
UNIVERSITY OF MALAGA

Trust Engineering Framework for
Software Services

by

Francisco Moyano Lara
Computer Science and Languages Department

University of Malaga

submitted in fulfillment of the requirements for the

Degree of Doctor in Computer Science

Advisors
M. Carmen Fernández Gago

Senior Research Fellow at University of Malaga
Fco. Javier López Muñoz

Full Professor at University of Malaga

June 2015

moyano@lcc.uma.es
http://www.lcc.uma.es
http://www.informatica.uma.es


 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
 
AUTOR: Francisco Moyano Lara 

 http://orcid.org/0000-0002-0148-9624 
 
EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga 
 
 
 
 
 

 

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:  
Cualquier parte de esta obra se puede reproducir sin autorización  
pero con el reconocimiento y atribución de los autores. 
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer 
obras derivadas. 
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
 
Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de 
Málaga (RIUMA):  riuma.uma.es 

http://orcid.org/0000-0002-0148-9624
http://orcid.org/0000-0002-0148-9624
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


A Noni y mis padres, las personas más importantes en mi vida.



ii



Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisors, Carmen

Fernandez and Javier Lopez. Both of them have made the process of developing my

thesis smooth and rewarding. And more important, over time they have become more

than supervisors and colleagues; they have become really good friends, something I feel

proud of because they are excellent persons.

Along the development of my thesis, I have met and worked with lots of people

at NICS Lab. There are not enough kind words in the English vocabulary that I can

devote to these people. Guys, you are awesome and my experience working with you

has been legen... wait for it!

I must start expressing my gratitude to my office buddies and Pokemon friends, Ana

and David, with whom I have shared so many epic moments. I still recall my first work

in the group together with Pablo, a fantastic person who initiated me in the research

world, concretely with RFID readers and tags (which by the way may have inclined

me towards becoming the tags master...). My next Pokemon master was Rodrigo,

an authentic geek (in the best sense of the word) with whom I share the passion for

videogames and sushi. He made a fantastic job at co-supervising my master thesis.

The rest of NICS guys are equally awesome, including those not working here any

longer. I can only hold good thoughts and share kind words about every of them:

Gerardo, Noelia, Rubén, Lorena, Jesús, Isaac, Cristina, Dani, Miguel, Saúl, Jose, Edu,

Pepe, Montes, Onieva... All of them have contributed something to me, and have made

me feel really appreciated. Thank you!

There are three people that have been essential during my thesis, but much more

importantly, over my life: my parents, Ana and Francis, and my girlfriend Noni. Re-

garding my parents, I can only say that they are always there for me and that they are

the best parents in the world, and that without them, I would not have come this far.

iii



As for Noni, what can I say? She is one of the best persons I have ever known and our

love has always inspired and encouraged me to go ahead and become a better person.

I am always thrilled when I think of our future together.

The good thing of having a small yet loving family is that I can share even more

love with each of its members: my grandparents, Conchi, Paco, Chus and Miguel (who,

in spite of not being physically here any longer, I know that he always cares for me);

my aunts and uncles, Suli, Miguel, Chari and Sergio; my cousins Ali, Sergio, Dani and

Miguelito; my mother-in-law Manoli; and my brother-in-law Juanma. I have been so

lucky to count on all of them...

Some long-life friends must be listed here of course. Ernesto, who was my first best

friend and who taught me how to ride a bike; Raul, with whom I learned how to dance

Latin music; Oliver, the best musician I will ever know; Jose Angel (brown), with whom

I share the most exciting discussions about religion; Jose Angel (blonde), who helped

me discover how Cadiz and Jerez can bring good friends together even more; Santi,

because deep friendship links can never be broken, even when distance might seem an

unavoidable obstacle.

I would also like to devote some thankful words to my colleagues during the master’s

degree, especially those in the ISP group, who have become close friends over time and

with whom I have shared so many fun and geek moments.

During the development of NESSoS, the project that helped shape my thesis, I have

met clever and nice people with whom I had the opportunity to work. Kristian, a

great German guy who will always have a place in Malaga; Jorge Cuellar, who provided

me with useful insights that helped me improve my research; Benoit, who gave me a

warm welcome to his fantastic research lab during my ph.D. stay in Rennes; and Jean-

Emile, who worked closely with me during my stay and helped me every time I found

a stumbling block.

I am also grateful to some institutions and projects for their funding and support.

This thesis has been primarily funded by the Spanish Ministry of Education under the

FPU fellowship. Special thanks go to the NESSoS (FP7 256890) project, because, as

mentioned earlier, it has helped me pave the path of my thesis, it has given me the

opportunity to collaborate with other institutions and high quality researchers, as well

as to receive feedback for improving the quality of my research and make good friends.

iv



Agradecimientos

Antes de nada, quisiera expresar mi más profundo agradecimiento a mis directores,

Carmen Fernández y Javier López. Ambos han convertido el desarrollo de la tesis en

un proceso agradable y gratificante. Y lo que es más importante, a lo largo del tiempo

se han convertido en más que directores y compañeros; se han convertido en buenos

amigos, lo cual me llena de orgullo porque son unas personas fantásticas.

A lo largo del desarrollo de mi tesis, he conocido y trabajado con muchas personas

en NICS Lab. No hay suficientes palabras amables que pueda dedicar a estas personas.

Sois todos geniales, y mi experienca trabajando con vosotros ha sido legen... ¡espera un

momento!

Debo empezar por mostrar mi gratitud a mis compis de oficina y amigos Pokemon,

Ana y David, con los cuales he vivido momentos realmente épicos. Aún recuerdo mi

primer trabajo en el grupo de la mano de Pablo, una persona fantástica que me inició

en el mundo de la investigación, concretamente con etiquetas y lectores RFID (lo que

pensándolo bien puede que haya llevado a convertirme en el maestro de las etiquetas...).

Mi siguiente maestro Pokemon fue Rodrigo, un verdadero friki (en el mejor sentido de

la palabra), con quién comparto la pasión por los videojuegos y el sushi, y quien hizo

un trabajo sobresaliente al co-dirigir mi proyecto final de carrera.

El resto de los miembros de NICS son igualmente alucinantes, incluyendo los que

ya no trabajan aquí. Sólo puedo compartir buenas palabras sobre cada uno de ellos:

Gerardo, Noelia, Rubén, Lorena, Jesús, Isaac, Cristina, Dani, Miguel, Saúl, Jose, Edu,

Pepe, Montes, Onieva... Todos ellos me han aportado algo, y me han hecho sentir

realmente querido en el grupo. ¡Gracias!

Hay tres personas que han sido imprescindibles durante esta tesis, pero mucho más

importante, a lo largo de mi vida: mis padres Ana y Francis, y mi novia Noni. En

cuanto a mis padres, sólo puedo decir que siempre están ahí para mí y que son los

v



mejores padres del mundo, y que sin ellos, no habría llegado tan lejos. Y de Noni, ¿qué

puedo decir? Es una de las mejores personas que he conocido y nuestro amor siempre

me ha inspirado y animado a seguir adelante y a convertirme en mejor persona. Me

llena de emoción y alegría pensar en nuestro futuro juntos.

Lo bueno de tener una familia pequeña es que puedo compartir incluso más amor

con cada uno de sus miembros: mis abuelos, Conchi, Paco, Chus y Miguel (quién, a

pesar de no estar físicamente, sé que siempre está cuidando de mí); mis tías y tíos, Suli,

Miguel, Chari y Sergio; mis primos Ali, Sergio, Dani y Miguelito; la familia de Noni,

Manoli y Juanma. He sido tan afortunado de poder contar con todos ellos...

Mis amigos de toda la vida tienen un lugar aquí por supuesto. Ernesto, que fue

mi primer mejor amigo y quién me enseñó a montar en bici; Raúl, de quien aprendí a

bailar música latina; Óliver, el mejor músico que jamás conoceré; José Ángel (moreno),

con quien he compartido las discusiones más interesantes sobre religión; José Ángel

(rubio), con quién he descubierto que Cádiz y Jerez pueden unir a los buenos amigos

incluso más; Santi, porque la auténtica amistad nunca pueden romperse, incluso cuando

la distancia pueda parecer un obstáculo insalvable.

También me gustaría dedicar unas palabras de agradecimiento a mis compañeros

durante la carrera, especialmente a aquéllos del grupo ISP, quienes se han convertido

en buenos amigos a lo largo del tiempo y con quienes he compartido tantos momentos

divertidos y frikis.

Durante el desarrollo de NESSoS, el proyecto que ha ayudado a dar forma a mi tesis,

he conocido gente amable e inteligente con quién he tenido la oportunidad de trabajar.

Kristian, un genial chico alemán que siempre tendrá un lugar en Málaga; Jorge Cuéllar,

quién me ha ofrecido interesantes reflexiones para mejorar mi investigación; Benoit,

que me acogió amablemente en su genial grupo de investigación durante mi estancia en

Rennes; y Jean-Emile, con quién trabajé estrechamente durante mi estancia y que me

ayudó cada vez que me encontraba una piedra en el camino.

Esta tesis ha sido principalmente financiada por el Ministerio de Educación a través

de la beca FPU. Debo agradecer especialmente al proyecto NESSoS (FP7 256890)

porque ha pavimentado el camino de mi tesis, me ha dado la oportunidad de colaborar

con otras instituciones e investigadores de alto prestigio, así como de recibir opiniones

para mejorar mi investigación y hacer buenos amigos.

vi



Contents

List of Figures xi

List of Tables xv

Listings xviii

Acronyms xix

1 Introduction 1

1.1 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Secure System Engineering . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Trust Management . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Trust, Security, Risk and Trustworthiness . . . . . . . . . . . . . 5

1.2 Goals and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Publications and Funding . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Understanding Trust: A Systematic Analysis 17

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Trust Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Trust in the Computing Domain . . . . . . . . . . . . . . . . . . 21

2.1.3 Trust in the Software Development Life Cycle . . . . . . . . . . . 25

2.2 Trust Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Trust Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Trust Models: Definition and Classification . . . . . . . . . . . . 34

2.2.3 Trust Models Concepts . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



CONTENTS

2.2.4 Comparison Framework: A Case Study . . . . . . . . . . . . . . . 42

3 Incorporating Trust Engineering in Early Phases of the SDLC 47

3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase . . . . . 48

3.1.1 Trust Evaluation in the Cloud . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Trust-Aware Methodology . . . . . . . . . . . . . . . . . . . . . . 52

3.1.3 Application Example: eHealth . . . . . . . . . . . . . . . . . . . 59

3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Trust-supported Threats Analysis . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 The SI* Framework . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Asset Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.3 Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.5 Application Example: eHealth . . . . . . . . . . . . . . . . . . . 75

3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Eliciting and Representing Trust and Reputation Requirements . . . . . 84

3.3.1 Problem Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.2 Trust Extensions to UML4PF . . . . . . . . . . . . . . . . . . . . 85

3.3.3 Formal Checking of Trust . . . . . . . . . . . . . . . . . . . . . . 88

3.3.4 Application Example: Smart Grid . . . . . . . . . . . . . . . . . 91

3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Designing Trust and Reputation Solutions . . . . . . . . . . . . . . . . . 101

3.4.1 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.2 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4.3 Deployment Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4.4 Application Example: eHealth . . . . . . . . . . . . . . . . . . . 105

3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Enabling Trust and Reputation during Implementation 113

4.1 Framework Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 High-Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.1 Model Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.2 Relational Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.3 Computation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



CONTENTS

4.2.4 User-Defined Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Low-Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.1 Components Decomposition . . . . . . . . . . . . . . . . . . . . . 120

4.3.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.3 Incorporating Trustor’s Subjective Factors . . . . . . . . . . . . . 124

4.4 Implementation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.2 Database Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.3 Messaging Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.4 Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 Application Example: Social Cloud . . . . . . . . . . . . . . . . . . . . . 130

4.5.1 Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5.2 Trust Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5 Enabling Trust and Reputation at Runtime 143

5.1 Kevoree: A Models@run.time Development Platform . . . . . . . . . . . 144

5.1.1 Kevoree Development Framework . . . . . . . . . . . . . . . . . . 146

5.1.2 Deployment in Kevoree . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Integrating Trust and Reputation in Models@Run.time . . . . . . . . . . 148

5.2.1 Trust and Reputation Metamodels . . . . . . . . . . . . . . . . . 150

5.2.2 Trust Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.3 Reputation Framework . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Trust-based Self-Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.1 Policy-based Reconfiguration . . . . . . . . . . . . . . . . . . . . 161

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4 Application Example: A Trust-Aware Distributed Chat . . . . . . . . . . 165

5.4.1 eBay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4.2 Marsh’s Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4.3 PeerTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.4.4 REGRET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

ix



CONTENTS

5.5 Experimenal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6 Conclusions 183

A Resumen en español 193

A.1 Marco de la tesis y objetivos . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.2 Resumen de contribuciones . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.3 Marco de trabajo conceptual de confianza . . . . . . . . . . . . . . . . . 196

A.4 Evaluación de confianza de proveedores de cloud . . . . . . . . . . . . . 200

A.5 Uso de confianza durante la fase de análisis de seguridad . . . . . . . . . 202

A.5.1 Identificación de amenazas internas guiada por relaciones de con-

fianza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.5.2 Recogida de requisitos de confianza y reputación . . . . . . . . . 204

A.6 Especificación de modelos de confianza y reputación . . . . . . . . . . . 205

A.7 Marco de trabajo para la implementación de modelos de confianza y

reputación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.8 Marco de trabajo para la implementación de sistemas autoadaptativos

en función de valores de confianza y reputación . . . . . . . . . . . . . . 210

References 213

x



List of Figures

1.1 Secure System Development Life Cycle . . . . . . . . . . . . . . . . . . . 2

1.2 Main Contributions in relation to the SDLC . . . . . . . . . . . . . . . . 11

2.1 Concepts Cloud for Trust Definitions . . . . . . . . . . . . . . . . . . . . 34

2.2 Common Concepts for Trust Models . . . . . . . . . . . . . . . . . . . . 37

2.3 Concepts for Decision Models . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Concepts for Evaluation Models . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 General Framework for Trust Models Comparison . . . . . . . . . . . . . 42

3.1 Overview of the Methodology . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Comparison of Trust Intervals for the selected Cloud Providers . . . . . 64

3.3 Contrasting Trust Thresholds and Trust Intervals . . . . . . . . . . . . . 65

3.4 Threats Severity Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Patient Monitoring Scenario in SI* . . . . . . . . . . . . . . . . . . . . . 78

3.6 A Trust Extension of the UML4PF Profile . . . . . . . . . . . . . . . . . 86

3.7 Methodology Proposed for Engineering Trust and Reputation Require-

ments into Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8 Context Diagram for the Smart Metering Gateway . . . . . . . . . . . . 93

3.9 Domain Knowledge Diagram - Analysing the Trust Relationship Consumer-

CLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.10 Domain Knowledge Diagram - Analysing Reputation Information . . . . 94

3.11 Domain Knowledge Diagram - Refinement of Trust and Reputation In-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.12 Problem Diagram - Describing Trust and Reputation Engines . . . . . . 96

3.13 Sequence Diagram - Describing Trust and Reputation Events . . . . . . 97

xi



LIST OF FIGURES

3.14 Tool-Supported Modelling of Trust-Aware UML4PF . . . . . . . . . . . 100

3.15 Tool-Supported OCL Evaluation . . . . . . . . . . . . . . . . . . . . . . 100

3.16 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.17 Trust-aware Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . 107

3.18 Patient-Physician relationship . . . . . . . . . . . . . . . . . . . . . . . . 108

3.19 Data Retrieval Trust Relationship . . . . . . . . . . . . . . . . . . . . . . 109

3.20 Quality Feedback Claim . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.21 Trust-aware Use Case Diagram (2nd Iteration) . . . . . . . . . . . . . . 110

3.22 Activity Diagram for Use Case Set Physician Preferences . . . . . . . . 111

3.23 Activity Diagram for Use Case Ask for Second Opinion . . . . . . . . . . 111

3.24 Trust-aware Deployment Diagram . . . . . . . . . . . . . . . . . . . . . . 112

4.1 The Framework in Context . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 High-Level Architecture of the Framework . . . . . . . . . . . . . . . . . 116

