

#### Su captura, especificación y gestión

José Luis Fernández Sánchez
Profesor titular ETSI Industriales- Universidad Politécnica de Madrid
jlfdez@etsii.upm.es
Málaga,30 de Noviembre de 2015



#### Contenido de la presentación

- La importancia de los requisitos
- Obstáculos
- Problemas habituales
- Definiciones y tipos de requisitos
- Ingeniería de sistemas
- Ingeniería de servicios
- Ingeniería de requisitos
- La gestión de los requisitos
- El esfuerzo de la obtención y especificación de requisitos
- El futuro de los requisitos



# La importancia de los requisitos

Los requisitos son un factor clave en el éxito o fracaso de los proyectos



#### Los requisitos y los proyectos

Estudios de la industria de las tecnologías de la información en Estados Unidos muestran que los sistemas entregados cumplen sólo del 42% al 67% de los requisitos.



#### El Informe Standish (I)

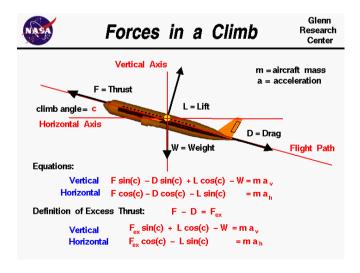
- Razones para el fracaso de los proyectos
  - Requisitos incompletos
  - 2. Falta de participación del usuario
  - 3. Falta de recursos
  - 4. Expectativas no realistas
  - 5. Falta de apoyo de la dirección
  - 6. Cambios en los requisitos
  - Falta de planificación
  - 8. El proyecto se convierte en innecesario



#### El informe Standish (II)

- Los 10 factores de éxito en los proyectos:
  - Grado de participación del usuario
  - 2. Apoyo de la dirección
  - 3. Jefe de proyecto con experiencia
  - 4. Objetivos de negocio claros
  - Minimizar el alcance
  - 6. Proceso ágil de ingeniería de requisitos
  - 7. Infraestructura estándar
  - 8. Metodología rigurosa
  - Estimaciones fiables
  - 10. Personal competente




### Obstáculos

Impedimentos que dificultan hacer bien los requisitos



#### El enfoque tradicional de la ingeniería

 Por ejemplo en aeronáutica, este enfoque se fundamenta en las ecuaciones matemáticas que rigen el comportamiento estructural, aerodinámico y de mecánica del vuelo de la aeronave.





#### La visión desde dentro hacia afuera

- Orientación a la solución en lugar de orientarse a las necesidades del usuario y/o cliente
- Se pone el foco en la identificación y definición de las tecnologías que resuelven el problema
- La tecnología es la herramienta



#### Especificar los requisitos "de oído"

Analogía con la práctica musical

Los tres niveles

De oído





Requisitos no uniformes, ambiguos y no organizados

Método Hammond, Suzuki, ...





Uso de las mejores prácticas y modelos

Solfeo + Armonía +





Uso de métodos formales



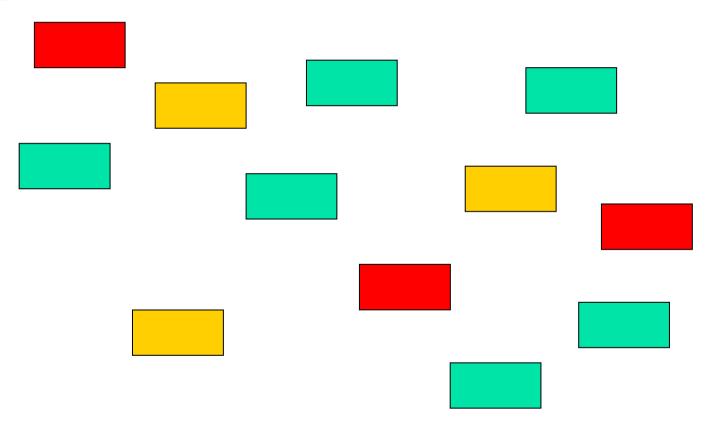
#### Problemas habituales

Lo que uno se encuentra en los ámbitos académicos e industria



#### Requisitos tipo novela

"El subsistema X dispondrá de un reloj con alarma programable que permitirá despertar a la CPU en cualquier momento dentro de un rango de 36 horas desde el momento presente"




