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Resumen: A lo largo del tiempo, el paradigma de computación de propósito 

general ha evolucionado, produciendo diferentes arquitecturas hardware cuyas 

caracteristicas son muy distintas. En este trabajo, trataremos de demostrar, a 

través de distintas aplicaciones pertenecientes al campo del Procesamiento de 

Imágenes, la diferencia existente entre tres plataformas hardware de Nvidia: 

dos de la serie de tarjetas gráficas GeForce, la GTX 480 y la GTX 980 y una 

plataforma de bajo consumo cuyo propósito es el permitir la ejecución de 

aplicaciones embebidas a la vez que proporcionar una eficiencia extrema: la 

Jetson TK1.  

 

Respecto a los programas de prueba usaremos cinco ejemplos sacados de los 

CUDA Samples de Nvidia. Estas aplicaciones tienen una relación directa con 

el procesamiento de imágenes, dado que los algoritmos implicados en ellas 

tienen similitudes con los aplicados en el campo del registro de imágenes 

médico. Tras las pruebas, se mostrará cómo la GTX 980 es tanto el 

dispositivo con mayor rendimiento como el que mayor consume, se verá que 

la Jetson TK1 es el dispositivo más eficiente de los tres, se enseñará cómo la 

GTX 480 es la plataforma que más calor produce y aprenderemos otros 

efectos producidos por la diferencia entre las arquitecturas que hay entre los 

dispositivos.  

 

Palabras claves: CUDA, GPGPU, Jetson TK1, GTX 480, GTX 980, 

Rendimiento, Consumo, Eficiencia, Procesamiento Imágenes Cerebrales 

 

Abstract: As time has passed, the general purpose programming paradigm has 

evolved, producing different hardware architectures whose characteristics 

differ widely. In this work, we are going to demonstrate, through different 

applications belonging to the field of Image Processing, the existing 

difference between three Nvidia hardware platforms: two of them belong to 

the GeForce graphics cards series, the GTX 480 and the GTX 980 and one of 

the low consumption platforms which purpose is to allow the execution of 

embedded applications as well as providing an extreme efficiency: the Jetson 

TK1.  

With respect to the test applications we will use five examples from Nvidia 

CUDA Samples. These applications are directly related to Image Processing, 

as the algorithms they use are similar to those from the field of medical image 

registration. After the tests, it will be proven that GTX 980 is both the device 

with the highest computational power and the one that has greater 

consumption, it will be seen that Jetson TK1 is the most efficient platform, it 

will be shown that GTX 480 produces more heat than the others and we will 

learn other effects produced by the existing difference between the 

architecture of the devices. 

Keywords: CUDA, GPGPU, Jetson TK1, GTX 480, GTX 980, Performance, 

Power Drawback, Efficiency, Neuroimaging 
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1
Introduction

New computing technologies put an imperative effort on reducing power consump-

tion. The search of low power platforms derives from an older perspective which

focused the increment of computers performance. This idea continued until too

many resources were necessary to feed the machine. At this moment, an inflection

point occurred in the device targets: instead of computational power they started

to concentrate on efficiency. Having more performance is not a forgotten objective

but it is now driven by a reasonable power budget.

One of the main reasons for improving energy efficiency refers to the mobile

market. Battery technologies are stuck and cannot improve their energy capacity

using the same size at the same cost [45]. The need of saving the little energy

available raises, causing a transition from top performance devices to more efficient

ones.

On the other hand, we have supercomputers, which have an extraordinary
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energy usage. These machines need an electric power supply that can reach eas-

ily thousands of kilowatts. Here, energy delivering is a problem as important as

cooling. The more power usage the more heat will be generated.

The efficient power management task is defined under the term green com-

puting. Having less power consumption is a form of achieving this goal, but ef-

ficiency is more commonly measured in floating point operations per second by

watts of power (FLOPS/W). The most energy efficient supercomputers in the world

appear in The Green 500 list [1], which is periodically updated and contains, follow-

ing this metric, those computers at the top of efficiency. In the November of 2014

update, 8 of the top 10 supercomputers used NVIDIA graphic cards.

1.1 The Testbed

This work aims to demonstrate how new technologies walk through higher process-

ing capacity taking good efficiency into account. Three platforms are going to be

used (they will be explained in detail in Section 4.1): GTX 480, Jetson TK1 and GTX

980. Going through these NVIDIA technologies it will be proven how it is possi-

ble with less hardware but better architecture optimize power consumption. One

important fact is the big gap between the devices, not only in terms of hardware

(quantity and architecture) but also in time. Heat generation, energy draw and per-

formance differ widely between them.

The applications used in this work belong to the field of image processing

and are similar to some neuroimaging algorithms in the way they manage data.

The results obtained for this examples can, thus, be extrapolated to the medical

case.

GPU-Z [49] is the application used for measuring power and heat in the GTX

devices. It detects voltage and amperage in the GTX 480 and Thermal Design Power

(TDP) percentage in the GTX 980. How accurate these sensors are depends on a

number of variables but for the sake of this experiment the numbers are stable

enough and represent in a reliable way how the program resources usage scales

for different configurations.

All the tests performed are compiled in Release mode. Those corresponding

to the GeForce graphics cards generate more heat and because of that they are

more aware of the room temperature. These tests were computed in middle July in

Malaga, Spain, at daytime with 28.5 degrees. Degrees are all measured in Celsius

scale.

Computer Architecture Dept. 12 Javier Cabero GuerraComputer Architecture Dept. 12 Javier Cabero GuerraComputer Architecture Dept. 12 Javier Cabero Guerra
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About the OS, Windows is used to perform the tests on the GeForce graphics

cards and Ubuntu is used for the Jetson. For the first example, the GTX 980 test is

provided both in Windows and Ubuntu.

Lastly, the CUDA Samples Imaging section programs are used as test appli-

cations [10]. We consider that the techniques used in this module are of special

interest because they apply in common fields like medicine, robotics and mobile

applications.
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2
The GPGPU movement

2.1 The GPU Streaming Processor

Graphics Processing Units (GPU) were conceived as specialized processors in com-

puter graphics. These devices free the CPU from tasks related to graphics process-

ing. The reason why this dedicated hardware platform exists is the high computa-

tional cost of these tasks, due to the large amount of data that has to be processed

in short time intervals.

Since its beginning, the CPU, based on the Von Neumann architecture, has

given more importance to the instructions that manipulate data than to the data

itself. Because of that, processors are not efficient when accessing to multiple data

simultaneously.

The high performance offered by the GPU against the CPU when huge amounts

of data are provided comes from the big change in the way information is handled.

Computer Architecture Dept. 15 Javier Cabero GuerraComputer Architecture Dept. 15 Javier Cabero GuerraComputer Architecture Dept. 15 Javier Cabero Guerra
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From an historical point of view, the sequential pattern has evolved into a new data-

centric model. In this new model, data is grouped into streams, making possible the

performance of calculations on each of the data elements at the same time.

With the model came a programming paradigm that resulted into the devel-

opment of a processor specialized in streams, commonly referred to as Streaming

Processor.

2.1.1 Advantages and Drawbacks

The architecture of the streaming-based processor is what has mainly defined sev-

eral advantages and drawbacks.

Its main advantage is scalability, which is the ability to handle a growing

amount of work in a capable manner. Since this benefit comes directly from the

hardware model nature, the expectations for the future are very high. Actually, it

has resulted in the GPU performance doubling every six months since its invention,

much faster than the CPU.

However, we have to point out that not all applications benefit from its ar-

chitecture. Applications that make heavy use of conditional statements are hard to

parallelize, as GPU systems operate on the data at the same time and this programs

apply different operations depending on the values of the given data.

2.2 Evolution to a General Purpose Architecture

Over the past few years, the use of GPUs has increased in order to speed up

codes that originally ran on the CPU. Its original approach, rendering graphics,

has evolved into the idea of a flexible and programmable computer (General Pur-

pose GPU or GPGPU) where every program that manages large amounts of data

benefits from the GPU hardware capabilities.

Despite being a relatively recent technology, it had a great acceptation, firstly

because of the continuous evolution that GPUs have experimented into GPGPUs,

and secondly, due to the obtained results against the CPU and its future expecta-

tions.

Since the arrival of the first graphic platforms, a number of improvements

have allowed to build more efficient devices. In the following sections we are going

to examine in a deeper way the most important stages of this evolution.

Computer Architecture Dept. 16 Javier Cabero GuerraComputer Architecture Dept. 16 Javier Cabero GuerraComputer Architecture Dept. 16 Javier Cabero Guerra
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Figure 2.1: Graphics pipeline after shaders inclusion.

2.2.1 Starting Point

Since its inception, the GPU has executed parallel algorithms. However, these al-

gorithms always performed the different stages of the rendering process (graphics

pipeline), so there was a fixed programming model.

During the 90s, GPU programming began to normalize since the boom of

graphical programming gave birth to programming interfaces (including OpenGL

and later DirectX) which allowed developers to work with the GPU in a more trans-

parent and efficient manner.

While the software was evolving, hardware companies modified the graphics

pipeline introducing two programmable steps in which you could execute self-made

programs called shaders, making GPUs more versatile (see Figure 2.1). However,

these programms had to be created in assembler code. Because of that, and in order

to popularize this new flexible capabilities of the GPU, the creation of new tools was

necessary.