4.3 Framework Architecture: Component Diagram . . . . . . . . . . . . . . 119

4.4 Framework Architecture: Sequence Diagram . . . . . . . . . . . . . . . . 120

4.5 Engine Dispatcher Component . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 Event Handler Component . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7 Data Manager Component . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.8 Important Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.9 Query API Call Sequence Diagram . . . . . . . . . . . . . . . . . . . . . 125

4.10 Two Deployment Configurations . . . . . . . . . . . . . . . . . . . . . . . 130

4.11 Social Cloud Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.12 Detailed Sequence Diagram of sendEvent API Call . . . . . . . . . . . . 136

4.13 Detailed Sequence Diagram of sendEvent API Call (cont.) . . . . . . . . 136

5.1 Kevoree Architectural Elements . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Adaptation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Kevoree editor with three nodes . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Kevscript Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Trust Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6 Reputation Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.7 Execution Time (measured in microseconds) . . . . . . . . . . . . . . . . 180

xii



LIST OF FIGURES

A.1 Ciclo de vida del desarrollo de sistemas seguros . . . . . . . . . . . . . . 194

A.2 Contribuciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

xiii



LIST OF FIGURES

xiv



List of Tables

2.1 Trust Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Common Features Comparison . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Decision Models Comparison . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Evaluation Models Comparison . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Evaluation Models Comparison (II) . . . . . . . . . . . . . . . . . . . . . 44

3.1 Stakeholder Trust Template . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Cloud Provider Trust Template . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 CSA Cloud Threats and their Evaluation . . . . . . . . . . . . . . . . . 56

3.4 Trust Interval Summations . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Trust Factors Quantification for Microsoft . . . . . . . . . . . . . . . . . 62

3.6 Trust Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Trust Intervals for Cloud Providers . . . . . . . . . . . . . . . . . . . . . 63

3.8 Permissions on Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 Relationships between Resources . . . . . . . . . . . . . . . . . . . . . . 69

3.10 Predicates for ASP SI* Formalization . . . . . . . . . . . . . . . . . . . . 70

3.11 Predicates for the Asset Model . . . . . . . . . . . . . . . . . . . . . . . 71

3.12 Axioms for Identifying Indirect Assets . . . . . . . . . . . . . . . . . . . 72

3.13 Axioms for Identifying Insider Threats . . . . . . . . . . . . . . . . . . . 76

3.14 ASP Formalization for SI* Model . . . . . . . . . . . . . . . . . . . . . . 79

3.15 ASP Rules for SI* Model Instantiation . . . . . . . . . . . . . . . . . . . 80

3.16 OCL Expressions that support Trust-based Security Reasoning and Con-

sistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.17 Use Case Diagram Extensions . . . . . . . . . . . . . . . . . . . . . . . . 102

3.18 Class Diagram Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xv



LIST OF TABLES

3.19 Tagged Values for Class Diagrams . . . . . . . . . . . . . . . . . . . . . 104

3.20 Deployment Diagram Extensions . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Entity Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Trust Relationship Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Reputation Statement Table . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Beliefs Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Entity Table Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6 Trust Relationship Table Example . . . . . . . . . . . . . . . . . . . . . 138

4.7 Reputation Statement Table Example . . . . . . . . . . . . . . . . . . . 138

5.1 Trust Factors for Marsh’s Model . . . . . . . . . . . . . . . . . . . . . . 170

5.2 Amount of Framework-related Activities . . . . . . . . . . . . . . . . . . 180

xvi



Listings

3.1 IDHE001. List all biddable domains that are not a human entity . . . . 89

3.2 CCTV001. Check that all dependencies with a trust relationship have a

dependency to a TrustValue . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 CCL001. List all sources of claims that are not a Human Entity . . . . . 97

4.1 Engine Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 Excerpt of EngineManager . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 Creating a Bounded Claim . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4 Binding Claim Type and Event . . . . . . . . . . . . . . . . . . . . . . . 133

4.5 Implementing Trust and Reputation Engines . . . . . . . . . . . . . . . . 134

4.6 Configuring Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.7 API Call for Sending the Event . . . . . . . . . . . . . . . . . . . . . . . 135

4.8 Changing a Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.9 Framework Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1 Definition of Console in Kevoree . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Querying the model@runtime layer . . . . . . . . . . . . . . . . . . . . . 147

5.3 TrustEntity Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4 Trust Entities Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.5 Adding Trust Relationships with the EMF API . . . . . . . . . . . . . . 155

5.6 TrustModel Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.7 CentralReputableEntity Component . . . . . . . . . . . . . . . . . . . . 157

5.8 ReputationManager Component . . . . . . . . . . . . . . . . . . . . . . . 158

5.9 DistReputableEntity Component and Reputation Engine Initialization . 159

5.10 ReputationEngine Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.11 Reconfiguration Rules Processing . . . . . . . . . . . . . . . . . . . . . . 163

5.12 ScriptEngine: Remove Component . . . . . . . . . . . . . . . . . . . . . 164

xvii



LISTINGS

5.13 Console in the Ebay Reputation Model . . . . . . . . . . . . . . . . . . . 166

5.14 Ebay Reputation Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.15 Console in Marsh Trust Model . . . . . . . . . . . . . . . . . . . . . . . 170

5.16 Trust Engine for Marsh’s Model . . . . . . . . . . . . . . . . . . . . . . . 172

5.17 Binding Reputation Engine and Console . . . . . . . . . . . . . . . . . . 174

5.18 Reputation Engine for PeerTrust . . . . . . . . . . . . . . . . . . . . . . 175

5.19 Reputation Engine for REGRET . . . . . . . . . . . . . . . . . . . . . . 177

xviii



Acronyms

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ASP Answer Set Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CIA Confidentiality, Integrity, and Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

CSA Cloud Security Alliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CLS Controllable Local System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

EHR Electronic Health Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

EMF Eclipse Modelling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

JDBC Java Database Connectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

JMS Java Message Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

JNDI Java Naming and Directory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ICT Information and Communication Technology . . . . . . . . . . . . . . . . . . . . . . . . . 143

NESSoS Network of Excellence on Engineering Secure Future Internet Software

Services and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

OCL Object Constraint Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

OODBMS Object-Oriented Database Management System . . . . . . . . . . . . . . . . . . . . . . 127

P2P Peer-to-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

QoS Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

RDBMS Relational Database Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

SDLC System Development Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SLA Service Level Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

SSE Secure System Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

xix



LISTINGS

SQL Structured Query Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

UML Unified Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

UML4PF UML Profile for Problem Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

WSDL Web Service Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

XML eXtensible Markup Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xx



Chapter 1

Introduction

The aim of this chapter is to set the context of this thesis and to introduce its motivation,

goals and contributions. This thesis is framed along the intersection of two important

research areas: Secure System Engineering (SSE) and trust management. Therefore,

in Section 1.1 we provide some background knowledge on these areas, stressing the

difference between trust and other related concepts like security, risk and trustworthi-

ness. After setting the context of the thesis, we present the goals that it pursuits in

Section 1.2, which also summarizes the main contributions and explains how they fit

in the context of the thesis. Finally, Section 1.3 provides the list of publications that

underpins the thesis, and the funding that allowed its realization.

1.1 Research Scope

This section introduces the scope of the thesis, which moves along the intersection of two

research areas: SSE and trust management. The former is introduced in Section 1.1.1

and concerns with building secure systems from the ground-up. The latter, presented

in Section 1.1.2, aims to translate the concept of trust into the computing domain.

The concept of trust is closely related to and has been traditionally mixed up with

other concepts such as security, risk and trustworthiness. Therefore, Section 1.1.3 clar-

ifies the intuitive relationships between these concepts, stressing their differences.

1



1. INTRODUCTION

1.1.1 Secure System Engineering

The domain under which this thesis is framed is Secure System Engineering, which is

an evolving discipline that unifies two important areas: system engineering and security

(131) (4). The discipline takes a holistic view of security across all phases of the System

Development Life Cycle (SDLC), from the initial planning and specification of security

requirements to the runtime verification of security properties, as depicted in Figure 1.1.

The growing importance of this discipline is reflected by industry initiatives like the

Microsoft Security Development Lifecycle1, by the creation of working groups in the

area2, and by EU-funded projects3.

Figure 1.1: Secure System Development Life Cycle

Planning	  and	  
Visualiza-on	  

Security	  
Analysis	  

Secure	  	  
Design	  

Secure	  
Implementa-on	  

Run-me	  
Verifica-on	  

Risk	  
Management	  

Assurance	  

The discipline takes a proactive side in securing systems (and in turn, the services

that constitute them) as opposed to the traditional reactive approach that has been the

standard in the security field (42)(131). This reactive approach has been proven to be

problematic because security breaches are tackled once the harm is already done, with

the subsequent loss of large amount of money and reputation (130). On the contrary,

SSE proposes building the system secure from the ground-up, limiting the attack surface

of the system from the very beginning, and ensuring that the enforcement of security

mechanisms matches their initial specifications (35).

1http://www.microsoft.com/en-us/sdl/
2http://www.ifip.org/bulletin/bulltcs/tc11_aim.htm
3http://www.nessos-project.eu

2

http://www.microsoft.com/en-us/sdl/
http://www.ifip.org/bulletin/bulltcs/tc11_aim.htm
http://www.nessos-project.eu


1.1 Research Scope

The first phase of the SDLC, namely planning and visualization, studies the fea-

sibility of the system and makes some early decisions in relation to its development.

During security analysis, threats to the system, as well as security goals and concerns

for the different stakeholders, are elicited. Next, design artifacts and an architecture are

built in order to provide the security services that prevent the threats and that cover

the security needs identified in the previous stage. This architecture is implemented in

the next phase, where best practices in secure coding and secure execution platforms

are used. In service-oriented environments, where systems are built by composing ser-

vices, there is the need to consider secure composition platforms and approaches. The

last phase of the cycle includes the runtime monitoring of the system in order to verify

the enforcement of the security requirements and policies defined in previous phases.

Transversally to the cycle and controlling the flow of the different activities, risk man-

agement and assurance operations are executed. The former identifies and quantifies

risks that may endanger the successful achievement of the system, whereas the latter is

concerned with guaranteeing that the security goals and requirements are preserved all

along the cycle4.

As further discussed in Section 1.2, this thesis focuses on engineering trust in several

phases of this SDLC. Therefore, the next section provides some background knowledge

on the area of trust management.

1.1.2 Trust Management

The term trust management dates back to the mid 90s and was coined by Blaze, Feigen-

baum and Lacy (18) to denote new mechanisms for decoupling the identity from the

authorization problem. In particular, these mechanisms simplify the two-step access

control process, namely an authentication step and an authorization step, into a one-

step trust decision.

Another approach to introducing trust in the computing domain was formerly pro-

posed by Marsh (75). In this approach, namely computational trust, the idea is to

study how trust is characterized in other disciplines, like psychology, game theory or

economics, and replicate this trust knowledge in the computing domain for collaborative

scenarios. The main difference with the traditional view of trust management is that
4There are different life cycles models, and some of them include phases like maintenance. Nonethe-

less, we abstract from concrete models and represent the crucial phases that most of them share.

3



1. INTRODUCTION

trust is not longer a binary value (i.e. I trust or I do not trust), but it consists of a

continuous or discrete spectrum of values that represents more accurately the level of

trust in an entity.

Both approaches, namely trust management and computational trust, are encom-

passed nowadays under the common term trust management. The way that trust is

replicated in the computing domain is through the so-called trust models. Depend-

ing on the context and the goal of the model, the tasks that it must perform may be

different.

In the traditional trust management field, the model is responsible for verifying

credentials and policies and for granting access to resources if the requester or provider

is trusted. The model may support a negotiation protocol between the two entities in

order to reveal gradually the credentials and policies, thus meeting privacy concerns.

In the branch of computational trust, the first task of the model is initializing a

trust relationship between entities. Initially, as there is no local information about a

partner’s behaviour, external reputation information may be more weighted to make

a trust decision. In addition, several types of authentication and credential systems

may assist in determining an initial level of trust. Other trust models rely on the

system’s general tendency to trust, or trust propensity, defining a default trust value for

newcomers considering how, in general, the entities behave in the system.

The next task of this type of model is observation and assessment, that is, monitoring

the behaviour of entities and assigning trust values that depend on this behaviour. The

observation can be done as an active participant of the collaboration or as a silent third

party. Research in intrusion detection can be useful for this purpose (113). Suspicious

activity could be misbehaviour such as breaking a system policy, or simply a high

deviation from usual actions performed by the observed entity. Detection of these

misbehaviours could be achieved by means of specification-based anomaly detection, in

which the normal behaviour is specified using some formalization technique or language.

When an observation system has detected suspicious activity (or if it has just been

witness of normal behaviour), a decision must be made on what to do, leading to the

update of the trust or reputation value. Trust and reputation metrics are used in order

to update trust and reputation values, respectively. They consist of a set of factors,

that is, the variables that are used by the metrics, and of an engine, which determines

how the factors are combined to yield a final value.

4



1.1 Research Scope

As a conclusion, there are several dimensions to describe trust in the computing

domain through trust models (5), which are summarized next:

• Target: entities under trust evaluation are different, ranging from users in access

control systems to peers in Peer-to-Peer (P2P) networks.

• Representation: trust can be encoded by means of credentials (e.g. digital signa-

tures), records of past interactions or ontologies in the semantic web.

• Method: hard-security approaches use authentication to decide complete trust in

a user. Entities opinions, i.e. reputation, and histories of past interactions can be

used to determine trust. Exchange of credentials are also used to establish trust

before engaging in an Internet transaction.

• Management: the entities that determine trust can vary, from single trusted third

parties to individual peers able to reason about trust in others.

• Computation: trust may be computed in many ways, using discrete values or a

continuous numerical range, probabilities or confidence intervals, and considering

static or dynamic time. Moreover, different algorithms exist to transfer trust

values among entities.

• Purpose: trust can be used for multiple purposes, including protecting data,

finding accurate information, selecting the most appropriate service, or decid-

ing whether to provide access to resources. In the very end, the purpose of trust

is supporting decision-making processes.

1.1.3 Trust, Security, Risk and Trustworthiness

Trust is an unsteady concept, because we intuitively know what it is but it is hard

to put its definition down in words. Chapter 2 performs a throughout analysis of the

definition of trust and all its related concepts. In this section though, we are interested

in exploring the intuitive relationship between trust and other properties that are closely

related to it.

As discussed in the previous section, trust in the computing domain has its origin in

computer security, and in particular, in the authentication and authorization domains

(43). Resources owners implicitly trust users if the latter prove their identity and this

5



1. INTRODUCTION

identity is associated to access rights for these resources. As environments are more

open and distributed, the reliance on identity as a trust validator becomes questionable

(18). As we can intuitively guess, the ultimate goal of trust is about making a decision,

for example, whether granting access to resources or not. In particular, trust is recog-

nized to be a useful tool to empower decision-making processes under the presence of

uncertainty (75).

It is again intuitive that the deployment of traditional security mechanisms on a

system can help building trust in such system. If users know that a system is secure,

they will most likely prefer it over another system that performs the same work and it

is not secure. However, how can users know that a system is secure? There are two

possibilities: either they have previous experience with the system, or a reputable entity

(e.g. certification authority or security expert) tells them to believe that it is secure. In

any case, it is important to notice the following subtlety: users do not trust a system

because it is secure, but because they know (or they think they know) that it is secure.

This is a consequence of trust being subjective.

Security is often considered one dimension or factor of trust (138). This means that

even if users know that a system is secure, they still may not trust it if the system fails

in other categories, such as usability, reliability, robustness or competence. If a system

does not perform as users expect, or if users do not feel attracted to its interfaces, users

may not trust the system (124). Therefore, security may not be enough in order to

build trust. This is back up by the observation that even when companies are investing

increasingly more in security (101), users do not trust them to keep their personal

information safe online5.