#### Requisitos orientados a la solución

- "Los peatones indicarán su presencia pulsando un botón en un poste próximo (distancia a determinar) al cruce" (orientado a la solución)
- "El sistema permitirá a los peatones mostrar su intención de cruzar la calle" (orientado a la función)



#### Requisitos no estructurados





#### Abuso de la ambigüedad

#### Ejemplos de requisitos ambiguos según K. Wiegers:

- El sistema funcionará siempre de modo "aceptable".
- El sistema será "eficiente".
- En situación "normal" el sistema funcionará según...
- El sistema será "robusto".
- El sistema se implementará según el "estado del arte".
- El sistema será "fácil de usar".
- El sistema responderá al evento X "suficientemente" rápido.
- El sistema "no debería" ...



# Definiciones y tipos de requisitos

¿Qué es un requisito? ¿Son todos los requisitos iguales?



## Necesidades, expectativas y requisitos

- Las necesidades expresan de forma no precisa lo que quiere el cliente (también puede ser llamado "requisito en bruto")
- Las expectativas representan necesidades no explícitas del cliente
- Un requisito es una propiedad que debe ser mostrada por un sistema desarrollado o modificado para resolver un problema en particular



### Concepto de Requisito según IEEE Std. 1233

- Un requisito bien formulado establece una funcionalidad o capacidad del sistema que puede ser validada, y que debe ser poseída por el sistema para resolver un problema o realizar un objetivo de negocio.
- Un requisito esta cualificado por "condiciones" medibles
- Un requisito puede estar limitado por restricciones de tipo técnico, económico, de proyecto o legales



#### Ejemplo de Requisito

- Transportar personas de Madrid a Málaga a una velocidad máxima de 300 km/h por un precio por persona menor de 75 Euros
  - capacidad: transportar personas de Madrid a Málaga
  - condición: velocidad máxima de 300 km/h
  - restricción: precio por persona menor de 75 Euros



#### Tipos de requisitos

- **Funcionales**: Según Thayer, los requisitos funcionales describen una función que un sistema, aplicación software o componente debe ser capaz de realizar. Básicamente describen aspectos de conducta mediante transformaciones de entradas en salidas
- No funcionales o de atributos de calidad: Según Thayer, los requisitos no funcionales no describen qué tiene que hacer el sistema, aplicación software o componente sino cómo tiene que hacerlo.
- Restricciones: Son requisitos de tipo legal, técnico, económico u otro que limitan el espacio de posibles soluciones.
- Reglas de negocio: Son requisitos relacionados con la organización o su forma de hacer el negocio. Pueden ser hechos, algoritmos de cómputo, reglas de inferencia u otras.

4



#### Otras clasificaciones de los requisitos

- Por su nivel en el sistema:
  - Requisitos de alto nivel
  - Requisitos de bajo nivel
  - Requisitos derivados
- Por su orientación
  - Requisitos de producto
  - Requisitos de proyecto