Thus, in 2002 HLSL (High-Level Shading Language) was born as a Microsoft

initiative. This language provided higher level of abstraction than the assembler,

but required the programmer to know the GPU architecture.

In late 2002, Cg (C for graphics) appeared. It was developed by NVIDIA in

collaboration with Microsoft and was very similar to HLSL. The language was based

on C programming language with some elements adapted to GPUs. Faced with

HLSL, Cg had all the features of a high level language, more functions for the

programmer and it also allowed to create code that was less dependent on the

hardware.

Finally, GLSL (OpenGL Shading Language) was released as an alternative to

Computer Architecture Dept. 17 Javier Cabero GuerraComputer Architecture Dept. 17 Javier Cabero GuerraComputer Architecture Dept. 17 Javier Cabero Guerra
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the OpenGL Architecture Review Board. It was also based on C, allowing develop-

ers to make cross-platform applications that took advantage from most of the new

features of GPUs. It was initially introduced as an extension to OpenGL 1.4 and it

was officially included in OpenGL 2.0 in 2004.

2.2.2 GPGPU First Steps

At the beginning of the 21st century, GPUs had incredibly increased their program-

ming. However, they had only been used for programming graphics applications up

to that moment.

The first time they were used as general purpose devices was when some re-

searches from the scientific sphere tried to compute more common algorithms with

this platforms. In contrast to the conventional implementation of a CPU algorithm,

GPU algorithms need some program layers to restructure incoming data, instruc-

tions and operators into geometry such that they behave as rendering graphics in-

formation. This way, the problem can be computed by the programmable graphics

processors.

Unfortunately, developers must check that no side effects or changes occur

within the graphics pipeline, as it was not designed for this purpose. These tasks

required knowledge of the internal architecture, high skill and previous experience.

Algorithms Improvement

Particle systems

Physic simulations

Molecular dynamics

2-3

Database queries

Data mining

Reduction operations

5-10

Signal processing

Volume rendering

Image processing

Biocomputing

10-20

Raytracing

3D visualization
+20

Tabla 2.1: Improvement when executing different kinds of parallel algorithms.

Since 2003, it was possible to see codes taking advantage of GPU features.
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2008 2015

CUDA GPUs 100.000.000 600.000.000

Supercomputers in top500.org 1 75

University courses 60 840

Scientific articles 4.000 60.000

Tabla 2.2: Evolution of CUDA.

These programs made a clear difference between the CPU and the GPU, which

would increase in the next years because of the developers that gained experience

and improved their algorithms. Table 2.1 shows the differences that were observed.

2.2.3 The Arrival of CUDA

In 2003, a team of researchers from outside NVIDIA, led by Ian Buck, announced

the first programming model that allowed the development of programs on a GPU

using a high level language as if it were a general purpose processor. This not only

meant facilities when developing GPU code, but also improved performance.

NVIDIA knew his incredibly fast hardware had to be accompanied by a soft-

ware that was at the cutting edge of technology, so they invited the team to join

the company and start developing the next big step in the GPGPU paradigm. As an

union of hardware and software, NVIDIA released CUDA in 2006 as the first global

solution for general purpose computing on GPUs. Some of the improvements were:

• Code readability.

• Easy to program and shorter development time.

• Easy to debug and optimize code.

• Independent code of the GPU.

• Complex mathematical operations and accurate results.

CUDA computing platform provided developers with a C/C++ based system

along with several extensions that allowed programmers to implement parallel ap-

plications. It also offered alternatives that gave programmers the ability to express

parallelism using other high level languages (Fortran, Python ...) and open stan-

dards (such as OpenACC directives).

The release of CUDA was widely accepted by scientific, academic and devel-

oper communities in general. The new parallel programming paradigm brought a
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Figure 2.2: The OpenCL model.

number of improvements that eliminated all the difficulties encountered in the past.

In fact, since its arrival day until the present, the CUDA platform has been used in

more than 600.000.000 GPUs and 60.000 research applications (see 2.2).

2.2.4 OpenCL

At the end of 2008, OpenCL was released as an open alternative to propietary so-

lutions for GPGPU. OpenCL was the product of many years of development by an

open software consortium. It was originally conceived by Apple and developed in

conjunction with AMD, IBM, Intel and NVIDIA; then it was given to the Khronos

Group, who converted it into an open, royalty-free standard.

Unlike CUDA, OpenCL is defined as a general purpose programming standard

in heterogeneous systems that can run on different architectures such as CPUs,

GPUs and FPGAs. OpenCL provides an API for parallel computing and a program-

ming language based on ISO C99 with extensions for data parallelism.

The way OpenCL operates is based on a host machine that distributes the

workload between all system devices, which are called computational units. This

computational units are then divided into multiple processing elements.

Although OpenCL is a valid alternative to CUDA, the distance between both is
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June 2011 June 2012 June 2013 June 2014

NVIDIA Fermi 12 53 31 18

NVIDIA Kepler 0 0 8 28

Intel Xeon Phi 0 1 11 21

ATI Radeon 2 2 3 3

IBM Cell 5 2 0 0

Hybrid 0 0 1 4

Total 19 58 54 74

Tabla 2.3: Evolution of GPUs in TOP500.

sometimes tremendous. If the implementation and distribution of work is perfectly

adjusted to the target architecture, OpenCL performance should not be much less

than CUDA. However, CUDA has not the portability of OpenCL.

2.2.5 Last Years and the Future of GPGPU

The programming of GPUs has evolved a lot in the recent years. However, its evo-

lution needed one more step: the increment in scalability of the GPU itself.

To do that, clusters of computers arise and more devices interconnect, oper-

ating in groups that act as one graphics device. This led to the emergence of the

GPGPU movement to gain momentum in the field of high performance computing.

The enhancement was not only limited to the appearance of servers and work-

stations: it also allowed the raise of the number of heterogeneous supercomputers

that incorporated the latest generation of GPUs as coprocessors that were in charge

of part of the processing work. Table 2.3 shows the evolution of graphics coproces-

sors in the TOP500 supercomputers list in the last four years.

The change to the GPGPU model is relatively recent, so there is still a long

way to go. GPUs offer several orders of magnitude greater performance than the

CPU when large amounts of data have to be processed, so they are positioned as

an alternative to traditional processors and could be considered as the computing

engine for the future.
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3
Programming on Architecture

Graphics Using CUDA

Once seen the increase in the popularity of the graphics programming and the

importance of the GPGPU (General-Purpose computation on Graphics Processing

Units), we are going to focus on the main model, CUDA, and the hardware platform

that executes it.

Therefore, this chapter presents the main concepts of the graphical program-

ming with CUDA and the highlight parts of the hardware along with the close rela-

tionship between hardware and software. Finally, the evolution of the architecture

by generation is explained too.
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3.1 CUDA (Compute Unified Device Architecture)

CUDA [39] is a parallel computing platform and programming model invented by

NVIDIA that allows the programmer to deploy task and data parallelism in three

different levels: software, firmware and hardware.

3.1.1 Software

The first level, software, has diferent ways of writing code and executing it on the

GPU.

• Programming language: Although C/C++ is the most usual high-level lan-

guage for developing code on CUDA, there are also APIs (Application Pro-

gramming Interface) for other popular languages like Fortran, Java and Python.

• Optimized libraries: There are many libraries that allow us to perform GPU-

accelerated code with just a few lines of code (cuBLAS, cuFFT, Thrust, etc.).

• Compiler directives: Another possibility for accelerating applications is to

use standard directives with an open initiative called OpenACC. Programmers

identify the data parallelism within the code through simple compiler direc-

tives, moving the bulk of the parallelization effort to the compiler. However,

this automatic approaches have always a performance payoff.

3.1.2 Firmware

NVIDIA offers a driver that is compatible with the one responsible for rendering.

This driver has simple APIs for controlling the memory, the device and more.

3.1.3 Hardware

Lastly, CUDA provides the programmer with the possibility of using the GPU for

general purpose programming by means of a large amount of heterogeneous cores

inside multiprocessors which are enveloped by a memory hierarchy. This point is

explained in more details in section 3.3.
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3.2 Programming Model

In the next paragraphs, the CUDA programming model is presented, taking C as

the baseline language. CUDA is an extension of the C language which supplies tools

for parallel programming on GPU. In this model, the GPU acts like a coprocessor

and only executes a minimal fraction of code, the rest is handled by the CPU. This

process is transparent for the developer due to the CUDA compiler driver (NVCC)

and divides the code in two sections:

1. With the GPU fraction generates PTX 1 code files. This code is compatible

with different devices so that it is decoupled from hardware implementation.

2. The CPU part is parsed to C compiler code in order to create object files.

On Linux, we can use GCC (GNU Compiler Collection). On the other hand, CL

(the Microsoft Visual Studio compiler) can be used on Windows platform.

Then the linker builds a CPU-GPU executable with the files of both parts.

For NVCC to be able to divide the code, it is necessary to introduce new syntax

elements are used by the programmer to define kernels. Kernels are C functions

that contain code for one thread only, then this code is executed on multiple threads

in the graphics device automatically. These threads are very thin and the context

switch is immediate.

3.2.1 Processing Levels

One of the syntax elements used to define kernels is the __global__ declaration

specifier. In addition, the number of threads of each kernel is indicated within

«<...»> through two parameters. A thread is identified within the kernel in re-

sponse to the following hierarchy.

1. The threads are organized in blocks. Each thread has an identifier that is

accessible within the kernel by means of the built-in threadIdx variable.