We can also state that under certain circumstances, security may not even be neces-

sary at all in order to achieve trust. In particular, if users do not worry about security

and they have favorable previous experiences with a system, they gain trust in the sys-

tem even if the system does not implement any security measures. It is not a lack of

security that may lead users not to trust, but the security incidents of past experiences

or the fear that such incidents eventually occur. However, the premise that users do

not worry about security is unrealistic nowadays, because the growth of incidents is

5http://www.itproportal.com/2013/09/14/a-question-of-trust-vs-security-do-people-
actually-trust-companies-they-do-business-with-online/

6

http://www.itproportal.com/2013/09/14/a-question-of-trust-vs-security-do-people-actually-trust-companies-they-do-business-with-online/
http://www.itproportal.com/2013/09/14/a-question-of-trust-vs-security-do-people-actually-trust-companies-they-do-business-with-online/


1.1 Research Scope

raising concerns and users are more aware and fearful about security, especially after

Snowden’s declarations (73).

As a conclusion, we can summarize the relationship between trust and security in

the following statements:

• The presence of security itself does not imply trust; however, the fact that users

think that the system is secure will, in most cases, increase their trust in the

system.

• The presence of trust does not imply security; users could trust the system due

to other properties.

• Security is an objective property, whereas trust is a subjective property. This

means that two systems can be the same secure and still being trusted differently

by a group of users, due to other factors beyond security, including personal

preferences.

In this thesis, we are concerned about engineering trust into software services through

trust and reputation models. For us, users are in many cases services, and the system

is another service or a group of services. Given that in most cases there is a positive

correlation between security and trust, we discuss security in several parts of the thesis,

especially when discussing factors that must be considered in order to evaluate trust.

However, even when we do not explicitly mention it, we assume that there are basic

security services underpinning the trust and reputation models.

Regarding risk, it is agreed that it has a strong relationship with trust (71)(57). The

first point in common is that both are tools that empower decision making. They also

deal with uncertainty; in the case of risk, uncertainty is represented by the probability

that something unpleasant happens, whereas the way of representing uncertainty in

trust depends on the model, and can range from probabilities to confidence intervals.

The relationship between risk and trust can be seen in either direction: risk as a

factor of trust, or trust as a factor of risk. The former indicates that risk is a factor that

can be taken into account prior to assessing trust. However, we should ask ourselves to

which extent and how each risk component, probability and impact, should be weighted.

The other direction of the relationships indicates that trust information can be a relevant

7



1. INTRODUCTION

factor when making risk assessments, where the level of trust represents the probability

used when measuring the opportunity level (71).

It seems intuitive that trust and risk have a positive correlation: the trust that an

entity places in another entity to perform an action must be high if the risk involved

in that action is high too; or put in other words, if there is no risk involved in an

action, no trust is required. High risk implies high values at stake or high chance for

deception, increasing the necessary trust to engage in the interaction. The absence of

risk may imply low values at stake, minimizing (even removing) the need for making a

trust decision. In this direction, Mayer, Davis and Schoorman (78) state that trust is

the willingness to take risk, and the level of trust is an indication of the amount of risk

that one is willing to take.

Trust and trustworthiness are two related concepts that are often used interchange-

ably and must be distinguished (127). Avižienis et al. (8) define trustworthiness as the

“assurance that a system will perform as expected”. Note that trustworthiness is a prop-

erty of the system, just like security, and therefore, it is not susceptible to subjective

judgement. The ideal situation is present when the trustor’s trust in a trustee matches

the trustworthiness of the latter (95). In that case, we say that trust is well-founded;

otherwise, it is ill-founded (71). As for the relationship with risk, we can consider that

the probability that measures the uncertainty partly represents the trustworthiness of

the trustee (57).

In this thesis, we focus on trust and take the vision that risk is embedded in both the

trust level and trust threshold of the model, following the positive correlation between

trust and risk. Therefore, setting a high threshold (value over which a trust decision

is positive) implies that trust must be high, and therefore, that the risk is also high.

Conversely, setting a low threshold implies that risk is low, therefore trust can be low

in order to proceed with the interaction. We do not consider trustworthiness.

1.2 Goals and Organization

The integration of trust into different phases of the SDLC can bring benefits to systems

and, consequently, can have a positive effect on the users of such systems, who will feel

more confident and willing to use them. However, there are two main stumbling blocks

that prevent trust engineering from becoming a reality.

8



1.2 Goals and Organization

First, there is not a good understanding of trust in the computing domain. There

exists a large amount of authors proposing different trust and reputation models, but few

deal with systematizing the concepts behind trust and abstracting away from particular

assumptions or contexts where the models are applied. To add insult to injury, trust

and reputation are often mixed up, leading to still greater confusion. Therefore, one

goal of this thesis is to study the concept of trust and to build a conceptual framework

that studies trust-related concepts and the relationships between these concepts.

The second stumbling block is that there are barely tools, guidelines or approaches

that provide engineers and developers with the adequate know-how on engineering trust

along the SDLC. The current standard is to build trust and reputation models on top

of existing systems in an ad-hoc way in order to match their specific needs, limiting

the models re-usability on different systems and contexts. An approach typically used

in social applications and web markets is to hard-code the reputation process in the

application itself, which as stated by Farmer and Glass (34), might lead to poor, un-

manageable solutions. Fixing bugs or mitigating abuse become impossible unless repu-

tation remains an isolated module. We believe that these approaches are not adequate,

and that a holistic approach where trust and reputation requirements are considered

from the very beginning is required. Therefore, the other goal of this thesis is to provide

systems engineers and developers with methods and tools to manage trust and reputation

in different phases of the SDLC. Accomplishing this integration requires understand-

ing the concept of trust, and including trust reasoning in key activities of the different

phases of the life cycle.

The contributions of this thesis are summarized in Section 1.2.1, whereas its general

organization is discussed in Section 1.2.2.

1.2.1 Thesis Contributions

The contributions of this thesis are the following:

• A comprehensive literature review on the integration of trust in different phases

of the SDLC.

• Highlight of the constituent components of trust by the systematic analysis of

multiple definitions of trust.

9



1. INTRODUCTION

• A conceptual framework that analyses trust-related concepts and the relation-

ships among these concepts, which in turn provides a common basis that allows

comparing a wide range of trust and reputation models.

• A methodology to incorporate trust reasoning during Cloud sourcing decisions in

the early phases of the SDLC.

• A methodology and tool that support the identification of threats in systems and

organizations through the analysis of trust relationships.

• A methodology and notation that allows the elicitation of trust and reputation

requirements and their integration with other functional and non-functional (in-

cluding security) requirements.

• A notation that allows the specification of trust and reputation models into the

system.

• A framework that allows the implementation of a wide range of trust and reputa-

tion models.

• A framework that allows building systems that evolve at runtime according to

trust and reputation values.

Figure 1.2 shows how these contributions are aligned with the different phases of

the SDLC.

1.2.2 Thesis Outline

In this first chapter, we have contextualized this thesis in the scope of trust engineering,

and we have summarized its contributions in relation to this scope.

In Chapter 2, we first provide a comprehensive literature review that analyses trust

attending to different points of view. This analysis provides the required background

to elaborate a conceptual framework that conveys trust-related concepts and their re-

lationships. This framework serves as a basis for a systematic comparison of different

trust and reputation models, decoupling them from particular assumptions and low-

level details. The conceptual framework gathers three sets of concepts. The first set

corresponds to concepts that are common to all the trust models in the literature, and

10



1.2 Goals and Organization

Figure 1.2: Main Contributions in relation to the SDLC

Planning	  and	  
Visualiza-on	  

Security	  
Analysis	  

Secure	  	  
Design	  

Secure	  
Implementa-on	  

Run-me	  
Verifica-on	  

Risk	  
Management	  

Assurance	  

- Trust-based  
Threat Analysis 
- Trust Requirements 
Elicitation 

- UML Profile for Trust  
and Reputation Specification 

- Development Framework for 
Trust and Reputation Models 

- Trust@run.time  
framework 

- Trust-supported Cloud Sourcing 
Decision 

which include the factors that influence trust, the roles that entities may play, and the

purpose of trust, among others. The second and third sets of concepts refer to concepts

related to two classes of trust models that we consider, namely decision and evaluation

models, respectively. The former revolve around the concepts of policies and credentials,

whereas the latter put the stress on the assessment of trust, including trust metrics,

trust factors and the sources of information. The conceptual model is used to compare

a wide range of well-known trust and reputation models.

The knowledge elicited by the conceptual model is put into practice in the subsequent

chapters, where we discuss methodologies, notations and tools to integrate trust in

different phases of the SDLC. Thus, in Chapter 3, we focus on the early phases of the

cycle, spanning the planning, analysis and design phases. As for the former, we tackle an

important activity that is attracting the attention during the last years: the outsourcing

of the system, or part of it, to a cloud provider. We present a methodology that supports

the trust evaluation of different cloud providers according to several dimensions. This

information proves to be useful when there is lack of complete information (i.e. in the

presence of uncertainty) in order to minimize the probabilities of problems derived from

a wrong decision, such as security or privacy incidents. The methodology requires a

phase of knowledge gathering from different sources about the cloud provider. This

knowledge is represented by confidence intervals, which allows representing uncertainty

11



1. INTRODUCTION

explicitly. We also define an operator in order to aggregate intervals while maintaining

uncertainty in each operation. The methodology output consists of a set of confidence

intervals that reveals to what extent the trust in the provider differs from the initial

expectations. The methodology is applied to four well-known cloud vendors under an

eHealth case study.

We also integrate trust in two activities that are typically performed during the

security analysis phase. The first one involves the analysis and identification of insider

threats in socio-technical systems. In such systems, the organization is a key player and

as such, its components and relationships must be taken into account. Therefore, by

detecting implicitly assumed and misplaced trust relationships, we can infer potential

threats on resources in terms of confidentiality, integrity and availability. The second

contribution in this phase corresponds to an extension over the problem frames notation

in which trust and reputation concepts are integrated. Therefore, by using this extension

we are capable of eliciting trust and reputation requirements, integrating them with

other functional and non-functional requirements.

After the requirements analysis, we move to the design phase, where an initial

specification of the system with trust and reputation considerations is proposed. In

order to accomplish this task, a Unified Modeling Language (UML) profile that extends

several diagrams is presented. The concepts included in the profile allow designers to

specify trust and reputation solutions that can be easily implemented in later stages.

Not only do the profile support the description of how trust and reputation is computed,

but it also enables reasoning about the purpose of trust, and in particular, for which

use cases trust, reputation or both are required and why. The extended diagrams

include use case, class and deployment ones. Even when sequence diagrams are not

extended, we encourage their use in order to represent the interaction patterns between

the system and the trust models. The profile is validated with an eHealth scenario,

where physicians monitor patients through wearables that send vital signs information

to the hospital servers. In this setting, it becomes very important to consider trust

requirements that encompass trust relationships between patients, physicians and the

wearables, as well as reputation information about the physicians.

Despite the vast amount of trust models proposed in the literature, few effort has

been made on smoothing their implementation in more general contexts. Developers feel

unarmed when it comes to implement these models because there are no tools or clear

12



1.2 Goals and Organization

guidelines on how to integrate trust models in their own systems. Therefore, Chapter 4

describes a framework that developers can use in order to implement a wide range of

trust and reputation models. The requirements of the framework and its high-level ar-

chitecture are discussed first, and as it is the case with the aforementioned contributions,

they build upon the concepts identified in Chapter 2. Then, a low-level architecture

and guidelines towards the implementation of its different aspects are introduced. The

framework is designed to act as a middle-tier server that mediates between the client

application and the database tiers, where the application can request trust information

or send updates of trust or reputation values. The framework empowers developers

to define their own metrics and the events in the application that trigger trust and

reputation updates. The validation is done in the context of a social market for cloud

providers, in which they can publish web services and consume services from other

providers.

The use of trust and reputation in order to evolve the system at runtime is dis-

cussed in Chapter 5. In particular, we describe a development framework for trust and

reputation models that is integrated in a models@run.time platform. Models@run.time

is a model-driven approach that allows reasoning about a running system by means

of abstractions. This approach is gaining traction among the model-driven community

because it helps tackling the complexity of distributed systems and due to its self-

adaptability capabilities: users can use the platform in order to reason about the state

of the system and can easily determine whether a reconfiguration is required given some

changing conditions. These platforms however do not usually consider security aspects,

which may be a stumbling block for its widespread adoption. Therefore, the framework

that we propose enables developers to include trust and reputation reasoning in the

system components, which yields trust-aware systems that self-adapt at runtime based

on trust and reputation values. We validate our framework in a distributed chat appli-

cation by implementing several well-known trust and reputation models. We also prove

that our framework entails negligible computational overhead and entails minimal effort

for developers.

Chapter 6 finalizes the thesis by presenting the conclusions as well as some open

research problems that require further attention from the research community.

13



1. INTRODUCTION

1.3 Publications and Funding

The contributions of this thesis have been presented in various journals and international

conferences. Next, we provide a list of the contributions organized by the type of

publication:

Journal article ISI-JCR

• F. Moyano, C. Fernandez-Gago, and J. Lopez. A Framework for Enabling Trust

Requirements in Social Cloud Applications. In Requirements Engineering, vol.

18, issue 4, Springer London, pp. 321-341, Nov 2013. ISI JCR Impact Factor:

1.675

International Conferences

• F. Moyano, K. Beckers, and C. Fernandez-Gago. Trust-Aware Decision-Making

Methodology for Cloud Sourcing. In 26th International Conference on Advanced

Information Systems Engineering (CAiSE 2014), M. Jarke, et al. Eds., LNCS

8484, Springer, pp. 136-149, Jun, 2014

• F. Moyano, C. Fernandez-Gago, and J. Lopez. Building Trust and Reputation

In: A Development Framework for Trust Models Implementation. In 8th Inter-

national Workshop on Security and Trust Management (STM 2012), A. Jøsang,

P. Samarati, and M. Petrocchi Eds., LNCS 7783, Springer, pp. 113-128, 2013

• F. Moyano, B. Baudry, and J. Lopez. Towards Trust-Aware and Self-Adaptive

Systems. In 7th IFIP WG 11.11 International Conference on Trust Management

(IFIPTM 2013), C. Fernandez-Gago, I. Agudo, F. Martinelli, and S. Pearson Eds.,

AICT 401, Springer, pp. 255-262, Jun 2013

• F. Moyano, C. Fernandez-Gago, and J. Lopez. A Conceptual Framework for Trust

Models. In 9th International Conference on Trust, Privacy & Security in Digital

Business (TrustBus 2012), S. Fischer-Hübner, S. Katsikas, and G. Quirchmayr

Eds., LNCS 7449, Springer Verlag, pp. 93-104, Sep 2012

• F. Moyano, C. Fernandez-Gago, and J. Lopez. Towards Engineering Trust-aware

Future Internet Systems. In 3rd International Workshop on Information Systems

14



1.3 Publications and Funding

Security Engineering (WISSE 2013), X. Franch, and P. Soffer Eds., LNBIP 148,

Springer-Verlag, pp. 490-501, Jun 2013

• F. Moyano, C. Fernandez-Gago, K. Beckers, and M. Heisel. Enhancing Problem

Frames with Trust and Reputation for Analyzing Smart Grid Security Require-

ments. In Second International Workshop on Smart Grid Security, J. Cuellar Ed.,

LNCS 8448, Springer, pp. 166-180, Aug, 2014

Book Chapter

• F. Moyano, C. Fernandez-Gago, B. Baudry, and J. Lopez. Engineering Trust-

Awareness and Self-adaptability in Services and Systems. In Engineering Secure

Future Internet Services and Systems, vol. LNCS 8431, no. 8431, Springer, pp.