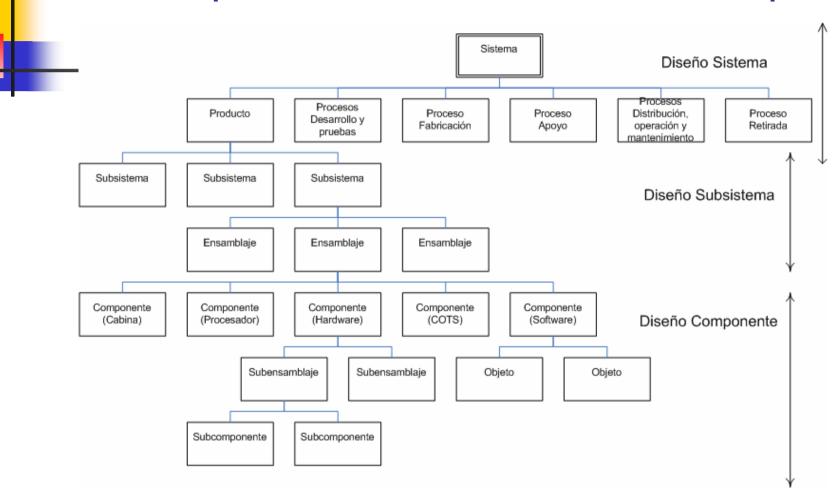


#### Ejemplos de requisitos

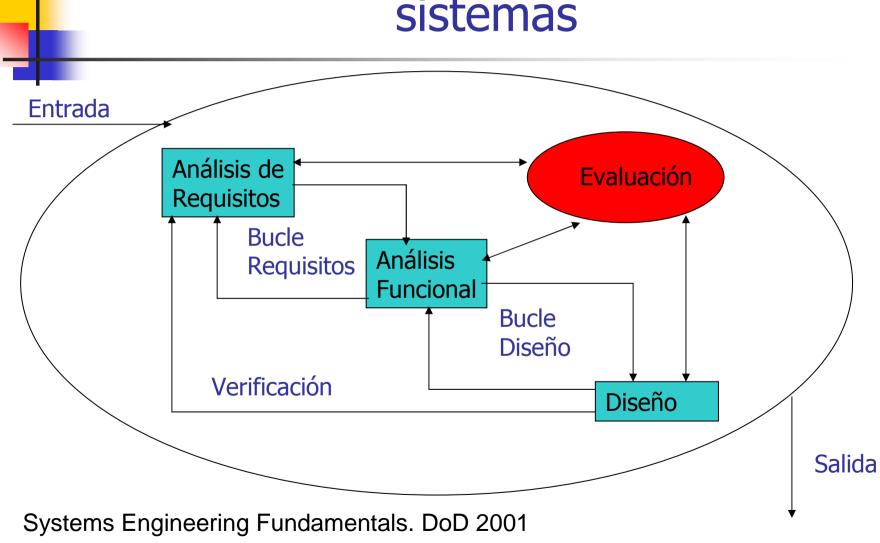
- Req. Usuario : "El usuario podrá hervir un recipiente con 10 litros de agua en 4 minutos sobre la superficie de la cocina"
- Req. de alto nivel: "La cocina dispondrá de un quemador de gas de 10 cm. de diámetro".
- Req. de bajo nivel: "El quemador tendrá un suministro de gas a una presión no menor de 25 psi"



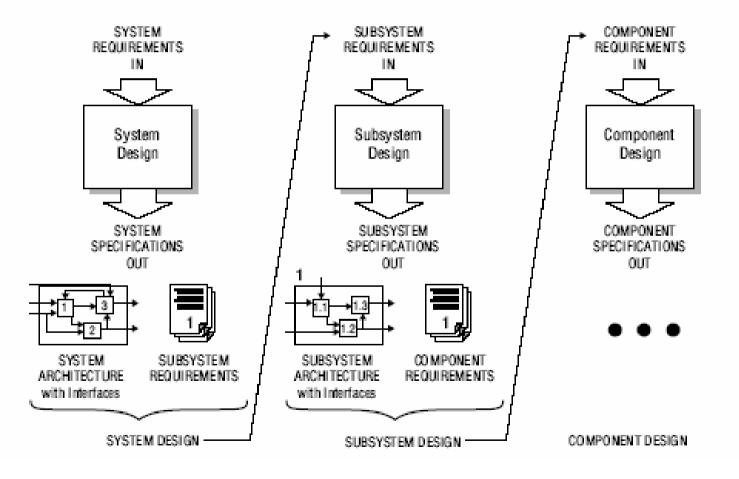
#### Requisitos derivados


- Los requisitos de bajo nivel se van obteniendo a partir de los requisitos de alto nivel
- En muchos casos aparecen "requisitos derivados"
- Un requisito derivado es aquel que no es trazable directamente a un requisito de nivel más alto. Un requisito derivado puede depender de una solución de diseño.
- Un ejemplo de requisito derivado sería la necesidad de implementar en el software un manejador de interrupciones para el procesador escogido