2. Likewise, these blocks are grouped within a grid and, like the threads, to

each block is given a unique identifier within the kernel, blockIdx.

Both grid and thread blocks can be unidimensional, bidimensional or tridi-

mensional and their size is indicated by the programmer under certain limitations.

1PTX is a low-level Parallel Thread eXecution virtual machine and instruction set architecture
(ISA).
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Block (1,1)

Figure 3.1: Graphical representation of a grid with six thread blocks, each one composed
of 12 threads. NVIDIA Corporation [39]

The dimension of the thread block and the grid are accessible within the kernel

through variables blockDim and gridDim respectively. This hierarchy gives to CUDA

an important feature: the scalability. 2

In addition, threads are grouped within 32 elements groups called warp 3,

that is the atomic execution unit, and they are executed in unpredictable order

although they could be synchronized if this is necessary.

A warp executes one common instruction at a time for all threads, there-

fore to obtain the maximum efficiency is necessary that all threads within the warp

have the same execution path. If due to data-dependence the execution path of a

warp is bifurcated, the execution of each branch is serialized disabling the

threads that doesn’t participate on each branch. When all paths complete, the

threads converge back to the same execution path. This serialization of the execu-

tion only occurs within a warp, two differents warps are able to execute distinct

paths simultaneously. In the same way blocks are executed in free order too but

in contrast they can’t be synchronized. In addition, a thread is able to communi-

cate only with other threads within the same thread block. All those details have to

be handled with care by the programmer to guarantee the corretness of the parallel

code.

2The code is able to run on any number of cores without recompiling.
3The number of threads per warp could change on future generations of GPUs.
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3.2.2 Streams

Since the appearance of the second generation of graphics cards, CUDA allows to

execute kernels concurrently by means of streams. A stream is a sequence of

commands that execute in order. The execution of these commands are out of order

with respect to other streams, although CUDA provides functions to synchronize

them.

By default, all kernels are executed within the same stream. To create a

new stream, CUDA C offers a new data type, cudaStream_t, and a new constructor,

cudaStreamCreate(). The next code is an example of an array with three streams:

cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)

cudaStreamCreate(&stream[i]);

Kernels are assigned to a stream through the fourth parameter of the

kernel launch. The four parameters are:

1. Amount of thread blocks into a grid.

2. Number of threads within a thread blocks.

3. Shared memory allocation size per thread block in bytes.

4. Stream ID.

The maximum amount of concurrently streams depends on the generation

(16 streams for Fermi and 32 for Kepler). The details of stream concurrence is

explained in Section 3.4.3.2 with more detail.

3.2.3 Processing Flow

As already mentioned in section 3.2, on CUDA, the GPU (device) acts like a copro-

cessor of the CPU (host) but with its own memory. Because of that, it is necessary

to move the data from host memory to device memory and vice versa. As a result

CUDA model has a simple processing flow composed of three steps [17]:

1. Copy the input data from host memory to device memory.

2. Load the program on GPU and run, the data are placed in cache memory

to enhance the performance.

3. Move the results from GPU memory to CPU memory.
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Figure 3.2: CUDA processing flow.

Although this schema is still valid, now it can be simplified due to unified

memory, calls recently introduced in the CUDA API.

3.3 Hardware Model

To handle the thread hierarchy, CUDA implements a new hardware model that is

kept on successive generations with small but powerful modifications. This model is

described in this section in a general way, the specific features of each architecture

generation is explained in section 3.4.

The NVIDIA GPU architecture follows a SIMT paradigm (Single-Instruction,

Multiple- Thread). This architecture is akin to SIMD (Single Instruction, Multiple

Data), where the instructions specify the execution and branching behavior of a

single thread. This device is consisted of an array of Streaming Multiprocessors

(SMs) with each one having many cores. As a result, this model along with the

software model allows fine grained parallelism.

In addition, this structure is enveloped by a memory hierarchy. The GPU
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Multiprocessor 1
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Figure 3.3: Hardware model of CUDA. NVIDIA Corporation [39]

has three memory layers on-die for each multiprocessor. From fastest to slowest,

we have:

• A register bank replicated on each of the multiprocessors, which is dis-

tributed among the active threads.

• The shared memory is as fast as register bank. It is shared by all cores within

each multiprocessor, and executions threads can communicate using it.

• In addition, the GPU has two read only memories not so popular: the constant

cacge and the texture cache.

If this memory is insufficient, the GPU counts with the presence of global

memory common to all multiprocessors. This memory is a SGRAM (Synchronous

Graphics Random Access Memory), in particular it is a GDDR5 (Graphics Double

Data Rate type 5).

It is three times fastest than the RAM memory of the CPU although is 500

times slower than shared memory.
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Arquitectura G80 GT200 GF100
GK110

(k20)

GK110

(k20x)

GK110

(k40x)

GK210

(k80)

GM204

(GTX 980)

C.C.C. 1.0 1.2 2.0 3.5 3.5 3.5 3.7 5.2

Launch year 2006 2008 2010 2012-13 2013 2013-14 2014 2015

TPC 8 10 4 - - - - -

SM

[SM/TPC]
16 [2] 30 [3] 16 [4] 13 14 15 (2x) 15 16

Int and fp32

[cores/SM]
128 [8] 240 [8] 512 [32] 2496 [192] 2688 [192] 2880 [192] (2x) 2880 [192] 2048[128]

Fp64

[cores/SM]
0[0] 30 [1] 256 [16] 832 [64] 896 [64] 960 [64] (2x) 960 [64] 64 [4]

LSU

[cores/SM]
0 [0] 0 [0] 256 [16] 416 [32] 448 [32] 480 [32] (2x) 480 [32] 512 [32]

SFU

[cores/SM]
32 [2] 60 [2] 64 [4] 416 [32] 448 [32] 480 [32] (2x) 480 [32] 512 [32]

Warp Scheduler

per SM
1 1 2 4 4 4 4 4

32-bit register

per SM
8K 16K 32K 64k 64k 64k 128k 64k

Shared memory

per SM
16KB 16KB

16KB 16KB + 32KB 16KB + 32KB 16KB + 32KB 16KB + 32KB + 48KB
96KB (2x48KB)

Cache L1

per SM
None None

+ 48KB + 48KB + 48KB + 48KB + 80KB + 96KB + 112KB
None

Cache L2 None None 768KB 1.5MB 1.5MB 1.5MB (2x) 1.5MB 2MB

Tabla 3.1: Summary table with the main features of several models from each hardware
generation.

3.4 Evolution of the Architecture by Generations

To identify the different models of the architecture, NVIDIA gives an internal ver-

sion number for each device generation. This number, called CUDA Compute Ca-

pability (C.C.C.), is used by applications to determine at runtime which hardware

features and/or instructions are available on the present GPU. The C.C.C. is formed

by two numbers (x.y):

• The first is the major version number and it determines the generation: 1

for Tesla architecture, 2 for Fermi, 3 for Kepler and 5 for Maxwell.

• The incremental improvement to the core architecture is represented by

the second number or minor version number.

In order to select the best core architecture for the problem, the main fea-

tures of the different generations are explained below.

3.4.1 The First Generation: Tesla (G80 y GT200)

This is the first generation that unified the vertex shader with the pixel shader

for their usage on GPGPU applications. This CUDA architecture was launched in
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Figure 3.4: GeForce 8800 GTX (G80) block diagram. NVIDIA Corporation [28, pg. 02]

2006 and caused by that time a dramatic change in the graphics pipeline, going

over from a lineal pipeline to a loop one. To make this possible, NVIDIA buildt the

architecture described below.

Each graphic card Tesla G80 has eight Thread Processing Cluster (TPC),

these in turn have two SMs with eight cores each, for a total of 128 scalar pro-

cessing cores. In addition, this cores support the dual issue of a scalar MAD and

a scalar MUL operation. In the memory section the G80 is equipped with 8K reg-

isters of 32-bits and 16KB of shared memory per SM. This architecture can be

seen in Figure 3.4, where we illustrate the GeForce 8800 GTX (G80) block diagram.

Inside of this generation NVIDIA improves the architecture creating the GT200.

The main enhancements are listed below:

• A rise in the amount of cores. The number of blocks TCP is raised from 8

to 10, as well as increasing the amount of SMs per TCP to three. Due to this,

the number of cores increased to 240.
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Figure 3.5: Thread Processing Cluster of GT200. NVIDIA Corporation [29, pg. 13]

• More threads per chip. The software limitation on G80 only allows 768

threads per SM whereas the GT200 accepts until 1024 threads.

• Bigger register file size. The register bank is doubled to 16K registers per

SM.

• Double-precision floating-point support. One core for fp64 operation is

added on each SM.

• Shared memory improved. Hardware memory access coalescing was added

to improve memory access efficiency.

In Figure 3.5 is visible the three SMs inside a TCP of a GT200 revealing that

in this time the increment of cores is produced by rising TCPs instead of the number

of cores per SM.

3.4.2 The Second Generation: Fermi (GF100)

The TCP disappears and Nvidia makes a new hardware block, called Graphics Pro-

cessing Clusters (GPC), which encapsulates all key graphics processing units. In-

side of this hardware block there are four stream multiprocessors.

In contrast to the intergenerational enhancements of Tesla, on Fermi, NVIDIA

decided to reduce the number of SMs and grow in the number of cores per multi-

processor. Thus, Fermi has three distinct types of cores:
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Figure 3.6: GF100 block diagram and Stream Multiprocessor detail. [31, pg. 11 and 16]

1. Int and floating points units. 32 cores per SM redesigned for optimizing 64-

bit int operations. These cores are used for both simple and double precision

operations 4.