180-209, 03/2014

Additionally to these main contributions, there are other works that have been

carried out in parallel and which are listed next sorted by date:

• K. Beckers, M. Heisel, F. Moyano and C. Fernandez-Gago, Engineering Trust-

and Reputation-based Security Controls for Future Internet Systems. In The

30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015), In Press

• F. Paci, C. Fernandez-Gago, and F. Moyano. Detecting Insider Threats: a Trust-

Aware Framework. In 8th International Conference on Availability, Reliability

and Security, IEEE, pp. 121-130, Nov 2013

• F. Moyano, C. Fernandez-Gago, and J. Lopez. A Trust and Reputation Frame-

work. In Doctoral Symposium of the International Symposium on Engineering Se-

cure Software and Systems (ESSoS-DS 2013), M. Heisel, and E. Marchetti Eds.,

CEUR-WS 965, CEUR-WS, pp. 7-12, 2013

• F. Moyano, C. Fernandez-Gago, and J. Lopez. Service-Oriented Trust and Rep-

utation Architecture. In Proceedings of the Doctoral Symposium of the Interna-

tional Symposium on Engineering Secure Software and Systems (ESSoS-DS 2012),

J. Cuellar, and N. Koch Eds., CEUR-WS 834, CEUR-WS, pp. 41-46, 2012

15



1. INTRODUCTION

This dissertation has been possible thanks to the support and funding of the Spanish

Ministry of Education through the National Programme for Training Human Resources

under the FPU (Training of University Lecturers) fellowship. Furthermore, some parts

of this work have been supported by and applied to different National and European

projects: NESSoS (FP7 256980), ARES (CSD2007-00004), SPRINT (TIN2009-09237),

FISICCO (P11-TIC-07223), and PISCIS (TIC-6334).

16



Chapter 2

Understanding Trust: A Systematic
Analysis

The aim of this chapter is setting up some foundations onto which we can build the

rest of the chapters of this thesis. Prior to integrating trust and reputation in the

different phases of the SDLC, it is necessary to systematize the knowledge around these

notions. Gaining insight on trust and trust-related concepts demands a wide study

of the concept of trust that spans different angles, which include revising the origins

of trust management and computational trust, reviewing existing taxonomies and trust

and reputation surveys, and analyzing how the concept of trust has being approximated

to each phase of the SDLC.

Once we gather this knowledge, we proceed by creating a conceptual model where the

most relevant trust-related concepts are stressed and related among them. This model

serves us as a framework to compare different trust models under the same lens, and at

the same time, it provides the basis and the core knowledge that can be integrated in

different phases of the SDLC, from the early phases (Chapter 3) to runtime (Chapter 5).

The chapter consists of two main sections. Section 2.1 reviews existing works that

consider trust in different contexts and phases, whereas Section 2.2 presents the con-

ceptual model and applies it in order to compare a wide variety of trust and reputation

models.

17



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

2.1 Literature Review

This section summarizes existing works on trust from three different perspectives:

• Taxonomy perspective: these works provide a classification or taxonomy of trust

and reputation concepts and models.

• Computing domain perspective: here we tackle the origins of trust management

and computational trust through a revision of the two main classes of trust models.

• Development life cycle perspective: we deal with works that aim to integrate trust

in different phases of the SDLC.

Each of the following sub-sections deal with these perspectives in further detail.

2.1.1 Trust Taxonomies

Grandison and Sloman (43) provide a classification of trust based on its purpose. The

first purpose is trusting a trustee to access the resources of a trustor. The second

purpose is trusting a trustee to provide a resource to a trustor. Certification of trustees

is the next purpose; in this case, trustee’s identity or capabilities are certified by a

third party. The next purpose is delegation, in which a trustor trusts a trustee to

make decisions on its behalf. Finally, the authors discuss infrastructure trust, where

trustors trust themselves (implicit trust) and the infrastructure that they use, including

firmware, operating systems, local network and servers.

Trust is relevant in multi-agent systems, since agents must trust other agents in order

to engage in collaborations. In this context, Ramchurn, Huynh and Jennings (104), and

Sabater and Sierra (115) have provided their own conceptualisation of trust models.

The former categorize trust in individual-level trust, which refers to beliefs on the

honesty of other agents, and system-level trust, which involves trust as a consequence of

adjusting to the rules of encounter or protocols. The latter proposes several classification

dimensions for trust and reputation models. The first dimension is the conceptual

model, which can be cognitive (trust as a set of beliefs) or game-theoretical (trust

as an outcome of an interaction). The second dimension comprises the information

sources used to gather knowledge and to make a trust decision; these sources include

direct experience, witness information, sociological information and prejudice. The next

18



2.1 Literature Review

dimension is visibility types, which refers to whether trust is seen as a global property

shared by all observers or is observed as a subjective property assessed particularly

by each individual. Another criteria is the granularity of the model, which determines

whether the model serves for a single context or allows multiple context at a time. The

assumptions about agent behaviour is the next criteria; some models assume that agents

may behave badly, whereas others assume that cheating behaviour will not happen.

The type of information received from witness is another criteria, and the authors

consider those models that use boolean information and continuous measures. Finally,

the authors consider whether the model uses a reliability measure of the trust value.

In relation to multi-agent systems, Pinyol and Sabater-Mir (98) present a survey on

classification dimensions by other authors under this context, and they provide their own

classification dimensions. The first one is the trust dimension, where they distinguish

between trust and reputation model. Essentially, the authors state that trust implies

a decision, and only when the decision-making process is part of the model (e.g. the

model provides a threshold computation), the model is actually a trust model. The

second one is the cognitive dimension, and it refers to whether the model explicitly

model the reasons behind a trust disposition, that is, if it is possible to reason about

a trust decision in terms of beliefs. The next dimension is procedural, and evaluates

whether the model explains the bootstrapping phase. Finally, the generality dimension

states whether a model is designed for a very particular scenario or can be adapted to

a variety of scenarios.

The life cycle of a trust management system is discussed by Ruohomaa and Kutvo-

nen (113). According to the authors, this life cycle starts with the initialization of

a trust relationship, where an entity uses a discovery service to find a partner. The

second phase is observation, where an the behaviour and interactions of an entity are

observed. In this context, intrusion detection and prevention systems may be used

as a source of information for updating trust and reputation values. The next phase

consists of evolving trust and reputation. As part of this phase, it is necessary to trans-

late experiences into updates in reputation. The same authors also compare several

reputation systems under a credibility taxonomy (112). They advocate that in open

reputation system environments, different types of misbehaviour can occur, making it

important to separate accurate from inaccurate information. This credibility taxonomy

comprises three criteria: the creation and content of a recommendation, the selection

19



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

and use of recommenders and the interpretation and reasoning applied to the gathered

information.

An explicit classification of trust models is performed by Artz and Gil (5). The

authors divide trust models into policy-based trust, reputation-based trust and general

models of trust. Policy-based trust refers to trust models in which trust is established by

credentials exchange. Reputation-based trust comprises trust models that use personal

experiences or others’ experience to make a trust decision. General models of trust

provide a broader view on trust, taking game-theoretic and psychological approaches

into consideration. The relationship between trust and reputation is further discussed

by Jøsang, Ismail and Boyd (56), and the authors provide a classification of reputa-

tion models centred around the semantics of ratings, the architecture (centralized or

distributed) and the computation engine they use. Hendrikx, Bubendorfer and Chard

(50) presents a conceptual model for reputation, which they call a reference model,

where they depict relevant concepts and relationships among them. They also provide

a comprehensive taxonomy of reputation systems, consisting of fourteen dimensions that

encompass most features of current commercial and research models. However, they do

not discuss trust concepts or relationships.

Yan and Holtmanns (138) consider that trustors’ and trustees’ properties are fun-

damental for understanding which factors affect trust. In particular, they remark that

trustors and trustees possess objective and subjective properties that influence a trust

relationship. The same authors then provide a taxonomy of trust models, which are

categorized according to the following criteria: modelling method, that is, linguistic,

graphic or mathematic description; single-property modelling or multi-property mod-

elling; expression of trust, that is, whether trust is expressed with binary or numeral

ratings; and dimension of trust expression, which refers to whether the trust value is a

single value or a vector of values.

Another taxonomy for trust models is suggested by Noorian and Ulieru (89). The

authors propose several dimensions scoped within two broad categories, namely hard

features and soft features. As part of hard features, they classify the systems according

to their rating approaches, witness locating approaches, reputation engine and informa-

tion sources. As for the soft features, the dimensions considered are context and criteria

similarity, adaptability to newcomers and scalability, reliability, including the accuracy

20



2.1 Literature Review

and honesty of witnesses, and reputation management parameters such as transitivity

rate and time.

Other fields of study where trust is relevant are Service-Oriented Architectures

(SOA) and social applications. In the former field, Wang and Vassileva (134) focus

on trust and reputation as a means to leverage service selection in Service-Oriented

Architectures (SOAs), and classify models according to three hierarchical criteria. The

first criteria is whether the model is centralized or decentralized. The second classifies

models in those that evaluate persons/agents, or resources like services. The last criteria

considers whether reputation is derived from the opinions of the global population, or

from a selected set of individuals. On the other hand, Zhang, Durresi and Barolli (142)

state that trust research in social applications can be divided into four parts: forming

initial trust, trust metrics, operations of propagating and aggregating trust, and trust

management architecture. In the first category, they distinguish between trust formed

by human cognition and by artificial intelligence. Trust metrics are divided into binary,

scaled, multi-metric, probability, and according to whether their values are discrete or

can be negative. Propagation and aggregation of trust, also referred by the authors as

trust transitivity, is discussed in terms of its two basic operations: concatenation and

aggregation. Trust management architecture can be centralized and distributed. Ac-

cording to the authors, centralized and distributed trust management lead to reputation

systems, where trust is a consensus of all participants.

Note that even when several works have identified relevant concepts regarding trust

models, they do not usually identify relationships among these concepts. Our conceptual

framework is also built upon our own review of some of the most representative trust

models in the literature, which are presented in the next section.

2.1.2 Trust in the Computing Domain

The notion of trust is brought to the computing domain through the so-called trust

models. A trust model defines the way to specify and evaluate trust relationships

among entities for calculating trust, being the technical approach to represent trust for

the purpose of digital processing (140).

There is a huge amount of trust and reputation models in the literature, and each

of them might lead to a different way of measuring trust in a system. The reason

is a consequence of the inherent complexity of trust, for which no agreed definition

21



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

exists. However, several works have stated some properties of trust, including that it is

a multidimensional, multidisciplinar, multifaceted, and subjective concept (138)(5).

The following sections discuss the two main approaches to modelling trust in the

digital world. In either case, the final goal is using trust for empowering decision making,

but each approach considers trust from a different viewpoint.

2.1.2.1 Trust as Authorization

The term trust management is coined by Blaze, Feigenbaum and Lacy in their seminal

work (18), where they present the policy language PolicyMaker. By that time, the

purpose of trust is to unify authentication and access control in distributed settings,

simplifying the authorisation problem into a single step.

PolicyMaker constitutes the first approach towards using credentials that directly

authorize actions instead of dividing the authorization task into authentication and ac-

cess control. The system suggests using a query-based language (although it does not

provide one) that allows determining whether a particular public key (entity) is permit-

ted to perform a particular action according to a local policy. PolicyMaker accepts, as

input, a set of policy statements, a collection of credentials, and a proposed trusted ac-

tion. Depending on the credentials, the action is granted permission or not. Additional

constraints might be imposed by means of annotations filters, leading to a process of

simple negotiation instead of a simple yes/no answer. To sum up, PolicyMaker answers

the following question: does the set C of credentials prove that the request r complies

with the local security policy P?

The overall process would be as follows: first, an application sends a request to

PolicyMaker. This request contains a (set of) public key(s), and an action to be per-

formed on behalf of these key(s). PolicyMaker checks its list of assertions. If one of

the assertions match the request, it grants permission. If the assertion requires more

information, it annotates the missing information and sends it back to the application,

which might fill this missing information and send it again. Otherwise, permission is

denied.

PolicyMaker assertions can be written in any interpreted programming language,

whereas in an effort towards standardization, KeyNote (17) proposes a standard as-

sertion language. Another difference is that PolicyMaker delegates the verification of

22



2.1 Literature Review

signatures to external programs, but this verification is done by the trust management

system itself in Keynote.

REFEREE (28) (Rule-controlled Environment for Evaluation of Rules, and Every-

thing Else) provides an environment for evaluating compliance with policies, and unlike

PolicyMaker, it also provides control of the evaluation process itself, since this might

entail dangerous actions (e.g. network access). It also differs from PolicyMaker in that

the latter does not permit policies to control credential fetching or signature verifica-

tion, although KeyNote does. REFEREE also supports a more complex inter-assertion

communication than PolicyMaker, since it allows assertion programs to call each other

as subroutines and to pass different arguments to different subroutines, whereas Policy-

Maker requires each assertion program to write anything it wants to communicate on a

global blackboard that can be seen by all other assertions. REFEREE has three prim-

itive data types, namely programs, statement lists, and tri-values, which can be true,

false, or unknown. It also presents the notions of policy and credential. The former

is a program that returns true, false or unknown, depending on whether the available

statements are sufficient to infer compliance or non-compliance, or nothing. The latter

is a program that given some initial statements as inputs, derives additional statements.

Unlike KeyNote, REFEREE does not provide a standard language.

As an evolution of policy languages, we find trust negotiation models, where privacy

and trust are balanced. The first example found in the literature is TrustBuilder (136),

which focuses on disclosing credentials gradually to find a tradeoff between privacy and

trust: an entity needs to provide a credential only if it is actually required by the policy

of the other entity. The architecture relies on security agents that act on behalf of the

entities. Important components of the architecture include the Negotiation Strategy

Module, which decides the next message that should be sent given the current status

of the negotiation, the Policy Compliance Checker, which determines the credential

or policy to use given the other partner’s disclosed credentials and policies, and the

Credential Verification Module that verifies received credentials. TrustBuilder is a Java

implementation that supports the use of X.509 certificates to encode attributes and

eXtensible Markup Language (XML) to represent policies written using the IBM Trust

Policy Language.

Other relevant policy languages include Cassandra (10), the family of RT languages

(88), Sultan (44) and PROTUNE (19). The latter defines a metalanguage so that it can

23



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

be extended with application-specific predicates and annotations for confidential parts

of policies. Most of these trust models incorporate the notion of delegation, according

to which subjects may allow other subjects to make decisions on their behalf.

Whereas most previous existing approaches focused on client-server scenarios, Trust−X
(15) is an XML-based framework for trust negotiations specifically conceived for a peer-

to-peer environment. This is because both negotiating parties are equally responsible

for negotiation management and can act as a requester or resource controller during

different negotiations. In order to specify certificates (credentials) and policies, the au-

thors suggest an XML-based language called X−TNL. One of the novel ideas proposed

by the approach is the use of trust tickets, issued upon the successful completion of a

negotiation and which can be used to speed up subsequent negotiations for the same

resource. Improving the efficiency of the negotiation and allowing multiple negotiations

at a time is the goal of Orkphol and Jianli (93). For this purpose, they propose an

extension over TrustBuilder2 (62) that introduces the Common Disclosure, a repository

that accumulates every unique credential disclosed in every negotiation step from local

and remote parties.

2.1.2.2 Trust as Computational Mapping of Human Trust

There is a corpus of research that focuses on modelling factors that have a direct in-

fluence on trust determination. The idea behind this vision of trust is to map the

foundations of human trust into a computational setting. The purpose of trust becomes

wider than authorisation and is not solely based on the possession of credentials any

more.

Marsh proposes one of the first computational models of trust in his doctoral dis-

sertation (75), where he integrates aspects of trust from several disciplines, including

economics, psychology, philosophy, and sociology. By aggregating different factors, he

obtains a scalar value for trust. Marsh also identifies time as being relevant to each of

the variables used to compute trust. He states that X trusts Y if and only if ’X expects

that Y will behave according to X’s best interest, and will not attempt to harm X ’.

A cognitive approach to trust is first proposed by Castelfranchi and Falcone (24).

The authors state that trust must be modelled as a set of beliefs that entities hold on

each other, and as a set of goals that these entities are pursuing. They advocate that

24



2.1 Literature Review

trust goes beyond pure expectation, as Marsh suggests, as trust also involves a decision

and act, and reliance and being willing to count on other parties.

Reputation models aim to represent the concept of reputation in a computational

setting. In the context of the trust models we are discussing in this section, we assume

that reputation is another factor, based on an aggregation of personal opinions, that

can be modelled, quantified, and aggregated to help computing a trust score.