### La ingeniería de sistemas

la Ingeniería de Sistemas es la disciplina que considera todos los aspectos de la resolución de un problema de ingeniería, desde su definición hasta el desarrollo de la solución. Además, se tienen en cuenta los aspectos externos y los aspectos empresariales que pueden afectar el resultado.

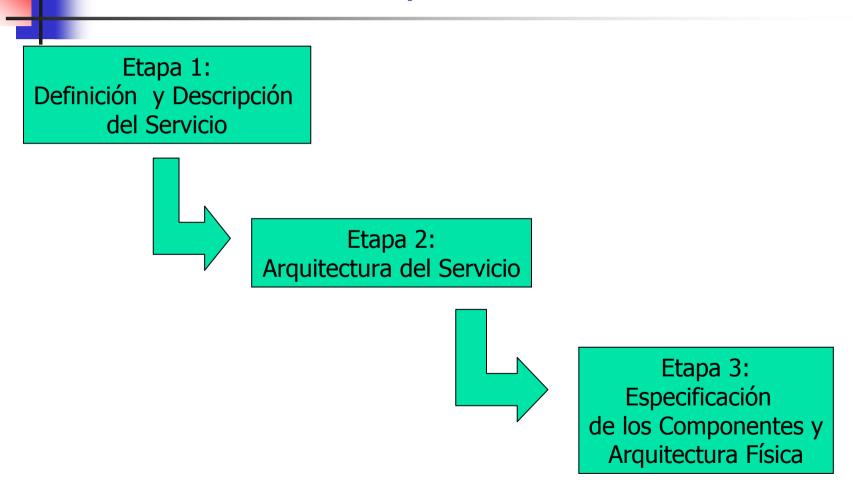

#### Descomposición de un Sistema-Jerarquía



# El proceso de la ingeniería de sistemas



### Descomposición de los requisitos en desarrollos de Motorola






### La ingeniería de servicios

Adaptando la metodología de ITU a la notación UML

#### Metodología según ITU (International Telecommunications Union) adaptada a UML





#### Definición y descripción del servicio

- Se contempla al servicio o sistema como una única entidad que da funciones a los usuarios
- La técnica de los casos de uso es utilizada para describir la operación del servicio desde la perspectiva de los usuarios
- Se identifican los requisitos no funcionales

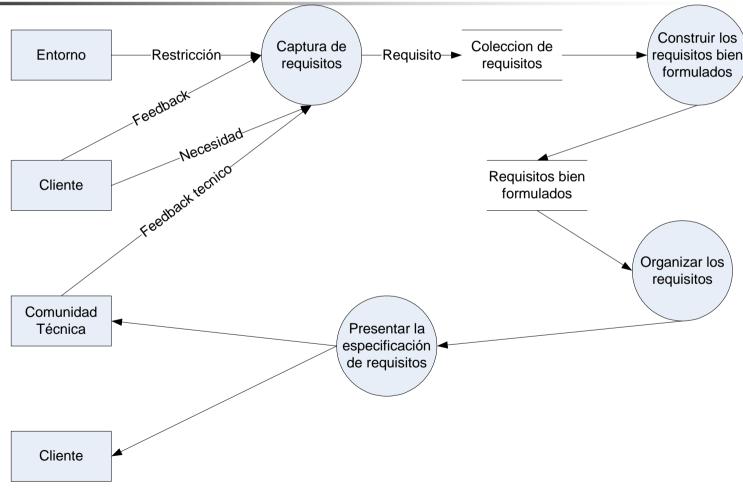


#### Arquitectura del servicio

- Se describe la arquitectura lógica del servicio, identificando sus componentes principales y realizando la asignación de funcionalidades a dichos componentes
- Se complementa con los modelos de comportamiento (diagramas de secuencia, actividad, colaboración o de estado) que sean necesarios para explicar el comportamiento normal y las situaciones de error