2. Load/Store units. For Load/Store operations 16 cores are incorporated al-

lowing source and destination addresses to be calculated for sixteen threads

per clock.

3. Special Functions Unit (SFU). Four cores are added for quick calculation of

complex functions such as sin, cos, reciprocal and square root, although they

are not as accurate as their CPU versions.

In addition, the GF100 has two warp schedulers, each with an instruction

dispatching unit. This configuration allowed to launch two concurrent warps, and

the schedulers did not need to check for dependencies within the instructions in

the stream.

One of the main improvements over the previous generation is the memory

hierarchy. Each Fermi’s SM has 64KB of on-die memory that it is configurable in

two modes: 16KB of shared memory and 48KB of L1 cache and vice versa.

The first mode optimize the algorithms where data addresses are not known before-

hand, while the second is the best mode for algorithms with well defined memory

4In this case Fermi can run 16 fp64 operation only.
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Figure 3.7: Fermi and Kepler memory hierarchy. NVIDIA Corporation [31, pg. 19] and [36,
pg. 13]

accesses. Moreover, this generation incorporates 768KB of L2 cache shared by

all stream processors. In the left side of Figure 3.7 the diagram of this hierarchy

is visible.

3.4.3 The Third Generation: Kepler (GK110 y GK210)

Following the trend introduced by Fermi, Kepler increases the number of cores

per SM and reduces the amount of multiprocessors. Even though the GK110 is

not the first chip of Kepler architecture, this section is centered in the GK110 and

newer ones as they are the most widely used.

The quantity of cores per SM is the same in the distinct incremental improve-

ment of the architecture, although the number of stream multiprocessors changes

from one to another. Thus, Table 3.1 shows the differents versions and its main

features.

The Kepler’s SMs (called SMXs) have 192 single precision CUDA cores,

and each core has fully pipelined floating-point and integer arithmetic logic units. In

addition, these SMs increase the double-precision computation capacity with 64

dedicated units. More over, the GK110 has 32 LD/ST units, doubling the amount

of load and store units available in the Fermi architecture. Finally, the SMXs have

32 Special Function Units (SFU).

Each SMX has four warp schedulers with two dispatch instruction units

each. This allows up to eight warps to be issued and executed concurrently.
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Figure 3.8: Kepler GK110 full chip block diagram. NVIDIA Corporation [36, pg. 06]

Kepler also follows the memory hierarchy of Fermi, although the texture

memory is now accessible for GPGPU as only-read memory of 48KB. In addi-

tion, this generation improve all layers of memory:

• Register Bank. The amount of 32-bit register per multiprocessor grows until

64K.

• Shared Memory and L1 cache. Apart from to the configuration modes of

shared memory were seen in Section 3.4.2, a new mode is added in this gen-

eration: 32KB for both.

• L2 cache. The amount of memory in this layer is doubled to 1536KB. Addi-

tionally, the L2 cache on Kepler offers up to 2x of the bandwidth per clock

available on Fermi. [36]

The GK210 and GK110 have their features explained in Section 3.4.3.1 and

Section 3.4.3.2. One as much as the other are Kepler architectures but the GK210

has more resource on-chip than GK110. Thus, both chips share the same amount

of core per SMX but the GK210 has 128K register of 32-bit per SMX and

128KB of shared memory/L1 cache with the configurations below:

• 112KB shared memory + 16KB L1 cache
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Figure 3.9: SMX with 192 single-precision CUDA cores, 64 double-precision units, 32 SFU
and 32 LD/ST units. NVIDIA Corporation [36, pg. 08]

• 96KB shared memory + 32KB L1 cache

• 48KB shared memory + 80KB L1 cache

• The anterior amounts reversed.

3.4.3.1 Dynamic Parallelism

Until the GK110 was created, the GPU acted like CPU a coprocessor with high

speed-up factors, but low autonomy. Now, with dynamic parallelism, the GPU

can generate new work for itself. It does not need to interrupt and wait the

launch of new kernels in the CPU, create the events and threads required to con-

trol dependencies, synchronize the results and control the task scheduling [3]. Fig-

ure 3.10 shows an example about how dynamic parallelism behaves releasing work
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CPU Fermi GPU CPU Kepler GPU

GPU Adapts to Data, Dynamically Launches New Threads

Dynamic Parallelism

Figure 3.10: With Dynamic Parallelism the GPU can generate new work for itself. NVIDIA
Corporation [36, pg. 15]

from the CPU.

This new feature allows the programmer to use recursive techniques in its

algorithms. Due to this, the developer is able to make algorithms that were im-

possible to achieve on FERMI such as quicksort, nested loops with differing

amounts of parallelism or even dynamically setting up a grid for a numerical simu-

lation focusing in the interesting zones without an expensive pre-processing.

On Fermi, Only the host sends a grid to the CUDA Work Distributor (CWD)

and this distributes the blocks among the differents SM. On Kepler, it is necessary

a new unit for the management of both device and host grids. This component,

called Grid Management Unit (GMU), processes the grids received from CPU

and GPU and sends them to CWD. Then, the work distributor, which accepts up

to 32 grids, sends the blocks to the SMX. In addition, the GMU can pause the

dispatching of new grids due to the two-ways link. In Figure 3.11 it can seen both

Fermi and Kepler workflow.

3.4.3.2 Hyper-Q

On Fermi until 16 streams could be launched concurrently, but they are imple-

mented underneath using a single queue, only the end of a stream and the start of

other could be executed at the same time. On Kepler until 32 streams can be re-

ally executed concurrently due to that each stream is managed independently on
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Stream Queues

Ordered queues of grids
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Figure 3.11: Fermi (left side) and Kepler (right side) workflow. NVIDIA Corporation [36,
pg. 19]

a different hardware queue. In addition, this allow for executing a streams in paral-

lel that other stream coming from the same or other CUDA program, MPI process

or POSIX thread.

3.4.4 The Fourth Generation: Maxwell (GM204)

The new generation is focused on maximizing the performance per consumed watt.

Thus, NVIDIA has reorganized the internal components of the multiprocessors (SMMs).

Now, these are splited in four part. Each CUDA cores processing block contains:

1. 32 int and floating points units (128 per SMM).

2. 1 double precision unit (4 per SMM).

3. 8 Load/Store units (32 per SMM).

4. 8 Special Functions Unit (SFU) (32 per SMM).

In addition, each split contains a warp scheduler, which is capable of dis-

patching two instruction per warp at every clock. This configuration aligns with

warp size, making it easier to use efficiently.
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Figure 3.12: GM204 SMM Diagram (GM204 also features 4 DP units per SMM, which are
not depicted on this diagram). NVIDIA Corporation [41, pg. 08]

3.4.4.1 Memory improvement

The memory hierarchy has changed too, now the shared memory doesn’t share the

block with the L1 cache. The L1 caching function is now shared with the texture

catching function. The size of shared memory grows to 96KB, although this is lim-

ited to 48KB per thread block [23]. Finally, the size of L2 cache is 2MB on GM204.

Other improvement which is implemented on Maxwell is the memory com-

pression. To reduce DRAM bandwidth demands, NVIDIA GPUs make use of lossless

compression techniques as data is written out to memory. This profit is doubled

when clients, such as the Texture Unit, read later the data.
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Figure 3.13: Maxwell GK204 full chip block diagram.NVIDIA Corporation [41, pg. 06]

3.4.4.2 Atomic operations

Maxwell introduces native shared memory atomic operations for 32-bit integers

and native shared memory 32-bit and 64-bit compare-and-swap (CAS), which can be

used to implement other atomic functions with reduced overhead compared to the

Fermi and Kepler methods. This should make it much more efficient to implement

things like list and stack data structures shared by the threads of a block [41].
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4
GTX 480 vs Jetson TK1 vs GTX 980

4.1 Introduction

4.1.1 Dissertation Overview

NVIDIA Corporation has made a huge step into green computing. Kepler was the

first generation that defines itself as an architecture concerned about efficiency.

His antecessor, Fermi, was presented as a powerful parallel computing architec-

ture. The predecessor of Kepler is Maxwell generation, which endorses the focus

on efficiency.

In this section, we ilustrate this transition with a comparison between Fermi,

Kepler and Maxwell. However, the devices corresponding to each generation are

not only graphics cards. The Kepler one is an embedded platform designed to be

extremely efficient. Next sections will introduce them and their features.
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4.1.2 GeForce GTX 480

This graphics card is part of the GeForce 400 series, the one that introduced Fermi

GPU architecture in early 2010 [11]. It is the oldest of the presented platforms.

Fermi architecture allowed not only the raise of the performance limits of GPUs, it

also added more flexibility on the programming of applications for these devices.

4.1.1 GeForce GTX 480 card.

The GeForce GTX 480 is one of the most powerful devices of the GeForce 400

series. 480 CUDA cores at 1401 MHz and 1536 MB GDDR5 at 1848 MHz. The max-

imum temperature for the GPU is 105 degrees [12]. Theoretical peak performance

is 1345 GFLOPS.

Our tests showed that, on idle, it consumes around 35 W and aproximately 65

W on a normal execution of random CUDA Samples. Some applications showed a

100 W power consumption, but it is less frequent. Minimal system power supply is

set at 550 W. The idle temperature for this device is 62 degrees.