2.1.3 Trust in the Software Development Life Cycle

This section summarizes the most relevant contributions towards integrating trust in

the SDLC activities, from early analysis to runtime.

2.1.3.1 Trust in Early Phases

There is a solid ground of works that consider hard security requirements at early stages

of the SDLC. Some of these works focus on detecting possible attacks on the system.

Sindre and Opdahl (119), and McDermott and Fox (79) propose using misuse cases

and abuse cases, respectively. These methods aim to capture use cases that may be

initiated by attackers or even stakeholders in order to harm the system. In a similar

direction, Schneier (116) presents a formal and methodical way of capturing different

types of attacks that can be performed in a system by means of attack trees.

In the realm of traditional hard security solutions, such as confidentiality or autho-

rization, well-known approaches exist that bridge a gap between security requirements

specification and security design. Jürjens (58) presents UMLsec, a UML profile for

secure system development that allows designers to annotate diagrams with security in-

formation. On the other hand, Lodderstedt, Basin and Doser (68) present SecureUML,

which uses the Object Constraint Language (OCL) to specify authorization constraints

onto application models. Also, security patterns1 systematize expert security knowl-

edge into reusable artifacts, providing a toolset for non-expert designers that want to

integrate security solutions during system design.

These works, however, do not address trust concerns or help designers during the

specification of trust models. In this direction, Uddin and Zulkernine (125) present

a UML profile for trust called UMLtrust. They provide extensions over some UML

1http://www.securitypatterns.org.

25

http://www.securitypatterns.org


2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

diagrams in order to represent trust information. We also propose a UML profile for

trust, which is described in Chapter 3. However, their approach and focus are different

than ours. For example, we consider reputation information and put the stress on how

trust and reputation is to be updated and represented, which is laid aside by UMLtrust.

Other works aim to integrate the notion of risk into the requirement analysis stage.

As an example, Lund, Solhaug and Stølen (70) present CORAS, a risk analysis method-

ology that analyses unwanted incidents for a defined asset model, and when the risk

level of those unwanted incidents is beyond an acceptable threshold, several treatments

are introduced to the system. Asnar, Giorgini and Mylopoulos (6) propose a concrete

methodology, namely the Goal-Risk framework, to analyse and model security prob-

lems. It captures the stakeholders’ goals, risks that might threaten the goals, and

countermeasures required to mitigate the unacceptable risks.

Even when the concepts of trust and risk are related (see Section 1.1.3), they present

several differences that justify a particular attention on trust. In this direction, the

former approaches towards trust in the early stages of the SDLC come from policy lan-

guages for distributed trust management. Three remarkable examples are PolicyMaker

(18), REFEREE (28) and SULTAN (44), which are further discussed in Section 2.1.2.1.

This is however a very limited scope of trust and does not take into account be-

havioural aspects, reputation and social relationships to determine trust. Some method-

ologies have aimed at a wider definition of trust, presenting methodologies to build

secure systems by taking relationships between actors and agents into account. In this

regard, some authors have based their work upon goal-driven methodologies to repre-

sent dependencies among actors and their views of the system. Some examples include

Secure Tropos (83), KAOS (129) and SI* (77).

The first one is a methodology that extends the Tropos methodology in order to

enable the design of secure systems. Actors in Tropos may depend on other actors

in order to achieve a goal. Tropos captures the social relationships in the system by

specifying the dependencies between actors using the notions of depender, dependum

and dependee, and by modeling the actors and agents in the organization. SI* is similar,

as it is based on analysing social dependencies among stakeholders, although it does

not constitute a methodology on its own. SI* allows specifying the goals and views of

all stakeholders of a system, considering relevant software artificats to these goals and

26



2.1 Literature Review

modelling stakeholder relations based upon structured goal models. In Chapter 3, we

build a trust model upon SI* in order to detect insider threats.

As for KAOS, it is another goal-driven methodology, not so focused initially on

security aspects. However, some posterior extensions (128) introduce the concepts of

obstacle and anti-goal in order to analyse some trust concerns of a system. KAOS

obstacle captures an undesired state of affairs that might harm safety goals (i.e., hazard)

or threaten security goals (i.e.,threat), while KAOS anti-goal captures the intention of

an attacker.

The analysis of social relationships is taken one step further in the works by Li, Liu

and Bryant (65), Elahi, Yu and Zannone (32) and Liu, Yu and Mylopoulos (67), where

actor dependency links are used as a way to identify and analyse system vulnerabilities.

The aforementioned contributions put forward the idea of capturing social aspects,

but they usually fail in capturing and making all the trust relationships explicit, and

above all, how trust and reputation can be used by the system-to-be. Pavlidis, Moura-

tidis and Islam (84) extend the Secure Tropos modelling language in order to include

some trust-related concepts. In particular, they support the analysis of dependencies

between actors and between actors and resources. By analysing the level of trust of

these dependencies, they can determine whether an actor can be trusted to fulfil a de-

pendency. Trust is also integrated in Role-Base Access Control model (25) by means

of trust levels and a trust vector, where each component in the vector is a factor that

influences trust, such as knowledge or experience.

2.1.3.2 Trust in Implementation

Few works provide developers with methodologies or tools with which they can imple-

ment different types of trust and reputation models. Suryanarayana, Diallo and Taylor

(123) propose the 4C framework, where they describe a trust model as a composition

of four sub-models, namely the content sub-model, the communication sub-model, the

computation sub-model and the counteraction sub-model. For each sub-model, they

identify the main building blocks that are present in existing reputation models. In the

end, using an Java-based editor and following a personalized XML schema, they create

a XML document where a trust model is described according to these building blocks.

Then, they can use the PACE Support Generator to create software components that

integrate within the PACE architectural style, which is further described in the work

27



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

by Suryanarayana et al. (122). In this latter work, the authors study the feasibility of

an event-based architectural style in order to provide architects with guidelines on how

to include trust models into decentralized applications.

While the application scope of the previous framework is general, the Pythia (135)

framework targets owners of blog sites who want to integrate reputation dynamics in

the latter. This framework follows a plug-in architecture, where plug-ins provide the

instantiation required for a concrete domain (i.e. a concrete web site). Therefore, a

user who wants to use a Pythia-based system should first download the plug-in for that

specific system. An important component of the framework is the rules engine, which

is edited by users to decide how reputation is to be evaluated.

The accommodation and integration of different trust or reputation models is also

addressed. For example, Lee and Winslett (62) propose an extensible framework that

supports the adoption of different negotiation-based trust models. The framework ab-

stracts away concrete implementation details of different negotiation models and pro-

vides generic building blocks that allow implementing new ones. In a similar direction,

although more focused on tackling the context dependency of trust, Huynh (53) pro-

poses the Personalized Trust Framework (PTF). This framework consists of a rule-based

system that uses semantic technologies (e.g. ontologies) to capture expert knowledge

about different contexts and to apply the most suitable trust model according to these

contexts. The idea is to replicate the trust evaluation process carried out by humans in

a computational setting, because humans are capable of determining the context under

which a trust evaluation is to be performed.

Customizable trust models are another design and implementation aid. Examples

of these are the SECURE platform (23) and SCOUT (48). They do not provide much

flexibility with regards to implementing new models, because they are bound to an

underlying model. However, they allow their customization by defining or changing

some of the inner components. The former relies on a cost-benefit analysis represented

by combined cost-PDFs (Probability Density Functions). The idea is, for every possible

outcome of an action, to consider all possible costs and benefits the user might incur in.

If the final combined cost-PDF shows that the benefits outweigh the other outcomes’

costs, then the action proceeds. Otherwise, further interaction is arranged. The latter

is made up of three services that implement the model: the evidence gathering service,

the belief formation service and the emotional trust service.

28



2.1 Literature Review

Vinkovits, Reiners and Zimmermann (132) present a user-centered approach that

allows non-security experts to include trust and reputation into their applications. The

approach is a model-driven system that starts by allowing users to select several trust

requirements. From these requirements, the system proposes different trust frameworks,

which have been previously implemented by trust experts. After choosing one of these

frameworks, users can fill in the remaining code in order to adapt it to their particular

applications.

2.1.3.3 Trust at Runtime

There is a growing interest in how trust can assist evolving systems over their life-

time. Self-adaptive systems can take trust and reputation information in order to lever-

age runtime reconfiguration decisions, especially in the areas of multi-agent systems,

component-based systems and service-oriented systems. In some cases, trust is consid-

ered in its hard variant, where trust is seen as an aggregation of Quality of Service (QoS)

and security properties. In other works, the soft variant of trust is used (106), which

means that social aspects such as reputation or preferences are taken into account.

As mentioned earlier, trust is seen as a powerful tool to leverage decision-making

even with partial information. This fact is especially remarked in STRATUS (110), a

set of technologies that aim at predicting and responding to complex cyber attacks.

When it detects an attack, the platform switches to back-up components and finds

alternative pathways of communication. The trust model that supports this platform

(109) is based on conditional trust, that is, trust in certain capabilities of a system.

The authors argue that experience-based trust is not useful because configurations in

cyber attacks change frequently, laying statistical analysis useless. They propose ways

to make the most out of the little information available, and they introduce concepts

like contagion that allows formalizing trust in a host based on the distance from an

infected host.

A classical scenario of application of trust is multi-agent systems (104), where Vu et

al. (133) propose trust-based mechanisms as a way to self-organize the agents in case

of deceitful information. In particular, the trust value of an agent towards another one

is an aggregate of direct experiences and testimonies. The use of artificial intelligence,

and concretely, machine learning together with trust in order to adapt the behaviour

of agents is proposed in the work by Klejnowski, Bernard, Hähner and Müller-Schloer

29



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

(60). They propose an architecture where there is an observer component that gathers

information about the agent and presents it to the controller in two views: a long-

term and a short-term one. The controller finds a suitable behaviour according to this

information. Given that new unexpected situations might arise, agents must be able to

try out new strategies and learn which ones provided the best results.

Given the highly open and distributed nature of service-oriented environments, the

traditional use of trust is for either protecting providers from potentially malicious

clients or for shielding clients against potentially malicious providers (e.g. providers

that publish a higher QoS than offered). As an example of the first situation, Conner

et al. (29) present a feedback-based reputation framework to help service providers

to determine trust in incoming requests from clients. As an example of the second

approach, Crapanzano et al. (31) propose a hierarchical architecture for SOA where

there is a so-called super node overlay that acts as a trusting authority when a service

consumer looks for a service provider.

In both, component- and service-oriented systems, an important research area is

determining the level of trust, or the trustworthiness, of the system as a whole, or of

individual subsystems (i.e. services or components). In case that the trust value is too

low, a reconfiguration takes place in order to try to improve it. In this direction, Haouas

and Bourcier (47) present a runtime architecture that allows a service-oriented system

to meet a dependability objective set up by an administrator. System dependability

is computed by aggregating ratings provided by service consumers regarding QoS at-

tributes. Then, a reconfiguration manager may look up other available services to meet

the dependability objective. Dependability of the system is computed by the aggrega-

tion of each service dependability. In turn, each service dependability is computed by

aggregating a weighted average of ratings provided by service consumers regarding QoS

attributes (e.g. response time) of service providers. The reconfiguration manager is in

charge of querying the service broker to find the available services that can meet the

dependability objective.

Following a similar line of work in component-based systems, Yan and Prehofer (139)

discuss an adaptive trust management system where several quality attributes can be

used to rate the trustee’s trustworthiness, such as availability, reliability, integrity or

confidentiality. Assessing these attributes requires defining metrics and placing monitors

30



2.1 Literature Review

to measure their parameters. Finally, trust is assessed at runtime based on the trustor’s

criteria and is automatically maintained by changing among trust control modes.

These previous works are highly focused on QoS-based trust, where trust is an

aggregation of dependability and security attributes. Subjective factors affecting trust

and reputation concepts, with which we deal, are out of discussion. The social notion

of trust is used by Psaier et al. (100) in their self-adaptation framework. In particular,

their trust model uses the concept of trust mirroring and trust teleportation. The

former implies that actors (i.e. services) with similar interests and skills tend to trust

each other more than unknown actors, whether the latter denotes that the level of

trust in a member of a group is transferable to other members of the same group. The

adaptations consist of reconfiguring the network by opening channels to provide new

interactions and by closing channels to hinder misbehaving nodes to further degrade the

system function. The trust model is used to help choose among a set of new candidate

nodes with which to communicate.

Another way to measure the (mis)behaviour of components is by comparing its

interactions with the models in their contracts. In this direction, Herrmann and Krumm

(51) propose security wrappers that monitor the activity of the components. Depending

on the deviation of the components’ behaviour with respect to their contract, a positive

or negative report is issued and sent to the trust information system, which calculates a

trust value for the component. In turn, this trust value is used to determine the intensity

of the monitoring activity by the wrappers. This scheme was enhanced by Herrmann

(52) in order to take the reputation of components’ users into account so as to prevent

deliberate false feedbacks. In this regard, a common problem in any setting where

different entities rate each other is discerning fair from unfair ratings. Phoomvuthisarn,

Liu and Zhu (97) propose a reputation mechanism for SOAs environments that allows

services to retrieve other services’ reputation through auctions that ensure incentives

for truthful reporting.

Other works focus on the self-adaptation of trust models to match and reflect the

status of the system (69), and on considering the trust in the self-adaptation process

itself (40).

Finally, Kiefhaber et al. (59) present the Trust-Enabling Middleware, which provides

applications running on top of it with methods to save, interpret and query trust related

information. The middleware provides self-configuration and self-optimization and its

31



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

goal is balancing the workload of nodes by relocating services. The middleware also

uses built-in functions to measure the reliability of nodes by considering packets losses.

2.2 Trust Conceptual Model

In this section, we introduce and discuss our trust conceptual model, which builds upon

the knowledge gathered in the previous sections. The goal of this model is to abstract

away the particularities of concrete trust models and to provide a consistent set of

concepts and relationships among these concepts that assist the comparison of different

classes of trust models, as well as the integration of trust concerns in different phases

of the SDLC.

In the following sub-sections, we elaborate on the definition of trust and depict some

of the most relevant concepts that are related to this notion. Then, the concept of trust

model is introduced and a classification of trust models is provided. This classification

is used as the basis to decompose the concepts that underlie in trust models, which

we describe next. Finally, we describe how we use these concepts as a yardstick for

comparing different well-known trust and reputation models.

2.2.1 Trust Definitions

Many definitions of trust have been provided over the years. This is due to the com-

plexity of this concept, which spans across several areas such as psychology, sociology,

economics, law, and more recently, computer science. The vagueness of this term is well

represented by the statement “trust is less confident than know, but also more confident

than hope” (82).

In this section, we revise the definitions that have been mostly considered in the

literature of computational trust and reputation models. We advocate that making an

effort to understand this term and its implications is crucial if we want to implement

meaningful models. On the other hand, understanding trust and reputation allows for

a better trust-related concepts identification as well as for building a more comprehen-

sive conceptual framework for trust models comparison. Definitions are presented in

chronological order.

Gambetta (37) defines trust as “a particular level of the subjective probability with

which an agent will perform a particular action [. . . ] in a context in which it affects our

32



2.2 Trust Conceptual Model

Table 2.1: Trust Definitions

1988 1991 1995 1996 2000 2002 2005 2011
(37) (20) (78) (80) (43) (85) (104) (91) (113) (142) (48)

own action”. Mayer, Davis and Schoorman (78) advocates that trust is a “willingness to

be vulnerable to another party”. McKnight and Chervany (80) explain that trust is “the

extent to which one party is willing to depend on the other party in a given situation

with a feeling of relative security, even though negative consequences are possible”. Mui,

Mohtashemi and Halberstadt (85) define trust as “a subjective expectation an agent has

about another’s future behavior based on the history of their encounters”. For Olmedilla

et al. (91), “trust of a party A to a party B for a service X is the measurable belief of A in

that B behaves dependably for a specified period within a specified context (in relation

to service X)”. Ruohomaa and Kutvonen (113) state that trust is “the extent to which

one party is willing to participate in a given action with a given partner, considering

the risks and incentives involved”. Finally, Har Yew (48) defines trust as “a particular

level of subjective assessment of whether a trustee will exhibit characteristics consistent

with the role of the trustee, both before the trustor can monitor such characteristics (or

independently of the trustor’s capacity ever to be able to monitor it) and in a context

in which it affects the trustor’s own behavior”.

