0.7975x4 + 0.5967x5 + 0.6235x6 +
0.5284x7 ≥ 0.35
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Quadratic constraints (gi(x) = xTAix+ bTi x+ di ≤ 0; i = 1, 2, 3 ):

A1[7×7] =



−1.473 8.215 −27.204 46.119 2.059 −11.929 −12.768
8.215 37.733346 5.127 95.691 34.954 20.165 19.445
−27.204 5.127 −21.743 36.843 −7.126 4.029 −4.152
46.119 95.691 36.843 189.643 93.359 52.904 54.802
2.059 34.954 −7.126 93.356 31.885 7.528 10.248
−11.929 20.165 4.029 52.904 7.528 11.951 10.964
−12.768 19.445 −4.152 54.802 10.248 10.964 7.197



b1[7× 1] =



4.5675
34.7289
70.5707
−82.2761
29.3169
71.0818
63.7614



d1 = −35

A2[7×7] =



1.35 −4.41 17.60 −92.45 2.74 −29.94 −14.05
−4.41 −39.13 −6.11 −126.38 −29.81 −63.42 −43.97
17.60 −6.11 15.45 −76.60 5.93 −44.05 −20.54
−92.45 −126.38 −76.60 −240.64 −117.46 −125.18 −114.98

2.74 −29.81 5.93 −117.46 −22.90 −47.37 −30.68
−29.94 −63.42 −44.05 −125.18 −47.37 −73.39 −73.99
−14.05 −43.97 −20.54 −114.98 −30.68 −73.99 −55.33



b2[7× 1] =



−2.1232
−9.0403
−42.2072
190.5292
−9.9529
1.8162
5.1622



d2 = 10
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A3[7×7] =



−0.670 4.284 −12.837 23.708 1.677 −8.964 −4.859
4.284 21.380 −1.188 28.990 13.216 17.177 16.620
−12.837 −1.189 −21.376 9.841 −7.298 −10.043 −8.981
23.708 28.990 9.841 49.385 25.574 15.561 21.666
1.677 13.216 −7.298 25.574 8.419 4.149 6.595
−8.965 17.177 −10.043 15.561 4.149 1.090 6.292
−4.859 16.620 −8.981 21.666 6.594 6.292 5.906



b3[7× 1] =



0.7097
−13.0982
27.5078
−49.1608
−7.3725
33.6731
11.3136



d3 = −2

UniSpec5b

Dimension = 7; Same raw material cost and similar quadratic requirements as
UniSpec1
Quadratic constraints (gi(x) = xTAix+ bTi x+ di ≤ 0; i = 4, 5, 6, 7 ):

A4 = −A1; b4 = −B1; d4 = 45

A5 = −A2; b5 = −B2; d5 = −21

A6[7× 7] =



0.0 −11.556 −1.114 14.690 −11.411 0.121 −0.150
−11.556 −3.316 −2.116 7.313 −8.800 19.897 9.051
−1.114 −2.116 4.728 16.250 −4.535 18.319 11.537
14.690 7.313 16.250 40.428 9.766 21.512 15.266
−11.412 −8.800 −4.535 9.766 −10.165 10.088 1.889

0.121 19.897 18.319 21.511 10.088 28.569 27.239
−0.150 9.051 11.537 15.266 1.889 27.239 19.965


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b6[7× 1] =



1.7278
23.5166
5.6724
−32.0798
19.0154
16.5074
7.31003



d6 = −5

A7 = A3; b7 = B3; d7 = −1
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GAMS code

B.1 Rumcoke

SETS

I / i1, i2, i3 /

P constraint / A, B /;

alias (I,J);

parameter

L(I) lower bounds

/ i1 0, i2 0, i3 0 /

U(I) upper bounds

/ i1 1, i2 1, i3 1 /

D(P) constance D for function P

/ A -1, B 3.7/

C(I) cost per ingredient I

/ i1 0.1

i2 0.7

i3 4 /;

table

MATRIX(P,I,J) A Matrix for function P

i1 i2 i3

A.i1 0 -16 0

A.i2 -16 0 0

A.i3 0 0 0

B.i1 10 0 2

B.i2 0 0 0
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Appendix B: GAMS code

B.i3 2 0 2 ;

table

B(I,P) B coefficient I for function P

A B

i1 8 -12

i2 8 0

i3 0 -4;

Variables X

Z ;

Positive Variable X;

X.lo(I)=L(I);

X.up(I)=U(I);