4.1.3 Jetson TK1

Jetson TK1 is described as the world’s first embedded supercomputer. It stands as a

computer vision platform that many has applications (autonomous robotics, mobile

medical imaging, Intelligent Video Analytics, etc) [15]. Jetson TK1 aims to provide

an efficient and powerful platform for embedded and mobile applications [18].

It was released on April 2014. It is powered by a Tegra K1, which consists
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4.1.2 Jetson TK1 board.

of a SoC (System-on-a-Chip) architecture integrating a GPU with 192 Kepler CUDA

cores and NVIDIA CUDA 6 support and a 4-PLUS-1 Cortex-A15 ARM processor, that

has better performance and is more power efficient compared to the previous gen-

eration. GPU clock can reach 852 MHz. 2GB of RAM and several ports like HDMI,

USB 3.0, serial, mini PCI-e and GPIO. Peak performance is about 300 GFLOPS. The

Operating System is a Linux distribution based on Ubuntu [37].

The following picture compares Jetson processor with the known PS3 and

Xbox 360 gaming platforms [13]. Tegra K1 shows a power consumption of 5 watts,

a remarkable difference with competitors.

On Jetson TK1 wikia it is said that the board consumes 2.2 W when it is

idle, approximately 4 or 5 watts when using CPU cores and 11 watts enabling GPU

cores. It also can be read that this number can raise up to 30 W when connecting

peripherals.

To measure this, we used a hand-built PCB with a Shunt resistance that allows

to get the electric consumption from the board power connector. This PCB was

then connected to an DS-5 ARM energy probe that reads the consumption value

and sends it to an application called Streamline. In addition, the Jetson TK1 Linux

kernel was recompiled to add a module that reports a few more measures such as

temperature and CPU activity to Streamline.

As the test applications are all graphics programs that use a window to show

their results, we used a computer monitor connected to the HDMI of the Jetson and

a keyboard in the USB. In the end, the power reader reported 1.12 W on idle and no
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4.1.3 Jetson TK1 vs Xbox & PS3.

more than 5 W on any application execution. These numbers and the ones showed

in the charts of the samples section refer all to the total consumption of the board.

The tests also showed that the maximum temperature is 51 degrees [2]. Though

these programs are not designed to stress the device, they provide a good example

of general applications executed on the Jetson TK1 and how it would response to it.

The power consumption results prove the veracity of the slide table that compares

Jetson TK1 against the gaming consoles.

4.1.4 GeForce GTX 980

This graphics card belongs to the NVIDIA’s GeForce 900 series. The GeForce 900

series was released as part of the Maxwell architecture in early 2014 [14]. GTX 980

came out at the end of that year and is the most modern device in our experiment.

In terms of hardware, GTX 980 has 2048 CUDA cores at a clock rate of

1126MHz (can boost to 1216MHz) and 4GB of global memory. Thus, the GTX 980

is the platform that comprises the biggest amount of hardware of all the three de-

vices. The graphics card power maximum consumption is 165 W, which is called

Thermal Design Power, and requires 500 W of system power supply. Theoretically,
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4.1.4 GeForce GTX 980 card.

it can reach 98 degrees [16]. Idle power is 13.2 W, far less than the GTX 480. Our

test will show the higher efficiency of the GTX 980 against the old GeForce device.
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4.2 Texture filtering

4.2.1 Description

Texture filtering is a commonly known technique from the field of computer graph-

ics which purpose consists of smoothing out textures and images. To achieve this,

the algorithm averages each pixel with its neighbourhood such that the differences

fade away.

There are several algorithms to perform this task. As always, there is a trade-

off between effectiveness and efficiency and each of these algorithms play with this

balance betting for the first or the second part. The ones covered in this experiment

are: nearest filtering, bilinear filtering, bicubic filtering, fast bicubic filtering and

Catmull-Rom filtering.

A visual example using the black and white eye part of the picture of Lena

(the popular computer graphics data set) shows the differences on filtered images.

4.1.5 Nearest filtering. 4.1.6 Bilinear filtering. 4.1.7 Bicubic filtering.

4.1.8 Fast-Bicubic filtering. 4.1.9 Catmull-Rom filtering.
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Theoretically, Bicubic and Catmull-Rom produce the best results but are also

the most computationally expensive. Fast-Bicubic is an optimized version of the

Bicubic algorithm that has a bit less resource usage. On the other hand, the fastest

algorithms are the nearest and bilinear filtering but do not perform quite as well as

the others.

4.2.2 Performance

The performance of these algorithms is measured in Mpixels/sec. As previously

said, the last three algorithms use a lot of resources and thus have less pixel

throughput. The NVIDIA Texture Filtering sample application provides a bench-

mark mode that performs the computation of the selected filter a number of times.

The default value for this count is 500. In practice, the benchmark mode reported

unstable pixel rates in sequential benchmark tests. Because of that, the number

was increased to 1.000.000 and executed 10 times. An arithmetic mean of the re-

sults was then computed. Conclusions of the experiment are contained in Figure

4.14.1.10.

4.1.10 Texture Filtering Performance (Windows).

As expected, the performance order from lower to higher values starts with

the device that has less consumption (Jetson TK1) and ends with the most powerful

one (GTX 980). There are two clear subsets in the chart, one containing the first two

algorithms and the other one with the last three. Bicubic, Fast-Bicubic and Catmull-

Rom filters performance compared to the Nearest and Bilinear filters is, in the GTX

480, approximately a 18%. This percentage is a bit higher in the GTX 980, managing

to mantain a 28% of the pixel throughput. However, the Jetson TK1 has a 41%
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performance in the expensive algorithms relative to the cheap ones. This makes

the Jetson TK1 the device with higher scalability, as the decay in performance on

work overload is superior to the GeForce devices for this example.

4.1.11 Texture Filtering Performance (Ubuntu).

The same CUDA sample was run in Ubuntu using the GTX 980 (see Figure

4.14.1.11). The results shown a 8% and 6% higher performance for Nearest and Bi-

linear filters, respectively. Despite of this, the expensive filters do not improve their

throughput, having less than 1% lower performance or approximately the same pix-

els per second. This difference is not enough to question the importance of using

the same Operating System to compare the results, as the numbers do not vary

widely with the OS but more with the underlying hardware.

4.2.3 Power Draw and Heat Generation

In the GTX 980, Bicubic filter has the least power consumption with 115 W. Nearest

and Bilinear filters are more stable around 118 W, as well as Fast-Bicubic. Lastly,

Catmull-Rom is the highest with 120 W. These differences in wattage are not very

important (they are in a range of 5 W wide), meaning that the graphics card oper-

ates, in terms of power, more or less the same with each of the filters. However, the

small differences reveal how expensive filters consume the most.

Bicubic filter is an exception to this rule as it has the lowest power drawback

of all. It also has the least pixel processing rate (in GTX 480 and GTX 980 devices).

These two indicators prove that the graphics card is not able perfectly fit the work

load of the algorithm. In the GTX 480, the first two algorithms have the greatest

power draw.
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4.1.12 Texture Filtering Power Draw.

All the three platforms have small power differences among the different fil-

ters. In the GTX 980, the window size is 5 W, the GTX 480 has 7.3 W and the Jetson

TK1 0.9 W. The device that required more power is the GTX 980 and the one con-

suming less is the Jetson TK1.

4.1.13 Texture Filtering Heat Generation.

Heat generation in this example showed that filters with less throughtput

are the ones that require less power. The harder the algorithm is, the lower the

temperature gets.

GTX 980 has around 12% less heat generation than the GTX 480. Both de-

vices are cooler when computing the last filters. In general, a strong correlation

occurs between the power consumption and the heat generation. Despite of this,

the graphics card fan could cause the heat to perform differently, as it dynamically
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increases its speed depending on the work load. This assumption of the correlation

between the heat and the power reflects on GTX 480 and Jetson TK1, but not on the

Maxwell graphics card.

4.2.4 Algorithm Efficiency

We now compare the efficiency of the devices (see Figure 4.14.1.14). GTX 980 has

approximately 220 MPixel/sec per Watt for the first two algorithms while the GTX

480 gets a 180 MPixel/sec per Watt rate. The GTX 980 has higher efficiency also in

the expensive algorithms, around 64 MPixel/sec per Watt against the 36 MPixel/sec

per Watt of the other device. The conclusion is that, for the cheap algorithms, the

GTX 980 is 20% more efficient than the GTX 480 and for the expensive ones, this

difference windens to 70%.

4.1.14 Texture Filtering Power Efficiency.

Jetson TK1 has the greatest power efficiency in all filters, with a 60% and

50% higher efficiency than the GTX 980 in the first two filters and approximately a

50%, 60% and a 68% in the last three.

In the previous section, heat generation for the three devices was shown. The

GTX 980 was proven to generate less heat than the GTX 480 and the Jetson TK1

again less than the GTX 980. Jetson TK1 has a very low power consumption, being

just 6% and 4% of the power drawn by the GTX 480 and the GTX 980, respectively.

However, the heat the device generates doesn’t hold this proportions but much

larger ones. Jetson TK1 generates around 53% and 60% of the heat GTX 480 and

GTX 980 generates, respectively. The performance increment do not compare to
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this proportion. Because of this, the heat generation efficiency chart was made to

show the heat generated by each performance unit.

4.1.15 Texture Filtering Heat Generation Efficiency.

Heat generation efficiency for the Jetson TK1 is now the worst of all devices.