Table 2.1 summarizes all the definitions used as inputs to build the concepts cloud

depicted in Figure 2.1. Definitions were processed following several rules. A word that

appears several times in the same definition is counted just once. We only take into

consideration words that mean something by themselves and do not require surrounding

words to mean something (e.g. particular level does not make sense separately). If two

words with the same meaning appear either in plural and singular, it is expressed in

singular. Dependability is split into security and reliability. Party, agent, entity, trustor

and trustee are named as entity. Most words are adjectives and nouns, since they are

more meaningful without a context than verbs, but some relevant verbs are considered

as well. Assessment is used in place of quantifiable, measurable, describable and alike

terms. The resulting concepts were introduced in Wordle2.

2http://www.wordle.net/ is a free online tool to generate words clouds.

33

http://www.wordle.net/


2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

Figure 2.1: Concepts Cloud for Trust Definitions

The figure reveals that entity is the core concept, which is obvious as trust makes

no sense if there are neither entities that trust nor entities in which to trust. Context

is another relevant concept since trust is highly context-dependent. Other important

concepts entail uncertainty such as subjective, belief, willingness or expectation. They

show that trust implies uncertainty about an entity’s behaviour. It is also important to

note that even though the concept of risk is not explicitly present in all the definitions,

a careful reading reveals that it is indeed implicitly considered in almost all of them.

For example, in his definition, McKnight (80) states that “. . . negative consequences are

possible”, and Mayer (78) claims that trust is willingness to be vulnerable.

As a wrap-up, the notion of trust is present when there is uncertainty and risk during

the interaction of two or more entities that need to collaborate in a particular context.

If the entity placing trust knows the outcome in advanced without any uncertainty,

trust is not necessary. If the entity placing trust knows that there is no risk involved in

the outcome of the interaction, trust is not necessary. If there is no interaction between

two entities, trust may still make sense, but it is not necessary either.

After our review and given that no definition covers all the concepts that we believe

are the most important, we propose the following definition: trust is the personal, unique

and temporal expectation that a trustor places on a trustee regarding the outcome of an

interaction between them that affects the trustor.

2.2.2 Trust Models: Definition and Classification

A trust model is an abstraction of the dynamics of trust and defines the way to specify

and evaluate trust relationships among entities for calculating trust. Another way of

34



2.2 Trust Conceptual Model

defining a trust model is as the technical approach to represent trust for the purpose of

digital processing (140).

Trust models are very heterogeneous due to many factors, including the trust defini-

tion on which they are built or their application domain. In order to provide a concep-

tual framework for trust models we first establish a high-level classification. Note that

this task is not straightforward and other classifications have been proposed (5). We

advocate that the following classification covers the two main branches that gave rise to

the adoption of trust in the computational world, as further described in Section 2.1.2.

• Decision Models. Trust management has its origins in these models (18). They

aim to make more flexible access control decisions, simplifying the two-step au-

thentication and authorization process into a one-step trust decision. Policy mod-

els and negotiation models fall into this category. They build on the notions of

policies and credentials, restricting the access to resources by means of policies

that specify which credentials are required to access these resources.

• Evaluation Models. These models have their origin in the work by Marsh (75).

Their intent is to evaluate the level of trust that an entity can place on another

entity by considering factors that have an influence on trust relationships. An

important sub-class of the former are propagation models, in which existing trust

relationships are exploited to generate new trust relationships. Another important

sub-class are reputation models, where a reputation scored is derived from the

aggregation of other entities opinions.

Making a classification is important as it eases the extraction of common features

between different classes of models. It is not useful to compare decision models such as

PolicyMaker (18) with evaluation models like eBay’s reputation system (107), because

their nature, workings and purposes are completely different. However, comparison

makes sense within each model class, because models in the same class exhibit similar

features that can be compared. The next section elaborates on the underlying concepts

of trust models.

35



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

2.2.3 Trust Models Concepts

For the sake of simplicity, we divide our conceptual framework into three concepts

blocks. The first block contains concepts that are applicable to any trust model, in-

dependently from its class. They are concepts tightly coupled to the notion of trust.

The next two blocks gather concepts specific to the classes of models identified in Sec-

tion 2.2.2. The concepts are depicted following a UML-like notation, because it is widely

known language to represent concepts and relationships.

2.2.3.1 Common Features

Trust is computed by a trust model that must have, at least, two entities which have to

interact in some way. In any trust setting, an entity plays a role, or even several ones. In

the most general case, these roles are trustor, the entity which places trust, and trustee,

the entity on which trust is placed. However, depending on the context and complexity

of the model, other roles are possible. For example, an entity can be a witness if it

tells its opinion about an entity based on observations or its own experience. Also, an

entity may be a factor producer, which means that the entity is in charge of generating

a factor that has influence in the trust or reputation computation. Some specializations

of trustors and trustees include a requester of a service or resource, the provider of a

service or resource, or a trusted third party that issues credentials or gathers feedbacks

to compute a centralized reputation score. Once we have a trustor and a trustee, we

say that a trust relationship has been established.

In any trust model, establishing a trust relationship has a purpose. According to

Jøsang et al. (56), a trust purpose is an instantiation of any of the following trust

classes identified by Grandison and Sloman (43): access trust, provision trust, identity

trust, and infrastructure trust (considering delegation a sub-class of provision trust).

The instantiation is due to the fact that trust is context-dependent, one of the most

important properties of trust, since it influences all the other concepts, such as the

purpose, the type of entities and the role that they can play. Other factors, in addition

to the context, that have an influence on trust are trustee’s and trustor’s subjective

properties such as honesty, confidence, feelings, willingness or belief; and trustee’s and

trustor’s objective properties like observed behaviour, security, ability, a given set of

standards or reputation (138).

36



2.2 Trust Conceptual Model

Note that trust can also be conceived as a strong belief about a given property of the

trustee. From a theoretical perspective, there is no purpose under this trust conception.

Yet we are interested in trust models from a more pragmatic perspective. Thus, trust

in a given property can eventually assist in making a decision for some purpose. For

instance, if an entity believes that another entity is competent to encrypt files, it will

select the latter among other less qualified candidates (according to the entity’s belief).

In this example, the purpose will therefore be the provision of an encryption service

(i.e. provision trust).

A trust model may also make some assumptions, such as “entities will provide only

fair ratings” or “initial trust values are assumed to exist”, and might follow different

modelling methods, including mathematical, linguistic and graphical. The resulting

conceptual model that gathers these concepts is depicted in Figure 2.2.

Figure 2.2: Common Concepts for Trust Models

Trust Model
Trust

computes

Context

Assumptions

Entities

Role

PurposeTrust Class

Access IdentiyProvision Infrastructure

Trust 
Relationship

has

establishes

relates

plays

has

instantiates

has

1..*

2..*

1..*

2

1..*

1..*

Trust 
Evaluation 

Model

Trust Decision 
Model

Trustee's 
Objective 
Properties
Trustee's 

Subjective 
Properties
Trustor's 
Objective 
Properties
Trustor's 

Subjective 
Properties

Factors
influence

Requester Provider Trusted Third 
Party

Witness Trustor Trustee

Modeling
Method

LinguisticGraphicalMathematical

uses

Factor
Producer

2.2.3.2 Concepts for Trust Decision Models

Trust decision models use policies, which specify the conditions under which access to a

resource is granted. Policies are written in a policy language, which might consider pol-

icy conflicts resolution. The conditions under which accesses are granted are expressed

by means of credentials, signed logical statements that assert that an entity is which it

claims to be, or that it is member of a group. Credentials might have different formats,

including X.509 certificates3 and XML. The component that glues credentials and poli-

3https://www.ietf.org/rfc/rfc2459

37

https://www.ietf.org/rfc/rfc2459


2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

cies together is the compliance checker, in charge of checking whether the credentials

satisfy the policies. Likewise, the model might also support the search for a credential

through credential chains, as well as the verification of the validity of credentials.

Negotiation models, a specialization of decision models, add a protocol or negotiation

strategy, during which two entities perform a step-by-step, negotiation-driven exchange

of credentials and policies until they decide whether to trust each other or not. Negoti-

ation models can use evidence types, which represent information about the negotiation

process (e.g. some steps of the negotiation process have been recently performed) and

which have a purpose, in most cases, the optimization of the negotiation.

The conceptual model for decision models is depicted in Figure 2.3.

Figure 2.3: Concepts for Decision Models

Policy

Credential

Policy 
Language

Format

Policy Conflict 

Compliance 
Checker

Negotiation
Model

Negotiation 
Strategy

Credential 
Chain

Credential 
Verification

Evidence Type

Decision
Model

uses

specified by

has

guided by

uses

1

1..*

2..*

1..*1

*

resolves *

supports

*

evaluates

checks

manages

uses

1..*

1..*

1..*

Purpose 1..* has

2.2.3.3 Concepts for Trust Evaluation Models

Evaluation models often follow a life cycle with two stages. First, a bootstrapping phase

might be required to assign initial trust values to the entities of the system and to every

newcomer. Trust propensity is a concept related to the bootstrapping phase and it

refers to the propensity of the model towards high or low trust values in the beginning.

Second, a trust assessment process is performed in order to assign trust values to entities

according to certain factors. This process usually involves some monitoring in order to

feed these factors with accurate data.

38



2.2 Trust Conceptual Model

Trust relationships are tagged with a trust value that indicates to what extent the

trustor trusts the trustee. This value has a dimension, which indicates whether it is

a single value or a tuple of values. Also, trust values have semantics, which can be

represented by two dimensions: objectivity and scope. The former refers to whether

the measure comes from an entity’s subjective judgement or from assessing the trusted

party against some formal criteria. The latter specifies whether the measure is done

against one factor or against an average of factors.

In many cases, the model also includes the process to define a trust threshold,

embedding the trust decision in the model itself. If the trust value is above the threshold,

the trustor is assumed to trust the trustee and can proceed with the interaction. This

is common in traditional formal trust models, such as the one by Marsh (75), where the

trust decision is as important as the dynamics to update the trust values.

Trust values are assigned to relationships by a trust assessment process. The concept

of trust assessment, and all the concepts related to it, are the most important ones in

evaluation models, as they may become the model signature, what makes a model

different from others. In order to carry out the trust assessment process, trust metrics

are used. Trust metrics use factors, such as risk, utility, past experience or observed

behaviour, and combine them in order to yield a final score for the measured attributes.

The most general attributes that are measured are simply trust and reputation. Yet

depending on the application domain, more specialized attributes can be measured, such

as reliability of the seller in an e-Commerce scenario. Trust metrics use computation

engines, which determine the way factors are combined, and which range from simple

summations to more sophisticated ones like belief, Bayesian, fuzzy or flow engines.

Jøsang (56) provides an overview of trust and reputation engines.

Sources of information that may feed the metrics include direct experience (either

direct interaction or direct observation), sociological and psychological factors, and third

party referrals. Reputation models use public trust information from other entities to

yield a reputation score. Reputation models can be centralized, when there is an entity

in charge of collecting and distributing reputation information; or distributed, when

there is no such a role and each entity has to maintain a record of trust values for

any other entities, and send out this information to the rest of entities. Regardless of

which information sources are used to compute trust values, the model might consider

39



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

how certain or reliable this information is (e.g. credibility of witnesses), and might also

consider the concept of time (e.g. how fresh the trust information is).

Most evaluation models follow a game-theoretic approach, where the trustor deter-

mines trust in a trustee by examining the outcomes after each interaction. Trust is

usually defined in these models as a subjective expectation about the outcome of an

interaction with another entity. Fewer evaluation models follow a cognitive approach,

where trust is primarily determined by the mental state of the entities, which usually

comprises a set of beliefs on other entities.

Propagation models, a sub-class of evaluation models, assume that several trust re-

lationships have already been established and quantified. They aim to compute trust

among entities with no direct interaction, creating new trust relationships by dissemi-

nating the trust values information to other entities. Some models assume that trust is

transitive and exploit this property, although transitivity is not considered as a prop-

erty that holds for trust in many cases (27). New trust values are often computed by

means of operators, and in most models, we find two of them: a concatenator and an

aggregator. The former is used to compute trust along a trust chain, whereas the latter

aggregates trust values computed for each path into a final trust value. For example,

Agudo, Fernandez-Gago and Lopez (1) use a sequential and a parallel operator in or-

der to compute trust along a path. Subjective logic (55) uses a discounting operator

to compute opinions along different trust paths, and a consensus operator to combine

them into a final opinion.

All the concepts discussed are shown in Figure 2.4.

2.2.3.4 Concepts for Reputation Models

Whereas the boundaries between trust and reputation are often blurry in the literature,

it is agreed that reputation is a factor that may influence trust decisions (56). We

already mentioned that reputation models are a sub-class of evaluation models and

that reputation models can be centralized or distributed, but it remains unclear the

criteria under which we consider that a given model is a reputation model or a trust

model, beyond the fact that the authors refer to it as one or another.

According to Pinyol and Sabater-Mir (98), the difference between a trust model and

a reputation model is that the former embeds the trust decision itself, by means of a

well-defined trust threshold. Given that few models in practice include the threshold,

40



2.2 Trust Conceptual Model

we relax this condition and we consider that the difference lies in the subjective nature

of trust. In particular, if given the same context and target entity, the output of the

model does not depend on the entity that initiates the computation, it is a reputation

model. Otherwise, if given the same context and target entity, the output of the model

depends, among other factors, on the entity that initiates the computation (i.e. different

entities can obtain different values for the same entity and under the same context),

it is a trust model. The fact that the computation depends on the evaluating entity

reveals that there are subjective factors in play, such as preferences, beliefs, etc. that are

shaping a unique relationship between the evaluating entity and the evaluated entity,

who become the trustor and trustee, respectively, of such relationship. This reasoning

is also aligned with the intuitive understanding that reputation is more objective than

trust.

We consider that reputation models have their own concepts, and we base such

concepts on web reputation systems (34). The core concept is a reputation statement,

which is a tuple of a source, a claim and a target. A source is any entity in the system

capable of making claims about another entity of the same system, which is called

a target. Reputation models use reputation engines that take reputation statements

about a given target as inputs and yield a reputation score for that target.

Figure 2.4: Concepts for Evaluation Models

Evaluation 
Model

Trust 
Relationship

Trust Lifecycle

Bootstrapping Assessment

Trust
Value

Source of 
Information

Sociological
Information

Transitivity

Trust Metric

Semantics

Dimension

Objectivity

Direct 
Experience

Direct 
Interaction

Direct 
Observation

Reputation
Score

Psychological
Information

Attribute

Propagation 
Model

Indirect Trust 
ComputationOperators

Trust 
Propensity

Centralized Distributed

1..*
computes

has

defines

has
1

influences
uses
1..*

measures

feeds

informs about

1..*

quantifies

1
might be a 
property of

might exploit

allows
1..*

uses

Factor

1..*

uses
1..*

represents 0..*

disseminates 1..*

1..*

Uncertainty/
Reliability

Computation 
Engine

Summation/
Average

Bayesian

Discrete

Belief

Fuzzy

uses1

might 
consider

Time

might 
consider

Scope

has 1

Approach

Game-
Theoretic

Socio-
cognitive

follows

Flow

Continous

Reputation
Model

yields1

Aggregator

Concatenator

3rd Party 
Referral

Threshold

might
define

41



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

2.2.4 Comparison Framework: A Case Study

Not only do the concepts identified in the previous sections provide insight on compu-

tational trust, but they also allow comparing trust models under the same lens. As a

way to validate our framework, we have chosen a set of relevant trust and reputation

models that represent the classes discussed earlier. The models are Marsh’s model (75),

PolicyMaker (18), Jøsang’s belief model (55), REGRET (114), TrustBuilder (136), eBay

reputation model (107), Falcone et al. (33), Trust−X (15), PeerTrust (137) and Agudo

et al. (1).

