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Abstract. Deployment is important in large wireless sensor networks
(WSN), specially because nodes may fall due to failure or battery issues.
Mobile WSN cope with deployment and reconfiguration at the same time:
nodes may move autonomously: i) to achieve a good area coverage; and ii)
to distribute as homogeneously as possible. Optimal distribution is com-
putationally expensive and implies high traffic load, so local, distributed
approaches may be preferable. This paper presents an experimental eval-
uation of role-based and behavior based ones. Results show that the later
are better, specially for a large number of nodes in areas with obstacles.
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1 Introduction

Wireless sensor networks (WSN) are conformed by a set of spatially distributed
sensors that connect to each other. Sensor nodes have some degree of autonomy
and they include a processing unit, along with the sensor(s) and the communica-
tion chip. In many applications, networks have to be deployed over a large area in
hard to predict configurations. Furthermore, a node battery life mostly depends
on the amount of traffic that it is generating/routing. If a node falls, part of
the network might get isolated. Furthermore, in WSN deployment has a strong
impact not only in terms of coverage but also in connectivity and throughput
[1]. WSN usually rely on a mesh topology, which is more redundant, but also
more robust and easier to expand and modify. Unfortunately, it is also harder
to set up and maintain.

Mobile WSN (MWSN) are a potential solution to this problem [2]. MWSN
can modify their positions to reorganize the network on a need basis. This so-
lution is particularly adequate for deployment in hazardous or remote areas, or
in large areas involving a large number of nodes. MWSN may be deployed by
multiple robots systems (MRS), so that each node can decide when and where
to move itself.

This work focuses on creating and testing a robot swarm to deploy a mobile
WSN as efficiently as possible in terms of coverage and energetic efficiency. The
key idea under this concept is to use as little nodes as possible to cover a given
area and to make it last as long as possible before batteries need to be replaced.
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Robot nodes have been used to repair MWSN by replacing fallen nodes [3], but
deployment typically requires robot coordination and localization. A common
approach to localization is Received Signal Strength (RSS) based triangulation,
since GPS sensors are battery consuming, heavy and expensive for this kind of
application. In most approaches, a static beacon infrastructure is fixed for mobile
nodes to locally position themselves [4] [5].

There are two main distributed deployment strategies. In centralized deploy-
ment algorithms, a master node gathers information about the whole network
and makes all decisions. This process is computationally expensive and usually
involves techniques like Genetic Algorithms [6] or, to distribute calculation, Par-
ticle Swarm Optimization [7]. However, these approaches usually required more
complex hardware and involve a higher traffic load. Alternatively, distributed al-
gorithms require less complex calculation and less intense communication, since
no node needs to be particularly aware of the state of the rest. These algorithms
consider that local dispersion leads naturally to global dispersion, so each node
makes decisions according to local factors, e.g. RSS.

We are going to evaluate two different distributed approaches. These ap-
proaches are representative of rule based deployment and behavior based deploy-
ment, respectively. The first one is the Backbone Dispersion Algorithm (BDA)
[8]. In BDA, nodes move randomly until they fulfill some termination conditions.
Each node only needs to evaluate how many nodes it can connect to. Once a
robot stops, it won’t move again. This algorithm is simple and requires little
communication among node. However, its constraints do not fit well with the
requirements of e.g. hierarchical networks. In these cases, a behavior based de-
ployment algorithm may be required. We are going to use a Social Potential
Fields (SPF) algorithm to represent this second group. This algorithm was orig-
inally proposed for swarm robots [9] and can be easily extended to mobile WSN
by using RSS as an additional source of data. These algorithms basically model
a set of forces of attraction and repulsion depending on the local environment
of the node to determine its emergent motion.

From this point on, we will refer to nodes as robots, where each robot includes
the communication module, required sensors and a processing unit, plus onboard
distance sensors to avoid collisions.

2 Deployment algorithms

BDA [8] depends on a set of deployment rules:

– At least two robots and one of them belongs to the backbone: the robot keeps
moving and avoiding obstacles to spread the network as much as possible

– A single robot that belongs to the backbone: to prevent loss of connectivity
to the network the robot stops until another robot gets nearby

– At least a robot, but no robot belonging to the backbone: the robot joins the
backbone, stops and notifies its change of status to the rest of the network

– No robot: the robot moves backwards until it finds some robot to connect to



To implement the SPF [9], each robot is affected by two different forces:

– A repulsion force fr1 that forces the robot away from other nearby robots
or obstacles to prevent collisions.