It is more efficient in terms of power, but it is fairly warmer proportionally, specially

on the last three filters, with 1 degree generated for each 0.11 MPixel/sec that it

achieves. Figure 4.14.1.15 shows that the most efficient device is the GTX 980,

having 1 degree generated for each 0.01 MPixel/sec. Thus, the GTX 980 has a 9%

of the Jetson TK1 heat generation rate (percentage of the Bicubic filter).

The most powerful device is the GTX 980, the one that generates more heat

is the GTX 480 and the more power efficient is the Jetson TK1. These assertions

should be true for all the CUDA samples provided here. The configurations and

roofline models will show how hardware systems have evolved to increase their

performance and to do a more efficient computation.

Further information and examples about this section can be found in [5].
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4.3 Bilateral filtering

4.3.1 Description

This is a special type of non-linear filter that smooths out textures but preserves any

edges found on it. It is based on four parameters: gaussian delta, euclidean delta,

the filter radius and the number of filter iterations. If the value of the second one,

the euclidean delta, is high, most parts of the output texture will be filtered away

as the edge-preserving nature declines. When this parameter tends to infinite the

resulting filter is a gaussian one. Blur effect intensifies with a larger gaussian delta.

Having a small euclidean number while incrementing the number of iterations will

produce flatter colors without blurring edges, creating a cartoon effect.

We use an example of a still life paint, giving the unfiltered and filtered output

using the just described technique, to demonstrate the filter result.

4.1.16 Original image. 4.1.17 Filtered image.

Note how, in the second image, contours are preserved while all other colors

flatten. This is why it is called cartoon effect. The euclidean value for the filtered

example is 0.12, a low one to make it very edge-preserving. Gaussian was set to 4

and the filter iteration count and radius size were 5.

4.3.2 Performance

To perform the tests, the euclidean value was fixed around 1 and the gaussian

at 2. These parameters won’t affect performance as hard as the radius and the

iteration count. From 1 to 12, step size 4, values for both radius and iterations

were combined into a cartesian product. The performance of the Bilateral filtering

is measured using the application framerate or Frames Per Second (FPS). All results
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can be found in Figures 4.14.1.18, 4.14.1.19 and 4.14.1.20, respectively, for GTX

480, Jetson TK1 and GTX 980 (the iterations axis is inverted for clarity).

4.1.18 GTX 480 performance.

4.1.19 Jetson TK1 performance.

GTX 480 performance (see Figure 4.14.1.18) drops quickly when increasing

the number of iterations. The decay simulates a logarithmic curved surface. GTX
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4.1.20 GTX 980 performance.

980 manages to keep up the 60 FPS (framerate limit) further than the GTX 480,

with half of the configurations computed at that framerate. The lowest value for

this device is the radius 12, 12 iterations configuration which is 15 FPS. In the

same configuration, GTX 480 drops below the mark down to 4 FPS. This hardest

case makes the GTX 980 to be 3.75x faster than the GTX 480.

On Jetson TK1, the 1-1 parameter configuration provides further performance

than the limit, as there wasn’t any on the application. It has the least performance

and scalability of all the devices, as it drops to less than 10 FPS in most of the

configurations.

4.3.3 Power Draw and Heat Generation

From previous executions, we obtained power consumption along with generated

heat. The depth axis sequence has its standard order and the radius axis is inverted,

as power/heat data is better visualized this way.

In the GTX 480, the least wattage is 35.4 W and the maximum is 77.6 W. The

window size for the power consumption is then 42.2 W. The minimum wattage is

close to the idle value and the maximum to the limit achieved in these samples.

Because of this, we say that the current sample is complete in terms of power

consumption.
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4.1.21 GTX 480 Power Draw.

4.1.22 Jetson TK1 Power Draw.

Jetson TK1 is, again, the device that consumes the least. Despite the board is

connected to a monitor and a keyboard, the power draw never raises higher than

4.5 W. The minimum power consumption for this device in the sample execution is

2.3 W. The window size is then at 2.2 W.
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4.1.23 GTX 980 Power Draw.

For the GTX 980, the power window size is wider: 90.4 W. The parameter

configuration that has the maximum consumption is not the 12-12 but the 8-8. This

configuration will have also a great heat generation relative to its position in the

configurations set.

GTX 980 is having more power draw than any of the devices, not only in the

hardests cases but in all the other ones, same as in the previous CUDA sample. The

fact that GTX 980 consumes more is because of the hardware quantity: it has 2048

CUDA cores compared to the 480 GTX 480 has. Is it worth it to have higher power

consumption? In section 4.3.4 we will discuss this question in more detail.

As this CUDA sample is able to get the best of the devices in all the met-

rics provided here, the temperature will show the greatest values of each of the

platforms. Remember that all the tests were performed on summer with almost 30

degrees air temperature. The cooling system for the GeForce graphics cards is the

one from a personal computer tower, with one fan in front, another in the back and

the CPU one. Jetson TK1 performed all test on its own.

GTX 480 has high heat generation (see Figure 4.14.1.24). On the 12-12 con-

figuration, the sensor marked 91 degrees. All the values that have at least one of

the parameters set to 1 have considerable less heat generation than the rest, which

ranges from 86 to 91 degrees while most configurations of the first have less than

84 degrees.

Jetson TK1 degrees go from 40 to 51 (see Figure 4.14.1.25). The window size
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4.1.24 GTX 480 Temperature.

4.1.25 Jetson TK1 Temperature.

is smaller than the one from GTX 480, just 11 degrees (GTX 480 window had a

size of 16). Neither of the GeForce devices have a temperature value less than the

maximum Jetson TK1 achieves.

For GTX 980, the minimum value is 55 and the maximum 80 (see Figure
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4.1.26 GTX 980 Temperature.

4.14.1.26). The rows that have at least one parameter set to 1 behave similar to

those of the GTX 480, but in this case the 4-4 configuration has also a relative low

value.

In this bilateral filter example, the more power is consumed the more heat

is produced. Thus, temperature and power consumption are directly proportional.

GTX 480 is on the top of the temperature scale, followed by GTX 980 and Jetson

TK1, which consumes the least.

4.3.4 Algorithm Efficiency

Power efficiency is now shown in thousandths of FPS per Watt to better appreciate

the values. In the executions, higher efficiency is given by those configurations with

low work overload. This is, as the iterations and radius size increase the device

efficiency decreases.

1.7 FPS per Watt is the efficiency GTX 480 achieves for the 1-1 configuration

(see Figure 4.14.1.27). The decrement in efficiency is not linear. In the 12-12, a

direct linear decrement for both axis should set efficiency 144 times (12*12) lower

than the 1-1. However, it is 51.5 thousandths FPS per Watt, which is 33 times less

than 1-1. The graphics card shows a good scalability for efficiency.

For Jetson TK1 (see Figure 4.14.1.28), the decay is not as good as the one
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4.1.27 GTX 480 Power Efficiency.

4.1.28 Jetson TK1 Power Efficiency.
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from GTX 480, having a proportion between the 12-12 and the 1-1 of 265 times

less. Also, in the 1-1 configuration, the platform gets 60 FPS per Watt, a record in

the efficiency scale.

GTX 980 (see Figure 4.14.1.29) starts with 1.4 FPS per Watt and continues in

the diagonal configurations (1-1, 4-4, 8-8 and 12-12) with 1069.5, 298.6 and 127.0

thousandths FPS per Watt. The differences or steps are approximately 330, 770 and

170. In GTX 480, they are 760, 680 and 120. As a matter of fact, GTX 480 begins

in 1-1 with 1.7 FPS per Watt, which is higher efficiency than the GTX 980 one and

ends with a lower value in 12-12. Furthermore, in the radius 1 row GTX 480 is more

efficient than GTX 980, but not in the 1 iteration row, as GTX 980 mantains there

almost all the initial efficiency. The last value (radius 12) of that iteration row is

1.24 FPS per Watt (GTX 980 lost only 0.16 FPS per Watt lower when the radius

value increments).

4.1.29 GTX 980 Power Efficiency.

The fact that GTX 480 is more efficient on the first configurations and loses

on the last ones says that having 2048 CUDA cores can be good if you have a lot

of work to do. However, when the machine has lighter work, you could be wasting

away watts of power because you have a lot of resources to mantain warm, even

though they are not all in use.

Respect to heat generation efficiency, the more iterations and radius size, the

worse this efficiency will be. Both efficiencies tend to decline when more work is
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4.1.30 GTX 480 Heat Generation Efficiency.

performed, in a way that is independent from the underlying hardware. For clarity,

both axis are inverted respect to the previous charts.

4.1.31 Jetson TK1 Heat Generation Efficiency.

GTX 480 produces 1.2 degrees per FPS in the 1-1 configuration and 22.8

degrees per FPS in 12-12 (see Figure 4.14.1.30). This graph is not similar to the

power efficiency one, as here, the rows corresponding to configurations that at
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4.1.32 GTX 980 Heat Generation Efficiency.

least have one parameter set to 1 keep the efficiency high with low heat generation

rates.

Jetson TK1 (see Figure 4.14.1.31) increases its heat generation proportionally

faster than GTX 480. It starts with 0.3 degrees per FPS and ends with 51 degrees

per FPS. Despite it starts with better efficiency, it ends much worse.