## Especificaciones de componentes y arquitectura física


- Se especifica en detalle cada uno de los componentes de la arquitectura del servicio
- Se identifican los diferentes nodos donde se ejecuta el servicio y la solución (protocolos) elegida para la comunicación internodos



### La ingeniería de requisitos

Cómo capturarlos, organizarlos y especificarlos

# Proceso de la especificación de los requisitos





# Actividades de la ingeniería de requisitos

- La ingeniería de requisitos conlleva las siguientes actividades:
  - Captura de requisitos
  - Análisis de requisitos
  - Especificación de requisitos
  - Validación de requisitos



#### Captura de requisitos

- Posibles fuentes de requisitos:
  - Objetivos del negocio
  - Dominio de conocimiento
  - Partes interesadas en el proyecto del sistema
  - Entorno operacional del sistema
  - La Empresa o entorno organizativo

36



### Captura de requisitos

### Técnicas de captura de requisitos:

- Entrevistas
- Escenarios
- Prototipos
- Reuniones dirigidas
- Observación



### Análisis de requisitos

- Esta actividad conlleva:
  - Detectar y resolver conflictos entre los requisitos
  - Identificar las fronteras del sistema y como éste interacciona con su entorno (contexto)
  - Desarrollar modelos que ayuden a la comprensión del problema
    - Modelo de contexto
    - Modelos conceptuales
    - Flujos de datos y control
    - Modelos de estados
    - Trazas de eventos
    - Interacciones con los usuarios del sistema
    - otros



### Especificación de requisitos

- Organizar los requisitos
- Representar los requisitos de diversas formas según la audiencia
- Elaboración del documento de especificación de requisitos

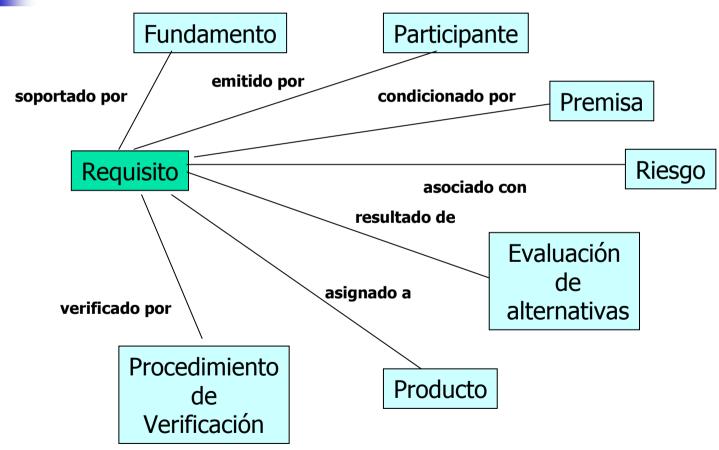
### La gestión de los requisitos



### La gestión de los requisitos

La gestión de requisitos es una actividad a realizar durante todo el ciclo de desarrollo. Sus objetivos fundamentales son dos:

- Los requisitos están controlados y sirven de referencia para las actividades de ingeniería del software y dirección de proyecto
- Los planes, productos y actividades del proyecto se mantienen consistentes con los requisitos




### Atributos de un requisito

- Identificación
- Versión del requisito
- Tipo de requisito
- Prioridad para el cliente
- Estado (propuesto, aprobado, rechazado ...)
- Madurez o estabilidad
- Riesgo
- Origen del requisito (documento, participante del proyecto origen del requisito, por transformación de otro ...)