As depicted in Figure 2.5, the comparison framework allows comparing trust models

at two different layers. At a higher level, the framework compares different classes of

trust models with regard to the common concepts. Then, models belonging to the same

class are compared according to class-specific concepts. The classes are those discussed

in Section 2.2.2, and we incorporate pure propagation models because even when we

consider them a special class of evaluation model, they might lack some of the evaluation

models concepts.

Figure 2.5: General Framework for Trust Models Comparison

Purpose	   Class	  …	  

Policy	   Creden1al	  
…	   Source	  of	  

informa1on	   Value	  Type	  
…	  

Common	  Concepts	  

Class	  =	  Decision	  Model	  
Class	  =	  Evalua5on	  Model	  

Considering	  Propaga5on	  

Dissemina1on	   Operators	  
…	  

Class-‐specific	  	  
Concepts	  

Class	  =	  Pure	  Propaga5on	  Model	  

Table 2.2 shows the comparison among these models under the lens of their common

features. In Table 2.3 we compare the trust decision models, whereas trust evaluation

models are compared in Table 2.4 and Table 2.5. Note that the classification has been

made according to the features explicitly presented by the corresponding authors, and

42



2.2 Trust Conceptual Model

that due to the diversity of the models, in some circumstances the classification for some

concepts is subjective according to our own interpretation.

Table 2.2: Common Features Comparison

Model Role Purpose Class Method
PolicyMaker R/P AT, IT DM Linguistic
TrustBuilder R/P AT, IT DM Linguistic
Trust−X R/P AT, IT DM Linguistic
Marsh’s T AT, PT EM Mathematical
Falcone et al. T, W AT, PT EM Graphical, Mathematical
REGRET R/P, W AT, PT EM Mathematical
PeerTrust R/P PT EM Mathematical
eBay R/P, TTP PT EM Mathematical
Jøsang’s T AT, PT EM Mathematical
Agudo et al. T AT, PT EM Graphical, Mathematical

T=trustor/trustee, R/P=requester/provider, W=Witness, TTP = Trusted Third Party,
AT=Access Trust, IT=Identity Trust, PT=Provision Trust, DM=Decision Model,
EM=Evaluation Model

Table 2.3: Decision Models Comparison

Trust Negotiation
Model P. Language C. Format CC CV Strategy ET
PolicyMaker PolicyMaker PGP’s sig, X.509 cert - - - -
TrustBuilder XML, IBM’s TPL X.509 cert X X X -
Trust−X X-TNL X-TNL X X X X

CC=Credential Chaining support, CV=Credential Verification support, ET=Evidence Type, -
=undefined or not explicitly mentioned

By observing Table 2.2, we observe that the purpose of decision models is often

either access trust (a provider wants to protect a resource from malicious requesters) or

identity trust (determine trust in a requester based on its identity), whereas the purpose

of evaluation models is either protecting a requester from malicious providers (provision

trust), or protecting providers from malicious requesters (access trust).

43



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

Table 2.4: Evaluation Models Comparison

Source of Information
Model Approach Dimension C.Engine DI SI PI R TPR
Marsh’s GT 1 Continuous X - X - -
Falcone et al. SC 1 Fuzzy X X X X X

REGRET GT 1 Continuous X X - - X

PeerTrust GT 1 Continuous X - - D X

eBay GT 1 Summation - - - C X

Jøsang’s - 3 Flow/Belief - - - - X

Agudo et al. - 1 Flow - - - - X

DI=Direct Interaction, SI=Sociological Information, PI=Psychological Information,
R=Reputation, TPR=Third Party Referral, C=Centralized, D=Distributed, GT=Game-
Theoretic, SC=Socio-Cognitive, -=undefined or not explicitly mentioned

Table 2.5: Evaluation Models Comparison (II)

Model Threshold Indirect Trust Calculation Uncertainty Time
Marsh’s X X - X

Falcone et al. - - X -
REGRET - - X X

PeerTrust - - X X

eBay - - - X

Jøsang’s - X X -
Agudo et al. - X - -

-=undefined or not explicitly mentioned

We also observe that decision models follow a linguistic modelling method, embod-

ied in the policy and credential languages. Regarding evaluation models, most use

mathematical methods. Additionally, Agudo et al. use graph theory and Falcone et

al. use Fuzzy Cognitive Maps, and therefore they both use graphical and mathematical

modelling methods.

Regarding the roles, decision models exhibit the requester/provider pair, as they

are usually intended for scenarios with Internet transactions. Evaluation models do

44



2.2 Trust Conceptual Model

not usually specify concrete roles beyond trustor and trustee, except for those that

include a witness that provides third-party referrals, or a trusted third party that stores

reputation information.

As for decision models, we see in Table 2.3 that PolicyMaker is a pure policy model,

whereas TrustBuilder and Trust−X include a negotiation strategy, as well as credential

chaining support and credential verification. The latter also includes evidence types in

order to prove that some steps of the negotiation protocol have succeeded.

Table 2.4 shows that evaluation models follow a game-theoretic approach, except for

Agudo et al. and Jøsang’s, which are pure propagation model, and Falcone et al., which

is a socio-cognitive evaluation model. Most models provide a single-dimension value,

except for Jøsang’s, which provides a vector of values that represent belief, disbelief and

uncertainty. Semantics have been omitted as all trust models consider trust under some

sort of subjective judgement (and not as formal measurements) and take into account

general properties (and not specific ones).

Regarding the sources of information, most of the models use third party referrals,

except for Marsh’s4. The most complete model in terms of sources of information is

Falcone et al.’s, because it considers also psychological information in terms of beliefs.

PeerTrust is a distributed reputation model, whereas eBay’s is centralized. Sociological

information, that is, the fact that an entity belongs to certain groups, is only used in

REGRET and Falcone et al.’s. The latter also uses reputation as a factor to determine

trust.

Regarding Table 2.5, Marsh’s model is the only one that incorporates the computa-

tion of a trust threshold. The main difference between the two pure propagation models,

namely Agudo et al.’s and Jøsang’s, is that the former does not consider uncertainty

(i.e. credibility), whereas the latter does. Note that the main purpose of propagation

models is trust dissemination, or in other words, the calculation of indirect trust rela-

tionships. However, Marsh’s model, even when it is not a propagation model itself, it

provides the means to disseminate trust information.

4Marsh’s model tackles trust dissemination, but it does not use third party referrals for computing
trust. Furthermore, we consider that the initial relationships on which the pure propagation models
work are a type of third party referral

45



2. UNDERSTANDING TRUST: A SYSTEMATIC ANALYSIS

46



Chapter 3

Incorporating Trust Engineering in
Early Phases of the SDLC

This chapter addresses several key considerations when integrating trust in activities

that are part of the early phases of development, from planning to design.

During the planning phase, there is an ever-increasing need to decide whether the

system or a part of it should be moved to the Cloud, activity known as cloud sourcing.

This provides several benefits in terms of scalability and cost-effectiveness, but it raises

security concerns as to who can access the deployed data or services. Cloud sourcing has

a high impact on the design of the system outsourced, given that it entails a partial loss

of control and consequently, potential threats to security. The first important decision

that we must make is to which cloud vendor we are moving part of the system. This first

decision can be key to the rest of the design and we advocate that trust evaluation of

cloud vendors can help cushion the aforementioned loss of control and potential security

problems.

Along the second phase, namely security analysis, there are two important activities

to cover. First, in order to achieve trust-aware solutions, we need to capture trust

requirements. However, whereas the security community has traditionally focused on

providing tools and mechanisms to capture and express hard security requirements (e.g.

confidentiality), little attention has been paid to trust and reputation requirements. We

argue that these soft security requirements can leverage security in open, distributed,

heterogeneous systems and applications and that they must be included in early phases

of the development process.

47



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Another typical activity performed during this phase is threat analysis. Many

threats, and particularly the ones that result in the most harmful incidents, are due

to insiders. In most cases, these threats originate from false or implicit assumptions

about trust relationships in the organizational context of the system. Therefore, and in

order to guarantee the design of more secure systems, it is required that trust relation-

ships are explicitly identified, analysed and quantified. From these trust relationships

and modelling the criticality of the assets of the system, we can infer potential insider

threats.

During secure design we aim to refine the analysis artifacts into design elements that

make the implementation easier and more obvious. We need to provide further insight

about the rationale and the mechanics of the trust models and how they integrate into

and collaborate with the system. This information is useful to sketch the first version

of the system architecture and will assist developers during the implementation phase.

The chapter is organized as follows. Section 3.1 describes a methodology that allows

decision-makers to assess the level of trust that can be placed on a cloud provider.

Section 3.2 presents a methodology to detect insider threats in a system through the

analysis of trust relationships, whereas a methodology and notation to represent trust

and reputation requirements is introduced in Section 3.3. Finally, in Section 3.4, we

describe a UML profile that allows the specification of trust and reputation models.

3.1 Trust-supported Cloud Sourcing Decision in the Plan-
ning Phase

There is an increasing trend to outsource IT services and infrastructures to the cloud

(86). This model, also called cloud sourcing1, is replacing traditional outsourcing en-

gagements due to its advantages (76). These include the provision of elastic IT resources

and cost savings as a result of reduced operational costs for complex IT processes (81).

Security and trust are significant barriers for the adoption of clouds in companies

(99). Lack of trust in cloud providers lies within the nature of clouds: storage and

management of critical data, and execution of sensitive IT processes are performed

1Techopedia: http://www.techopedia.com/definition/26551/cloudsourcing

48

http://www.techopedia.com/definition/26551/cloudsourcing


3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

beyond the customers control. As a consequence, new security threats arise2,3, and

IT analysts and decision makers must balance the advantages and these threats before

making decisions. These decisions range from selecting a cloud provider to determining

how much data or which part of the infrastructure to move to the cloud.

It is generally accepted the fact that trust can help in decision-making processes

in the absence of complete information (45, 138). Given that information about cloud

providers, due to internal policy or strategic reasons, may be uncertain and incomplete,

trust can enhance the cloud sourcing decision-making process. This section presents

a methodology that evaluates trust in cloud providers and that can help IT analysts

to make more informed decisions prior to the sourcing process. The methodology pro-

vides a systematic way to gather knowledge about cloud providers and to exploit this

knowledge in order to yield trust values that can be used as inputs to the decision-

making process. The methodology pinpoints which aspects of the providers should be

analysed, indicators that decision makers can use to quantify these aspects, and how

these quantifications can be aggregated into trust values. We use trust intervals in or-

der to represent trust and we define a summation operator to aggregate trust intervals.

The methodology constitutes a guide that analysts and decision makers can follow to

evaluate their trust in cloud providers under several dimensions or viewpoints.

In the following sections, we examine how trust evaluation in the Cloud has been

approached in previous works and we describe the trust-aware methodology that we

propose. We also apply the methodology to an eHealth case study and summarize some

considerations about the methodology as well as lines for future research.

3.1.1 Trust Evaluation in the Cloud

Cloud providers evaluation is a necessary step for cloud sourcing decision-making, but

clouds can be evaluated under different angles, including performance (22), scalability

(38), accountability (90) and transparency (94).

Traditional evaluation has focused on performance and scalability. For example,

Bubak et al. (22) provides an evaluation of Infrastructure as a Service (IaaS) cloud

2http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-
security-risks-853

3Top Threats to Cloud Computing V1.0,https://cloudsecurityalliance.org/topthreats/
csathreats.v1.0.pdf

49

http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-security-risks-853
http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-security-risks-853
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf


3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

providers. Their focus is on the performance and ratio cost/performance of different

providers for scientific computing in the research. Gao et al. (38) define a set of metrics

based on calculating the area of polygons, the vertices of which represent measurable

performance and scalability indicators of a cloud service. Assessing accountability and

transparency is gaining increasing importance. As an example, Nuñez et al. (90)

present a metamodel for the assessment of accountability, whereas Pauly (94) proposes

a scorecard for evaluating transparency. In a similar direction, Rak and Aversano (103)

discuss a framework for building custom benchmark applications that can be used to

evaluate performance of different cloud providers.

The impact of trust for cloud adoption and some trust-related factors that influence

users when selecting cloud providers have been identified in previous works (105)(61).

In this direction, Sarwar et al. (9) review several works that elicit relevant trust aspects

in the cloud. Ahmad et al. (3) argue that trust in the cloud must be built upon a deep

knowledge about the cloud computing paradigm and the provider.

In many works, trust depends on the verification of Service Level Agreement (SLA)s

(26) or the measurement of QoS attributes (74). Song et al. (121) propose a QoS

evaluation model in which key attributes and parameters are defined and quantified.

Each attribute is weighted and averaged, yielding a score that can be aggregated with

others in the end. These works are usually focused on cloud services evaluation and

selection rather than on the cloud providers themselves.

Most existing contributions on trust-aware cloud providers evaluation focus on the

technical part of the providers. Only a few of them address social aspects, such as the

staff or stakeholders of the provider. For example, Pauley (94) creates a scorecard for

evaluating transparency of a cloud provider. Its scorecard includes questions that can

be answered by 1 (yes) or 0 (no). Transparency is defined as a combination of other

attributes, and the questions address these attributes. In the end, the author sums

all the scores and divides them by the total possible. Even when this work addresses

some security and privacy issues, it does not evaluate threats and does not consider

subjectivity or uncertainty during evaluation.

Pavlidis et al. (96) propose a process for trustworthy selection of cloud providers.

This selection is based on how well the cloud provider fulfils the customer’s security and

privacy requirements. It also aims to reduce uncertainty by justifying trust relationships

and by making trust assumptions explicit. Compared to our approach, we consider other

50



3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

aspects of the cloud providers and we use trust intervals instead of probabilities and

weights.

Supriya et al. (72) propose a fuzzy trust model to evaluate cloud service providers

that uses the attributes defined by the Service Measurement Index (SMI) (39). Ex-

amples of these attributes are assurance, performance and security. Even though un-

certainty is embedded in the fuzzy engine, the authors do not provide guidelines on

quantifying the attributes or on eliciting cloud knowledge. Qu et al. (102) introduce

customers’ feedback in the evaluation, although this evaluation is focused on cloud

service selection, rather than on cloud provider selection.

Risk as a notion to evaluate cloud services is used by Rödder, Knapper and Martin

(111), who propose a set of metrics rather than a methodology. The authors focus

on evaluating services offered by the cloud provider, whereas our attention is on the

provider as a whole. Metrics weight different attributes and do not include the notion

of uncertainty and they do not specify how to retrieve the information required by the

metrics, whereas we provide guidelines and a structured knowledge elicitation phase.

Habib, Varadharajan and Mühlhäuser (46) propose an evaluation framework that

include hard and soft trust concepts, such as direct interaction, indirect interaction

and uncertainty. However, they do not propose a concrete methodology, guidelines

for trust factors quantification or a systematic domain knowledge elicitation. In a

similar direction, Rehman et al. (126) propose a simple framework for monitoring cloud

performance based on user feedback, in which the performance of a cloud service is

monitored and predicted by these feedbacks. In this direction, Li et al.(66) propose

a taxonomy of performance evaluation concepts. The authors argue that performance

evaluation works are difficult to understand and compare because they lack consistency

and a common terminology. The taxonomy aims to clarify concepts and inaccurately-

used terminology that exist in evaluation works. The same authors suggest that a

rigorous methodology for implementing a Cloud evaluation is required, and they propose

the Cloud Evaluation Experiment Methodology (CEEM) (64).

As a conclusion from our literature review, trust has already been incorporated

in the evaluation of clouds. However, in most cases, the purpose of this evaluation

is service selection, rather than cloud provider selection. Most contributions are also

focused on the metrics rather than on a concrete methodology to gather and quantify

all the information. Uncertainty or subjectivity, which are intrinsic to the notion of

51



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

trust, are usually laid aside. This section aims to fill these gaps. The existing literature

provides valuable information about the aspects of cloud providers that are usually

considered by cloud customers before moving to the cloud, and our approach, presented

in the next section, builds upon this knowledge.