Finally, GTX 980 (see Figure 4.14.1.32) has the best average efficiency among

all the devices. Again, the most efficient device for the first configurations is the

Jetson TK1, but the way GTX 980 manages to keep degrees per FPS as low as

possible, keeping its efficiency until 5.3 degrees per FPS in the 12-12 configuration,

makes it the device with the highest heat generation efficiency.
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4.4 Box filter

4.4.1 Description

Box filter is a linear filter that performs the smoothing of an image by converting

each pixel in a weighted average of its neighbourhood. It is one of the simplest

filters that can be used for blur effects. By definition, this filtering technique will

smooth out the parts of an image whether or not they have any contours or edges.

It can be easily parallelizable because each pixel computation is independent from

the rest.

Among all the possible implementations, the matrix one is the most common.

It is used to ponderate each of the pixels in the neighbourhood for the mixture (filter

box). This implementation provides a wide range of possible filters. An important

difference between this and some of the previous examples is that this one is linear.

An advantage here is that it can be used to approximate to a Gaussian filter, as

stated by the Central Limit Theorem. Applying it a certain number of times results

in the approximation of a quadratic convolution. Furthermore, we can perform more

interesting blurrings by setting negative values in the matrix, but we will not go this

further.

In this example, two parameters that will sound familiar modify the result of

the filter: the radius size and number of passes. This time, because the radius size

is not as relevant as the iteration count for the performance, we chose to fix it at 4

and only change the second one.

Figures 4.14.1.33, 4.14.1.34 and 4.14.1.35 show the original image and two

filter configurations result, one of them with radius of 10 and passes count 2 and

the other with twice these parameters. The effect of the filter should be clear at

first sight.

Computer Architecture Dept. 65 Javier Cabero GuerraComputer Architecture Dept. 65 Javier Cabero GuerraComputer Architecture Dept. 65 Javier Cabero Guerra



University of Malaga School of Computer EngineeringUniversity of Malaga School of Computer EngineeringUniversity of Malaga School of Computer Engineering

4.1.33 Original Lenna.

4.1.34 Radius: 10 Passes: 2. 4.1.35 Radius: 20 Passes: 4.
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4.4.2 Performance

To test the performance of the algorithm four configuration were used (all with

radius size 4) in which the number of passes had the values of 1, 8, 16 and 32.

Figure 4.14.1.36 show the graph with the obtained results.

4.1.36 Box Filter Performance.

Maxwell architecture has again the best performance related to its predece-

sors. The lowest performance is the one of the Jetson TK1. When there is only one

filter pass the framerate values of the devices are more balanced. Additionaly, the

framerate of the GTX 980 is only dropped to 30.2 FPS in the last configuration,

which is an acceptable value for a visual application (it is 2.51 times the perfor-

mance of the GTX 480). The executions performance in the rest of platforms fall

down the 30.2 FPS at 8 and 16 iterations. Jetson TK1 will never achieve the 60 FPS

limit in this application.

4.4.3 Power Draw and Heat Generation

Both power consumption and heat generated in this example are lower than in the

previous cases. Jetson TK1 has the same power consumption in the least passes

count than in the highest, meaning that the application status doesn’t affect too

much to its power draw. GeForce graphics cards increase their consumption with

higher number of passes as usual (see Figure 4.14.1.37).

In the GTX 480, the power ranges from 30.5 W to 53.2 W. For the GTX 980,

it goes from 44.2 W to 72.9 W. We observe how GTX 480 energy consumption is far

more stable than the one of the GTX 980. This second device draws more energy
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4.1.37 Box Filter Power Draw.

than the other platforms in all configurations.

GTX 980 has quite small power increment from configuration 16 to 32. Same

event occurs on the GTX 480 starting from configuration 8. The point where con-

sumption doesn’t increase as fast as in the first configurations denotes how the

device fullfils its main power requirements and doesn’t need to warm up for the

rest of the work to be done: the biggest step is the one that makes the machine

change from idle to fully working.

The temperature values shown in Figure 4.14.1.38 behave similar to those

of power drawback from Figure 4.14.1.37. Here, Jetson TK1 does show an incre-

ment of temperature when it has to perform more filter passes. The increment is,

however, not very significant (0.3 degrees starting from 42.6).

4.1.38 Box Filter Temperature.
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GTX 480 varies from 83 to 90 degrees. As in the power consumption chart, the

greater increment in heat generation is from the 1 pass configuration to the 8 one.

The rest are all 1 degree increments. GTX 980 behaves the same way, incrementing

from 54 to 63 and then from 63 to 66 in the first configurations, but just to 67 in

the last one.

4.4.4 Algorithm Efficiency

In Figure 4.14.1.39, similar results to those of the bilateral filter are shown: the

best power efficiency is provided by the lighter configurations and the worst by the

hardest ones.

4.1.39 Box Filter Power Efficiency.

4.1.40 Box Filter Heat Generation Efficiency.
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GTX 480 has again higher efficiency than the GTX 980 on the first configu-

ration and lower in the rest. The highest efficiency is provided by the Jetson TK1

in the 1 pass configuration, with 14.6 FPS per Watt, a much higher value than the

GeForce graphics cards.

About the efficiency on heat generation (see Figure 4.14.1.40), Jetson TK1

has not the lowest in every of the configurations: on the first one, GTX 480 has

the highest heat generation. In the rest of configurations, the order from better to

worse efficiency is GTX 980, GTX 480 and Jetson TK1.

GTX 480 and GTX 980 start in the first configuration with similar efficiency

values (1.3 and 0.9, respectively). The difference between them is 0.4, but as the

number of passes increases, the different also does. At the end, this value is 5.3

degrees per FPS. Jetson TK1 decreases its heat generation efficiency much faster

than the GeForce devices, reaching 22.2 degrees per FPS in the last configuration.
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4.5 Image denoising

4.5.1 Description

Now we attend at a common problem in image processing known as image denois-

ing. An image that travels through a network can have errors as some pixels may

be corrupted during the data transmission (data noise). Hard disks can also make

read/write mistakes, but this is less frequent. Situations were these errors tend to

occur are those in which the message is not travelling through a wire (e.g. air)

and the signal is too weak for the receiver. Denoising algorithms become critical

in space programs or military scenarios where perfect information about orders

or numbers is required. In the context of our example we will concentrate on the

denoising of a picture.

These errors manifest in the picture as abnormal color dots because of the

radical pixel data change. By looking at it, it is not hard to realise that some of the

pixels are incorrect, as they may be very different from their neighbourhood (e.g.

red dots in the purple jersey of picture 4.14.1.41).

In this case, we could use a box filter to approximate to the original image,

as corrupted pixels can be more or less recovered by the information of the healthy

surrounding ones. Despite of this, we will use two algorithms called K Nearest

Neighbors (KNN) (see Figure 4.14.1.42) and Non Local Means (NLM) (see Figure

4.14.1.43) that fit better in this problem. Again, we won’t go into the details of each

of them but it has to be said that the second one is a more complex variation that

has greater resource usage. An optimized version of NLM called Quick NLM or

NLM2 is also available (see Figure 4.14.1.44).

4.5.2 Performance

This example will clearly show the difference between the hardware platforms. The

denoising algorithms were executed on all the devices and the obtained data is

presented on Figure 4.14.1.45.

GTX 480 and GTX 980 have much greater performance than Jetson TK1. On

the first denoising algorithm, Jetson TK1 performance is 9% of the GTX 480 one

and 5% of the GTX 980. With NLM algorithm, the proportion against the GTX 480

shortens, being Jetson TK1 framerate 15% of the one of that device, but remains

around the same in the rate with the GTX 980.
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4.1.41 Original Noisy Image. 4.1.42 Applying KNN.

4.1.43 Applying NLM. 4.1.44 Applying Quick NLM
(NLM2).

4.5.3 Power Draw and Heat Generation

The power draw consumed in this example is not the highest one nor the lowest.

In Figure 4.14.1.46, the vertical axis presents a logarithmic scale. The maximum

power consumption for GTX 480 is 67.8 W in the KNN filter. NLM and Quick NLM

have almost the same power draw. GTX 980 goes higher to more or less 120 W and

Jetson TK1 doesn’t go further than 3.9 W.

For temperature (see Figure 4.14.1.47), GTX 480 almost reaches the maxi-

mum temperature of all the samples with 90 degrees in the NLM filter. Jetson TK1

stops at 48 degrees and GTX 980 at 79 (NLM). Quick NLM has 1 degree less than

the NLM in the GeForce devices. The optimized algorithm has much higher fram-
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4.1.45 Image Denoising Performance.

4.1.46 Image Denoising Power Draw.

erate and its power drawback and heat generation is a bit lower.

As expected, the least temperature values are generated when no algorithm

is applied (noisy image) and the higher ones when using NLM denoising algorithm.

GTX 980 is the platform that raises higher, changing from 52 degrees to 78 in noisy

to KNN swap. The temperature step is 26 degrees. GTX 480 has higher tempera-

ture, but as it starts from 77 degrees, the step is smaller.
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4.1.47 Image Denoising Heat Generation.

4.5.4 Algorithm Efficiency

The efficiency behaves as in the previous case: GTX 480 beats GTX 980 in the

first configurations and on harder tasks the GTX 980 is more efficient (see Figure

4.14.1.48). Jetson TK1 is the most efficient platform with more than twice the ef-

ficiency in KNN and Quick NLM than the other devices. In NLM, it is more than

twice just with respect to GTX 480.