EQUATIONS

COST define objective functioN

CONSTRAINT(P) quadratic constraint p

UNITSIMPLEX unit simplex ;

COST .. Z =E= SUM((I), C(I)*X(I)) ;

CONSTRAINT(P) .. SUM((I,J), X(I)*MATRIX(P,I,J)*X(J)) + SUM((I), B(I,P)*X(I)) + D(P) =L= 0 ;

UNITSIMPLEX .. SUM(I, X(I)) =E= 1;

MODEL rumcoke /ALL/ ;

option nlp=baron;

rumcoke.optfile = 1 ;

SOLVE rumcoke USING NLP MINIMIZING Z ;
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Appendix B: GAMS code

B.2 Bi-blend case 1

SETS

I / i1, i2, i3 /

P constraint / A, B /;

alias (I,J);

parameter

L(I) lower bounds

/ i1 0, i2 0, i3 0 /

U(I) upper bounds

/ i1 1, i2 1, i3 1 /

D(P) constance D for function P

/ A -1, B 3.7/

C(I) cost per ingredient I

/ i1 0.1

i2 0.7

i3 4 /;

table

MATRIX(P,I,J) A Matrix for function P

i1 i2 i3

A.i1 0 -16 0

A.i2 -16 0 0

A.i3 0 0 0

B.i1 10 0 2

B.i2 0 0 0

B.i3 2 0 2 ;

table

B(I,P) B coefficient I for function P

A B

i1 8 -12

i2 8 0

i3 0 -4;

Variables X
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Appendix B: GAMS code

Z ;

Positive Variable X;

X.lo(I)=L(I);

X.up(I)=U(I);

EQUATIONS

COST define objective functioN

CONSTRAINT(P) quadratic constraint p

UNITSIMPLEX unit simplex ;

COST .. Z =E= SUM((I), C(I)*X(I)) ;

CONSTRAINT(P) .. SUM((I,J), X(I)*MATRIX(P,I,J)*X(J)) + SUM((I), B(I,P)*X(I)) + D(P) =L= 0 ;

UNITSIMPLEX .. SUM(I, X(I)) =E= 1;

MODEL rumcoke /ALL/ ;

option nlp=baron;

rumcoke.optfile = 1 ;

SOLVE rumcoke USING NLP MINIMIZING Z ;
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Appendix C

Matlab code

C.1 Rumcoke

C.1.1 f(x)

function [f] = f(x)

C = [0.1 0.7 4.0];

[f] = C*x

C.1.2 g(x)

function [c, ceq] = gcon(x)

C1 = [0 -16 0 ; -16 0 0; 0 0 0];

C2 = [10 0 2; 0 0 0; 2 0 2];

b1 = [8 8 0];

b2 = [-12 0 -4];

c1 = -1;

c2 = 3.7;

f(1) = x’*C1*x + b1*x + c1;

f(2) = x’*C2*x + b2*x + c2;

c = f;

ceq = [];

C.1.3 Fmincon single start

m = 3;

xstart = 1/3 * ones(m,1);

LB = zeros(1,m);
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Appendix C: Matlab code

UB = ones(1,m);

Aeq = UB;

Beq = 1;

[X,FVAL,EXITFLAG,OUTPUT]=fmincon(@(x) f(x),xstart,[],[],Aeq,Beq,

LB,UB,@(x)gcon(x))

C.1.4 Fmincon-multi

t=cputime;

m = 3;

LB = zeros(1,m);

UB = ones(1,m);

Aeq = UB;

Beq = 1;

for i = 1:200

mu = 1;

a = exprnd(mu,m,1);

som = sum(a);

for j = 1:m

mstart(j,i) = a(j)/som;

end

end

mstart;

A = [mstart(1,:);mstart(2,:)];

scatter(A(1,:),A(2,:),’x’);

Funeval = 0;

Iter = 0;

j = 1;

for i = 1:200

[X,FVAL,EXITFLAG,OUTPUT]=fmincon(@(x) f(x),mstart(:,i),[],[],

Aeq,Beq,LB,UB,@(x)gcon(x));

if EXITFLAG == 1

Xt(j,:) = X’;

FVALt(j) = FVAL;

Funeval = Funeval + OUTPUT.funcCount;

Iter = Iter + OUTPUT.iterations;

j = j+1;

end

end

A = [FVALt’ Xt]

time = cputime-t

Funeval

Iter

goodanswer = length(A(:,1))
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