– A second repulsive force fr2 that aims at expanding the network.
– An attraction force (clustering force) fc that grows along with the distance

between robots to prevent loss of communication.

Robots stop when these forces reach an equilibrium. To avoid the well known
oscillation problem, an equilibrium threshold fu is used.

In BDA, no distance estimation is required [10]: robots are either connected
or not. In SPF, however, we need to estimate distances to obstacles, including
other robots within communication range. Each robot estimates these distances
using the Friis equation [11] and RSS from nearby robots. Although this esti-
mation is rough, it works correctly for reactive algorithms like BDA where no
optimization is required. Distances allowed between robots mostly depend on our
communication range and safety concerns, i.e. how close to obstacles we let the
robot be. In our case we are going to operate with IEEE 802.14.4 standard and
small robots. Hence, we use the following (heuristically estimated) parameters.

fr1(r) = −0.01

r8
(1)

Using this adjustment, the repulsion equilibrium point between robots is
equal to 1 meter. However, since our fu is equal to 0.5, this force only operates
when robots are closer than 60 cm from each other. On the other side, the
attractive force starts to be noticed when robots are at least 1.5 meters away:

fc(r) = −20

r6
+

2

r0.2
(2)

Finally, the second repulsion force tries to keep a distance of approximately
2 meters between each two robots:

fr1(r) = −60

r7
(3)

3 Evaluation parameters

In order to evaluate the results of deployment algorithms, we need to define a
set of parameters of interest, first.

Coverage is used as a quality measure in networks. Specifically, we are going
to evaluate blanket coverage: any point of the region is sensed by at least one
sensor. If node i covers a round area Ai, given N sensors in a full area A, coverage
C can be calculated as:

C =
∪i=1...NAi

A
(4)



Eq. 4 can be modeled using a probabilistic grid of M cells [12], where each
cell i yields the overall probability of detecting an event on that location Pi.

C =

M∑
i=1

Pi

M
(5)

Since events at cell i can be detected independently by several nodes, Pi

needs to be calculated as follows:

Pi = 1− P̄i = 1−
∏
N

(1− Pij) (6)

N being the number of nodes and Pij being the probability of node j detect-
ing an event at cell i.

Regarding energetic efficiency, we need to take into account two different en-
ergy costs: i) deployment and ii) maintenance. Deployment costs mostly depend
on two parameters [13]: distance d that each node covers to reach its final loca-
tion; and time t to reach the final location. After the deployment is complete,
energy cost is usually related to how regularly nodes are distributed. Uniformity
U for N nodes can be defined as:

U =
1

N

∑
i=1

Ui (7)

Ui = (
1

Ki

Ki∑
j=1

(Di,j −Mi)
2
)

1/2

(8)

Ki, j being the number of nodes close to node i, Di,j being the distance
between nodes i and j and Mi being the average distance between node i and
its closest ones. The better U is, the lower the network energy consumption.

There are many other factors that affect energy consumption after deploy-
ment, mostly related to routing strategies. In order to evaluate them indirectly,
efficiency can be roughly estimated in terms of the average power that nodes
require to send a message to the rest of the network Pm:

Pm =
1

N

N∑
i=1

Pmi (9)

Pmi =
1

N

N−1∑
i=1

Pij (10)

Pmi being the power required at node i to send a message to the rest of the
network and Pij being the power required to send a message from node i to node
j. In networks where messages need to be retransmitted through k nodes,

Pij = Pi1 + ... + Pik (11)



Fig. 1: BDA deployment for 20 robots in an environment without obstacles
4 Experiments and results

Although the following tests have been performed with a small number of physi-
cal robots (TI CC4305137) in real environments, in order to evaluate the impact
of our different deployment strategies, we need a large number of robots. Hence,
the following experiments have been performed using the freeware Player/Stage
environment. Player allows us to control both a real and a simulated robot in
an almost transparent way[14].