4.1.48 Image Denoising Power Efficiency.

Speaking of heat generation efficiency (see Figure 4.14.1.49), GTX 480 has

less than GTX 980 but is better than Jetson TK1 in all cases. On NLM, Jetson TK1
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generates 0.2 degrees per each FPS it achieves, being the lowest heat generation

efficiency in the graph. GTX 980 has again the best scalability in this metric with

0.016 degree per FPS on NLM filter.

4.1.49 Image Denoising Heat Generation Efficiency.
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4.6 Post-process GL

4.6.1 Description

Post-processing refers to the processing that is done after the rendering phase. An

example of a post-processing application is motion blur in videogames: blurring the

screen when the camera is suddenly rotated.

In this example, we will post-process a 3D model of a teapot using OpenGL. As

always, snapshots in which the post-processing is turned off (see Figure 4.14.1.50)

and on (see Figure 4.14.1.51) are provided to appreciate the effect of the algorithm.

In the processed image, the smoothing algorithm has a radius of 8. The teapot is

constantly rotating in all axis when the application is executing.

4.1.50 Original Teapot 4.1.51 Post-processed Teapot

4.6.2 Performance

Results measured started with radius 1 and then 2 until 16 incrementing 2 units

in each step (see Figure 4.14.1.52). This time, no framerate limit was active on the

application. With higher values of the radius, the framerate declined for all three

devices. The next charts show the conclusions of this test.

GTX 980 has the highest performance value at 1 radius size with 1146 FPS.

The lowest value is given by Jetson TK1 at the maximum radius size with 8 FPS.
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4.1.52 Postprocess GL Performance.

Again, an acceptable framerate is that equal or above 30 FPS. GTX 980 never drops

below 155 FPS and GTX 480 keeps its performance above 50. Jetson TK1 is the only

device that loses performance to below that quality mark, being the 8 radius size

value, 27 FPS, the first one to drop below 30.

On the hardest case, GTX 480 has 6 times the performance of the Jetson TK1

and GTX 980 3 times the one from GTX 480. The performance drops in this case for

GTX 980 and Jetson TK1 down to 13% of the initial value. GTX 480 drops to 10%.

4.6.3 Power Draw and Heat Generation

Power consumption values range greatly in this example (see Figure 4.14.1.53). On

GTX 480, the minimum value is 36.1 W. At the end of the test, the value was 67.8

W (not achieved on radius 16 but on 14). This won’t happen to GTX 980 which has

its power draw increased in each iteration. Jetson TK1 starts with 1.6 W and ends

with 3.6 W. The 14 radius value is 3.7W, giving it as in GTX 480 a higher one than

in the last configuration.

Temperature values in the post-processing example range from 78 degrees to

89 in the GTX 480 (see Figure 4.14.1.54). GTX 980 has a smaller variation, going

from 54 degrees to 63. Finally, Jetson TK1 goes from 38 degrees to 48, the least heat

generation in the graph. The direct relationship between the power consumption

and the temperature makes the 16 radius size configuration for the GTX 480 have

less temperature than the 14 one.
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4.1.53 Postprocess GL Power Draw

4.1.54 Postprocess GL Heat Generation

4.6.4 Algorithm Efficiency

On this example, the GTX 980 overpasses in efficiency Jetson TK1 (see Figure

4.14.1.55). In the chart values, the efficiency of the Jetson decreases faster and

has less values than the GTX 980 for the first time in the 6 radius size configura-

tion. The difference in efficiency between these two devices won’t increase much

further, as with it shortens up to 0.3 FPS per Watt in the last configuration. GTX

480 is far away below in efficiency respecting to the other devices.

The last of the charts, the heat generation efficiency for the post-processing
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4.1.55 Postprocess GL Power Efficiency.

example, sets GTX 980 as the device with the highest efficiency in terms of temper-

ature (see Figure 4.14.1.56). It has the lowest value in the temperature scale and a

24% of the GTX 480 heat generation for 16 radius size. Jetson TK1 heat generation

for that configuration is 14 times higher than the GTX 980 value.

4.1.56 Postprocess GL Heat Generation Efficiency.
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Conclusions

4.6.5 English

Performed tests have proved the existing differences between the hardware plat-

forms. The distance in terms of performance, consumption, heat generation and

efficiency between the devices is directly related to the distance in time, their ar-

chitecture and the hardware amount. Thanks to the experiments, it has been also

possible to appreciate how the nature of applications defines how well they fit into

one device or another.

To sumarize the test results, GTX 980 has the highest performance in almost

all configurations, being the GTX 480 better for some low work applications in

which it fits better than the Maxwell device. The temperature generation is usually

directly proportional to the power draw of the current device, and the harder the

work is, the more temperature and power consumption the device has.

In some applications, the efficiency of the platforms may differ. Generally,

Jetson TK1 has the highest efficiency, though in the last example was overpassed

by GTX 980 from an early configuration up to the last one. Both heat generation and

power consumption efficiency decrease with more expensive tasks. Jetson TK1 may

have the highest power draw efficiency because of the integrated CPU-GPU design,

but it has the lower heat generation efficiency. The numbers speak by themselves,

showing the strong points each device has (see Table 4.2).

Depending on the application, one could think of using a device because of

its computational horsepower, its power or temperature efficiency or just because it

generates less heat, even though its heat generation efficiency is not very good. For

example, if there is no need for high computational power, then the best is to use

GTX 480 as it has less power draw than GTX 980. However, for greater executions

the GTX 980 is more efficient and it will be cheaper to use it despite of its higher

wattage per second as it will finish ahead of the Fermi device.

Another scenario could be the one where heat generation is important: maybe
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Least Greatest

Computational Power Jetson TK1 GTX 980

Power Drawback Jetson TK1 GTX 980

Heat Generation Jetson TK1 GTX 480

Power Drawback Efficiency GTX 480 Jetson tK1

Heat Generation Efficiency Jetson TK1 GTX 980

Tabla 4.1: Final Results.

there is a high number of devices and the accumulated heat of all together could re-

duce the lifetime of some system components. Then, a device with higher heat gen-

eration efficiency is desired. Whether or not we need performance or efficiency, the

different possible platforms will have different features that will make the choice of

chosing one or another dependent on the task to be performed, its computational

and energetic needs, and the conditions of the target system, both in terms of heat

generated and economic cost produce by the time of usage.
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4.6.6 Spanish

Las pruebas realizadas han demostrado las diferencias existentes entre las distintas

plataformas hardware. La diferencia en rendimiento, consumo, generación de calor

y eficiencia entre los dispositivos está directamente relacionada con la distancia en

el tiempo, la arquitectura y la cantidad de hardware. Gracias a los experimentos,

ha sido posible apreciar también cómo la naturaleza de las aplicaciones hace que

encajen mejor en un dispositivo o en otro.

En resumen, la GTX 980 ha resultado ser el dispositivo que más rendimiendo

proporciona en casi todas las configuraciones de todos los ejemplos. No obstante, la

GTX 480 ha producido mejores resultados en algunos casos que requerían menor

trabajo debido a la mejor adapción del programa al hardware. La generación de

calor suele ser directamente proporcional al consumo del dispositivo y cuanto más

trabajo se le asigna, más temperatura y consumo se produce.

En algunas aplicaciones, la eficiencia de las plataformas podía ser diferente.

Generalmente, la Jetson tK1 tiene la eficiencia más alta, aunque en el último ejem-

plo fue superada por la GTX 980 desde una configuración más primeriza hasta la

última. Tanto la eficiencia en generación de calor como en consumo decrementan

con tareas más intensas. Aunque la Jetson TK1 tenga la mayor eficiencia en cuanto

a consumo gracias a su diseño integrado GPU-CPU, hemos que visto que es la que

peor eficiencia tiene en cuanto a eficiencia en la generación de calor. Los números

hablan por si mismos, mostrando los puntos fuertes de cada dispositivo (ver Tabla

4.2).

Dependiendo de la aplicación, uno puede pensar en usar un dispositivo por

su poder computacional, su eficiencia en consumo o generación de calor o sim-

plemente porque genera menos calor, aunque su eficiencia en generación de calor

no sea muy buena. Por ejemplo, si no hay necesidad de un alto rendimiento, es

mejor usar la GTX 480 dado que consume menos que la GTX 980. Sin embargo,

para ejecuciones de mayor importancia la GTX 980 es más eficiente por lo que será

un dispositivo más barato ya que, a pesar de consumir más vatios por segundo,

finalizará antes.

Otro escenario podría ser aquel en el que el calor generado importa: quizás

hay un alto número de dispositivos y el calor acumulado de todos ellos puede afec-

tar a la durabilidad de algunos componentes del sistema. Entonces, un dispositivo

con más eficiencia en lal generación de calor es deseable. Tanto si se necesita o

no rendimiento o eficiencia, las diferentes posibles plataformas tendrán diferentes

características que harán que la elección de la plataforma dependa de la tarea que
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Menor Mayor

Poder Computacional Jetson TK1 GTX 980

Consumo Energético Jetson TK1 GTX 980

Generación de Calor Jetson TK1 GTX 480

Eficiencia en Consumo Energético GTX 480 Jetson tK1

Eficiencia en Generación de calor Jetson TK1 GTX 980

Tabla 4.2: Resultados finales.

se deba hacer, de sus necesidades computacionales y energéticas, y de las condi-

ciones en las que el sistema destino se encuentre, tanto en lo que respecta al calor

como en el coste económico que representa su uso en el tiempo.
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