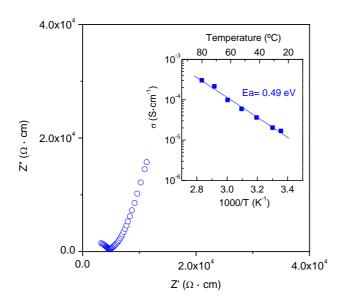
## PROTON CONDUCTIVITY AND LUMINISCENCE PROPERTIES OF LANTHANIDE AMINOTRIPHOSPHONATES


<u>Montse Bazaga-García</u>,<sup>a</sup> Giasemi K. Angeli,<sup>b</sup> Konstantinos E. Papathanasiou,<sup>b</sup> Inés R. Salcedo,<sup>a</sup> Pascual Olivera-Pastor,<sup>a</sup> Enrique R. Losilla,<sup>a</sup> Duane Choquesillo-Lazarte,<sup>c</sup> Gary B. Hix,<sup>d</sup> Aurelio Cabeza,<sup>a</sup> and Konstantinos D. Demadis<sup>b</sup>

m.bazaga@uma.es

<sup>a</sup>Departamento de Química Inorgánica, Universidad de Málaga, Málaga, Spain <sup>b</sup>Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Crete, Greece <sup>c</sup>Laboratorio de Estudios Cristalográficos, IACT-CSIC, Granada, Spain <sup>d</sup>School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom

Metal phosphonates are multifunctional solids with tunable properties, such as internal H-bond networks, and high chemical and thermal stability [1].

In the present work, we describe the synthesis, structural characterization, luminescent properties and proton conduction performance of a new family of isostructural cationic compounds with general formula  $[Ln(H_4NMP)(H_2O)_2]Cl\cdot 2H_2O$   $[Ln = La^{3+}, Pr^{3+}, Sm^{3+}, Gd^{3+}, Tb^{3+}, Dy^{3+}, Ho^{3+}, H_6NMP = nitrilotris(methylphosphonic acid)]. These solids are formed by positively charge layers, which consist of isolated <math>LnO_8$  polyhedra and bridge chelating NMP<sup>2-</sup> ligands, held apart by chloride ions and water molecules. This arrangement result in extended interlayer hydrogen networks with possible proton transfer pathways.



The proton conductivity of Gd<sup>3+</sup> sample, selected as prototype of the series, was measured. In the range between and 80 °C. range 25° the conductivity increase with the temperature up to a maximum value of  $3^{-1}10^{-4}$  S·cm<sup>-1</sup>, at relative humidity of 95 %. The activation obtained energy from the Arrhenius plot (Figure 1) is in the corresponding range to а Grotthuss transfer mechanism.

**Figure 1:** Complex impedance plane plot for Gd<sup>3+</sup> compound at 70 °C and 95% RH. The inset shows the Arrhenius plot.

## References

[1] Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. Chem. Soc. Rev., 2014, 43, 5913-5932.