### El caso de Airbus



43



## El esfuerzo de la captura y especificación de los requisitos

Según datos de la industria norteamericana



### El esfuerzo de la captura y especificación de los requisitos

| Proyecto de 10000 puntos función | Porcentaje del<br>esfuerzo total | Duración de la captura<br>y especificación |
|----------------------------------|----------------------------------|--------------------------------------------|
| Informática de gestión           | 3,7                              | 4,44                                       |
| Software de sistema              | 9,0                              | 13,2                                       |
| Productos comerciales            | 7,0                              | 22,7                                       |
| Software militar                 | 10,0                             | 17,5                                       |
| Proyectos con "outsourcing"      | 9,0                              | 21,9                                       |

# Factores que influyen en el esfuerzo de la captura y especificación de los requisitos (Según K. Wiegers) (I)

| Menos esfuerzo                             | Más esfuerzo                                                |
|--------------------------------------------|-------------------------------------------------------------|
| Experiencia de los analistas               | Falta de experiencia en el proyecto o dominio de aplicación |
| Participación del cliente                  | Participantes dispersos<br>geográficamente                  |
| Reutilización                              | Barreras por idiomas                                        |
| El cliente responde rápido a las preguntas | Proceso débil de toma de<br>decisiones                      |
| Experiencia en el dominio de aplicación    | Diversos tipos de usuarios                                  |

# Factores que influyen en el esfuerzo de la captura y especificación de los requisitos (Según K. Wiegers) (II)

| Menos esfuerzo                                                    | Más esfuerzo                                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| Reemplazar una aplicación<br>existente                            | Trabajo concurrente entre<br>desarrollo software y procesos de<br>negocio |
| Revisiones eficaces para eliminar ambigüedades y hallar omisiones | Dependencias externas e<br>incertidumbre                                  |
|                                                                   | Interacciones complejas entre<br>componentes software y<br>hardware       |
|                                                                   | No existe un proceso de ingeniería de requisitos                          |



### El futuro de los requisitos (I)

- Los requisitos son cada vez más importantes y más demandados en los proyectos
- Importancia de la mejores prácticas en su captura y especificación
- Los requisitos no son sólo texto sino videos, planos y modelos
- Se entiende que la ingeniería de requisitos es un trabajo complejo
- Los requisitos son un activo de la organización



### El futuro de los requisitos (II)

- Existe una evolución de la ingeniería de requisitos donde cobra mayor relevancia su justificación a efectos de gestión del portafolio
- Una aproximación orientada a la persona (casos de uso, relatos o"storyboards") dará lugar a requisitos de mayor valor.
- Uso de los medios sociales es decir foros, blogs y otros



#### Referencias

- Ryan, M., Wheatcraft, L., Zinni, R., Dick, J., Baksa, K., Fernandez, J.L., Smith G.R. and C. Unger. "Guide for Writing Requirements". International Council on Systems Engineering (INCOSE). July1, 2015.
- Fernandez J. L." "Los requisitos. Un factor crítico en el éxito de los proyectos. La importancia de los modelos". PMI Madrid Julio 2014. Enlace video en Youtube: <a href="http://www.youtube.com/watch?v=wBQ8bZIQyf0">http://www.youtube.com/watch?v=wBQ8bZIQyf0</a>
- Grant, T. "High-Value Requirements are Changing App Development and Delivery".
   Forrester Research. December 2011.
- IEEE Computer Society, IEEE Std 830-1998, "Recommended Practice for Software Requirements Specifications", New York 1998
- IEEE Computer Society, IEEE Std 1233, "Guide for Developing System Requirements Specifications", New York 1998.
- ISO/IEC/IEEE 29148 Systems and software engineering —Life cycle processes Requirements Engineering. December 2011.
- PMI. "Business Analysis for Practitioners: A Practice Guide". Newton Square, PA, 2015.
- Thayer R. y Dorfman M. (eds.). "System and Software Requirements Engineering". IEEE Computer Society Press, Los Alamitos (California). 1990.
- Weigert T. y Reed, R. "Specifying Telecommunications Systems with UML". En UML for Real, L. Lavagno, G. Martin y B.Selic (eds). Kluwer Academic Publishers, Dordrecht, 2003.
- Wiegers, K. and Beatty, J "Software Requirements". Microsoft Press, Aug 2013.