N Dply Obst t d C U Pm
¯MsgTx

20 BDA N 2m 3s 2.140 79.33% 0.578 0.052 34.8 %
20 BDA Y 3m 8s 3.218 76.78 % 0.574 0.051 32.5%
100 BDA N 6m 48s 30.077 58.13 % 0.533 0.119 34.7 %
100 BDA Y 7m 31s 40.145 52.302 % 0.524 0.113 33.36%

20 SPF N 1m 6s 1.698 95.11 % 0.706 0.071 32.7%
20 SPF Y 1m 46s 2.360 99.33 % 0.806 0.078 35.3%
100 SPF N 2m 38s 18.499 93.67 % 0.727 0.176 42.8%
100 SPF Y 2m 59s 20.513 88.44 % 0.706 0.166 42.7%

Table 1: Deployment of a mesh network using BDA and SPF

In our mesh network simulations, nodes transmit at -10 dBm, correspond-
ing to our measures using the real robots. We are going to focus uniquely on
two simple routing mechanisms: flooding and closest neighbor. In order to avoid
overflow in flooding, each robot can retransmit a message only once. In closest
neighbor routing, a robot only retransmit a message if it is closer to the desti-
nation robot than the one it received the message from. There are much better
routing techniques, but deployment can be evaluated simply with these two.

Table 1 shows simulations results for 20 and 100 robots using BDA for envi-
ronments of 6 and 15 m2, respectively, both without and with static obstacles.



We can observe that both average distance d and deployment time t grow slightly
in presence of obstacles and largely with the number of robots in the group. How-
ever, coverage is actually poorer when a large number of robots is involved, even
though the density of robots is larger in the second case. This fact outlines that
distribution is subpar in BDA. Fig. 1 provides further detail at robot level for
these scenarios. We can observe that d changes significantly from one robot to
another, since those joining the backbone first stop early during deployment.
We can also observe that Pm grows when they move in the 100 robots scenario,
because they are more distant from each other. Finally, we can observe that,
after deployment, the ratio of retransmitted packets for each robot with respect
to own transmitted packets changes significantly from one robot to the next and,
in most cases, is quite large. As a general rule, robots on the network boundaries
retransmit less packages than the rest, although robots in very crowded areas
also have a lower retransmission rate because nearby robots take part of the job.

Fig. 2 shows BDA deployment at two stages of a simulation with 100 robots
in an environment without obstacles. We can observe in Fig. 2.a one of the main
issues of this approach: during deployment, many robots get trapped in the cen-
ter of the network. Although the problem eventualy fixes itself, deployment time
gets considerably increased when this happens (particularly when the number
of robots is large). In order to keep deployment time limited, we stop the simu-
lation as soon as at least 80% of the swarm is deployed. Fig. 2.b shows the final
location of the robots in this simulation. We can easily observe that there are
uncovered areas and distribution is not homogeneous. An additional drawback
of this approach is that robots tend to conform lines. These formations are par-
ticularly weak with respect to node failures, that might lead to disconnections
of a mild number of nodes.

The presented results improve largely if we switch to SPF deployment. Table
1 shows results for 20 and 100 robots using SPF for environments of 6 and 15
m2, respectively, both without and with static obstacles. We can easily observe
that deployment is faster, robots move less, and both coverage and uniformity
improve. It can also be observed that Pm and ¯MsgTx grow with the number of
robots more than in BDA coverage. This happens because robots are better dis-
tributed and not so many of them are far from the rest or in very crowded areas.
Fig. 3 shows the result of a 100 nodes network deployment in an environment

Fig. 2: BDA deployment: a) trapped robots; b) final configuration



without obstacles. All simulation in these environments return similar results.
We can observe that nodes spread quite uniformly over the whole area.

Fig. 3: SPF deployment for 100 robots in an environment without obstacles

Fig. 4: Deployment for 100 robots in an environment with obstacles using: a)
BDA; b) SPF

All commented results are more evident in environments with obstacles. Fig.
4 shows a sample environment with three obstacles. BDA is very affected by the
location and shape of these obstacles, whereas SPF deployment basically adapts
to the obstacles to obtain a configuration as similar as possible to Fig. 3.

5 Conclusions

We have presented an experimental evaluation of two representative distributed
deployment algorithms for mobile WSN: rule based (BDA) and behavior based
(SPF) ones. Nodes deploy faster and more homogeneously using SPF, plus they
cover less distance in general. These effects are more acute the larger the network
is. Average power and message retransmission is actually larger in SPF, because
nodes are better distributed. In BDA, nodes on the boundaries and those in high
density node areas do not have to retransmit so often. However, most loaded



nodes fall quite early and, hence, full areas of the network get disconnected.
In SPF, traffic load is better distributed, so the network lasts longer. SPF also
adapts much better to areas with obstacles. In brief, SPF seems more suitable
for deployment in large, dynamic, unstructured areas. Future work will focus on
extending this study to hierarchical WSN.
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