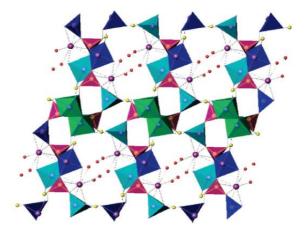

STRUCTURE-PROPERTIES CORRELATIONS IN DIVALENT METAL PHOSPHONATES

<u>Rosario M. P. Colodrero</u>^a, Montse Bazaga-García^a, Pascual Olivera-Pastor^a, Enrique R. Losilla^a, Inés R. Salcedo^a, Miguel Ángel G. Aranda^b, Aurelio Cabeza^a.


 ^a Departamento Química Inorgánica, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, SPAIN.
^b CELL ALBA Synchrotron radiation facility, Ctra. BP1413 km 3.3, 08290 Cerdanyola del Vallès, Barcelona, SPAIN. colodrero@uma.es

Crystalline metal phosphonates may offer acidic sites, structural flexibility and guest molecules (H₂O, heterocyclics, etc.) which can act as proton carriers. In addition, some frameworks are also amenable for post-synthesis modifications in order to enhance desired properties [1,2].

In this work, present the synthesis and characterization of two we hydroxyphosphonoacetates hybrids based on magnesium, [Mg₅(O₃PCHOHCOO)₂(HO₃PCHOHCOO)₂·8H₂O], and zinc, $[Zn_6K(O_3PCHOHCOO)_4(OH) \cdot 6.5H_2O]$, prepared under hydrothermal conditions. Both solids present three-dimensional frameworks and their crystal structures were solved by ab initio xray powder diffraction methods. Their thermal stability, crystal structures and proton conductivity properties will be reported and discussed.

Figure 1. Crystal structure of $Mg_5(O_3PCHOHCOO)_2(HO_3PCHOHCOO)_2 \cdot 8H_2O$. Mg: green balls; P: orange balls; O: red balls; C: grey balls.

Figure 2. Polyhedra view of $Zn_6K[(O_3PCHOHCOO)_4(HO)]$ ^{6.5}(H₂O) framework. $Zn(1)O_6$, navy-blue octahedra; $Zn(2)O_4$, sky-blue tetrahedra; $Zn(3)O_5$, purple polyhedra; CPO3, green tetrahedra; O red balls; K, purple balls and C, yellow balls

References

[1] Ikawa, H. In *Proton Conductors*; Colomban, P., Ed.; Cambridge University Press: Cambridge, 1992; p. 511–515.

[2] Shimizu, G. K. H., Taylor, J. M. and Dawson, K.W. Metal Organophosphonate Proton Conductors. In *Metal Phosphonate Chemistry: From Synthesis to Applications*; Clearfield, A., Demadis, K.D., Eds.; RSC: Cambridge, 2012; Ch. 15; p 493–524.