3.1.2 Trust-Aware Methodology

A high-level overview of the methodology is presented in Figure 3.1.

Figure 3.1: Overview of the Methodology

Knowledge 
Elicitation

Provider 
Information Trust Factors 

Quantification

Trust 
intervals

Aggregation

Stakeholders 
Dimension

Threats 
Dimension

General 
Dimension

Information 
Visualization

Structured 
Description of 

Cloud 
Provider

Stakeholders 
Trust 

Template

Cloud 
Provider 

Trust 
Template Stakeholders trust 

intervals

General 
trust intervals

Threats 
trust int.

Trust Threshold 
Definition Threshold trust intervals

Summation
Operator

Scenario
Requirements

Trust
Factors

The first step consists of gathering knowledge about the cloud provider. Next, we

elicit and quantify a set of trust factors about the provider’s stakeholders and about the

cloud provider as a whole. In parallel, we specify trust thresholds that are based on the

scenario requirements. These thresholds are minimum trust values that we expect for a

given scenario. In the following step, the factors are aggregated into three dimensions

or viewpoints: a stakeholder dimension, a threat dimension, and a general dimension.

In order to perform the aggregation, we define a summation operator. Finally, the

information is graphically visualized.

Next we describe each of the steps in more detail.

3.1.2.1 Domain Knowledge Elicitation

The goal of this step is to gather knowledge about the cloud provider and the cloud

domain. We suggest context patterns for a structured domain knowledge elicitation

(12). These patterns contain a graphical pattern and templates with elements that

require consideration for a specific context. In addition, context patterns contain a

52



3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

method for eliciting domain knowledge using the graphical pattern and templates. For

this work we use a specific context pattern, the so-called cloud system analysis pattern

(11, 14). It describes stakeholders and other systems that interact with the Cloud, i.e.

they are connected to the cloud by associations. For example, the cloud provider offers

its resources to cloud customers as Services, i.e., IaaS, PaaS, or SaaS. However, our

methodology is not tied to a concrete methodology for structured domain knowledge

elicitation.

3.1.2.2 Trust Factors Quantification

As explained over Chapter 2, trust evaluation models depend on a set of factors that

influence trust relationships. These factors must be quantified and aggregated using a

trust engine to yield a trust value. This step tackles the identification and quantification

of trust factors, whereas Section 3.1.2.4 deals with the trust engine that aggregates these

trust factors.

For trust factors identification, we use two different trust templates according to

the context patterns methodology (12). The first one is the Stakeholder Trust Tem-

plate (STT) depicted in Table 3.1, which is a modification over the original stakeholder

template (12). This template identifies the trust factors that we consider for the cloud

stakeholders, and also in particular, for the staff members of the Cloud provider. The

other template is the Cloud Provider Trust Template (CPTT), shown in Table 3.2, which

identifies the trust factors that we consider for the cloud provider as a whole. In each

table, the first two columns show the name of the factor and its meaning respectively,

whereas the last column provides hints for quantifying the factors.

The quantification process in our methodology entails providing two values for each

factor: the factor value itself and a confidence value. The latter refers to the confidence

that the factor value is accurate. The role of this value is to make explicit the uncertainty

derived from having partial and subjective information. For the quantification of both

values we decide to use only integer numbers from 0 to 3. More justification on this

decision and on the trust engine in general is provided in Section 3.1.4.

In our methodology, threats are sub-factors of two trust factors: direct interaction

and 3rd party referrals. The former refers to information about threats derived from

previous direct experience with the cloud provider, whereas the latter requires asking

external organizations for this information. We use the threats identified by the Cloud

53



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Table 3.1: Stakeholder Trust Template

Direct Inter-
action

Evaluation of previous direct interaction
with the stakeholder.

Analyse the number of incidents and over-
all satisfaction with the stakeholder in the
past.

3rd Parties
referrals

Referrals from 3rd parties regarding inter-
actions with the stakeholder.

Ask other organisations about their gen-
eral satisfaction with the stakeholder.

Knowledge Stakeholder knowledge on its task. Check number of years of experience and
whether the stakeholder has any certifica-
tion.

Willingness Willingness of the stakeholder to perform
the task.

Take into account the aforementioned fac-
tors; research on the motivations of the
stakeholder (e.g. bonuses); check how long
it takes him to finish his task.

Security Alliance (CSA), as depicted in Table 3.3, which summarize the experience of

a large industrial consortium in the field of cloud computing.

Once we have a factor value and its corresponding confidence value, we calculate a

trust interval for each factor, as explained in the next definition.

Definition 1 (Trust Interval) Let v and c be a factor value and its corresponding
confidence value, respectively. These values are integer numbers between 0 and 3. We
form the trust interval as: TI = [

vc

3
,
vc

3
+ (3− c)].

This interval is in the domain of the real numbers. 0 and 3 are lower and upper

bounds of the interval, respectively. For the rationale of this definition we refer the

reader to the contribution by Shakeri et al. (117). Given that we use integer values,

there is a finite set of possible intervals during quantification. For example, when the

factor value is 2 and the confidence value is 1, the resulting trust interval is [
2

3
,
8

3
]. Note

that when c = 0, we have the maximum uncertainty, that is, the interval is [0, 3] and

has the maximum width. When c = 3, uncertainty is minimum, that is, the interval

width is zero because we know the trust value.

Before proceeding to the aggregation of the trust intervals, decision makers define

trust thresholds as explained in the next section.

3.1.2.3 Trust Thresholds Definition

This step, which is performed in parallel with the quantification step, defines trust

thresholds according to the scenario requirements. These thresholds represent the min-

54



3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

Table 3.2: Cloud Provider Trust Template

SLA and Contracts Quality of SLAs and signed contracts that
express the conditions and liabilities re-
garding the service offered by the cloud
provider.

Check if there was some abuse of the con-
tract. Do all the interesting services have
a well-defined SLA and appropriate for the
organization? Are they easy to find and
easy to understand?

Security Provider’s concern and actions on security. Check whether the cloud provider par-
ticipates in cloud standards bodies such
as CloudAudit, Open Cloud Computing
Interface, CSA and ENISA. Does the
cloud provider perform security assess-
ment? (E.g. COBIT, ISO 27000, NIST
SP800-53). Does it offer professional ser-
vices such as a security assessments of
customer environments? Does the cloud
provider provide a special email or forum
for security/privacy questions?

Long-term viability Business viability of the cloud provider. Is the cloud provider profitable? Did the
cloud provider have any financial difficul-
ties? How many years in the market? (Ac-
cording to the US Small Business Admin-
istration, 50% of businesses fail in the first
5 years). Does the cloud provider have a
clear back-up and recovery policy? Are
there compensations and are they good in
case of problems?

Transparency Transparency of the provider. How difficult is to retrieve data from the
cloud provider? Does it publish its privacy
and security policies? Are they easy to
access? Do I know where the data will be
located? Does the cloud provider have an
open ethical manifest?

Accountability and
auditing

How accountable and auditable the
provider is.

Does the cloud provider comply with the
SAS No.70 Type II, Payment Card In-
dustry Data Security Standard, HIPAA
or Sarbanes-Oxley? Is there a clear log-
ging policy? Are there logging systems in
place? Is logging information good enough
for accountability?

Human Resources
Security

Quality and security concern of the em-
ployment policies.

Does the provider have a clear, strict, ro-
bust hiring policy? (to minimize insider
threats; trust stakeholders) Are there pro-
cedures for monitoring employees effec-
tiveness? Is there any secure fade-out pro-
cedure once a guy leaves the company?
Quality of employment: salaries, health
insurance. Quality of security trading
(how well educated is the staff?).

Direct interaction Own experience in the interaction with
the cloud provider.

Evaluate direct experience against
threats.

3rd parties referrals Referrals from 3rd parties regarding inter-
actions with the cloud provider.

Evaluate 3rd parties referrals against
threats.

imum trust that decision makers expect for each trust factor. The goal is to have a

yardstick that can be used to check whether cloud providers meet our trust expecta-

55



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Table 3.3: CSA Cloud Threats and their Evaluation

Description How to evaluate
Abuse of Cloud Computing
(Threat 1)

This threat describes the abuse of the scalable cloud re-
sources, e.g., network connections capacity. For example, the
resources can be used by spammers to scale up their opera-
tion.

Consider the type, number, and
frequency of anomaly checks for
cloud computing abuse.

Insecure Interfaces and APIs
(Threat 2)

Clouds provide interfaces for provisioning, management, or-
chestration, and management of services. Security functions,
e.g., authentication, and encryption rely upon these. An ex-
ample for the malicious usage of interfaces is the eavesdrop-
ping during clear-text transmission of content.

How often do developers report se-
curity issues? How long does it
take the cloud provider to fix the
problems?

Malicious Insiders
(Threat 3)

The cloud provider controls access to the cloud. A cloud
customer or end customer has very limited transparency con-
sidering data access permissions provided to cloud employees.
Hence, the threat of malicious insiders, which are employees
of the cloud provider, scales with the resources and offered
services in the cloud. An example for a specific problem is
policy compliance. Cloud customers or end customers have no
visibility into the hiring or monitoring of the cloud providers’
employees.

Does the cloud provider publish
compliance to laws? Does the
provider offer customized SLAs?
Does the provider conduct external
audits?

Shared Technology
(Threat 4)

The different stakeholders in the cloud use the same physi-
cal resources, e.g., CPUs and RAM. These are shared using
so-called Hypervisors, which provide isolation properties for
these physical resources. Side channel attacks on these Hy-
pervisors can provide a stakeholder with inappropriate levels
of control of the underlying cloud infrastructure.

Does the provider ensure best prac-
tices like penetration testing in pre-
venting successful attacks? Is this
documented in a contract?

Data Loss & Leakage
(Threat 5)

The threats to data in a cloud scales with the amount of
data stored in it. Deletion or alteration of data without a
backup is an example. Moreover, cloud databases store data
distributed. The links to records in these cloud databases can
be destroyed, which results in unrecoverable data.

Are data available about exist-
ing incidents of information loss
over time? Are information about
severity and time to fixing the issue
available?

Account or Service Hijacking
(Threat 6)

Clouds provide numerous services and credentials, and pass-
words are often reused. Thus, compromised credentials pro-
vide access to a large set of data about activities and trans-
actions of stakeholders. Thus, the attacker can exploit the
reputation of a cloud customer and launch a large-scale at-
tack on its end customers. The cloud customer’s reputation
can lead to directed phishing and farming attacks at its end
customers.

Were any identity theft incidents
reported or experienced? Is the
cloud provider taking responsibil-
ity for these incidents or the cloud
customers?

Unknown Risk Profile
(Threat 7)

Cloud customers and end customers do not own cloud re-
sources. Hence, cloud providers can apply the so-called secu-
rity by obscurity policy. Thus, the cloud customers and end
customers do not know the exact specifications of the security
mechanisms used in the cloud. This results in an unknown
exposure of assets and increases the difficulty of creating a
risk profile for a cloud scenario.

List all the data that is not avail-
able about the cloud provider?
Evaluate the situation based on
the number and significance of the
missing information.

Unknown Causes
(Threat 8)

A significant number of reported cloud problems like outages
did not reveal the causes of these problems. In these case
we know that incidents happened, but the provider does not
release information that allows an analysis. It remains unclear
if the problem is addressed properly or even investigated at
all.

List all incidents that happened,
but the cloud provider did not re-
lease enough information to track
the incident back to a threat.
Hence, this incident cannot be cat-
egorized into Threat 1 to 7 and is
part of this category. Look at the
amount of these incidents and eval-
uate based on this information.

56



3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

tions.

For each trust factor, the decision maker assigns an expected factor value and a

confidence value. In this case, the confidence value expresses how sure the decision maker

is about the need to expect the corresponding factor value. As in the quantification

step, for each factor, a trust interval is derived from these values by using Definition 1.

3.1.2.4 Trust Aggregation

During the previous steps we have calculated trust intervals for different factors of

stakeholders and cloud providers. This step reduces the number of trust intervals by

aggregating them.

Before defining the operator that performs the aggregations, we need another defi-

nition.

Definition 2 (Interval Accuracy) Given a trust interval [a, b], we define the interval
accuracy as IA = 3− w, where w = b− a is the width of the interval.

The maximum possible width of a trust interval is 3 (see Definition 1). When the

width is maximum, the interval accuracy is 0 because uncertainty is maximum. On the

other hand, when the width of a trust interval is 0, the interval accuracy is 3 because

uncertainty is minimum.

Next we define a summation operator that aggregates trust intervals.

Definition 3 (Summation Operator) Given two trust intervals [a, b] and [c, d], where
a 6= c or b 6= d, we define the summation operator ⊕ as [a, b]⊕[c, d] = [e, f ] where [e, f ] is

a new trust interval that can be obtained as: e =
IA1a+ IA2c

IA1 + IA2
and f =

IA1b+ IA2d

IA1 + IA2
.

IA1 and IA2 are the interval accuracy of [a, b] and [c, d], respectively. If a = c and
b = d, then [a, b]⊕ [c, d] = [a, b] = [c, d].

The resulting interval after a summation is somewhere in between the two source

intervals. The uncertainty, represented by the interval accuracy, determines how close

e is to a or c, and how close f is to b or d. This is why we weight a, b, c and d by

the interval accuracy. The higher the interval accuracy, the more the values of the

corresponding interval contributes. Note that the operator has an identity element:

[0, 3]. This makes sense as this interval expresses the maximum uncertainty and does

not add any knowledge to the trust value.

57



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Table 3.4 illustrates some interval summations. Note the last two summations in

the table. In the first one, we have complete confidence that the factor value is 0 in the

first interval and that the factor value is 3 in the second one, therefore the aggregation

yields a value right in the middle. In the last summation, there is complete confidence

in the factor value 3, whereas there is limited confidence in the other value. Therefore

the aggregation yields a value closer to 3.

Table 3.4: Trust Interval Summations

[0, 3] + [2, 3] [2, 3]

[1, 3] + [2, 3] [1.7, 3]

[2, 2.5] + [2.25, 2.5] [2.13, 2.5]

[1, 2] + [1, 2] [1, 2]

[0, 0] + [3, 3] [1.5, 1.5]

[0, 2] + [3, 3] [2.25, 2.75]

In order to present meaningful trust information, we suggest performing three aggre-

gations that correspond to three dimensions or viewpoints: the stakeholders dimension,

the threats dimension and the general dimension. Next subsections explain each of

them.

Stakeholders Dimension This dimension illustrates the level of trust in the cloud

provider according to the stakeholders working in it. This aggregation is performed by

summing all the intervals of all the factors for each stakeholder, and then summing the

resulting intervals for all the stakeholders.

Threats Dimension This dimension shows the amount of trust in the cloud provider

according to the threats defined by the Cloud Security Alliance (CSA) (see Table 3.3).

For each threat, we aggregate the trust intervals of the direct interaction and 3rd party

referrals factors.

We believe that having independent trust intervals for each threat is convenient,

instead of aggregating all the different threats together, because decision makers can

make more fine-grained decisions. For example, if the trust interval is low for the threat

Data Loss & Leakage, the decision maker can decide not to move the customers data of

the organisation to the cloud provider. However, if trust intervals of the other threats for

the same cloud provider are high, some services or infrastructures could be outsourced

58



3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

to that cloud provider. If we aggregated all the threats into a unique trust interval, we

would lose this valuable information.

General Dimension This dimension depicts trust in the cloud provider with regards

to the rest of trust factors that are not threats, including Security, Transparency and

Accountability.

After the trust aggregation step, there are ten trust intervals for a cloud provider:

one for the stakeholders dimension, eight for the threats dimension (i.e. one for each

threat) and one in the general dimension.

3.1.2.5 Trust Information Visualization

The last step consists of plotting the trust intervals for each dimension for comparison

purposes and decision making.

In the Y-axis, we represent possible trust values, whereas in the X-axis we represent

the three dimensions. For each dimension, we draw a line from the lower bound to the

upper bound of its trust intervals. This arrangement allows fast comparison between

providers in each dimension. Likewise, it allows comparing the trust intervals with the

trust thresholds.

This is better illustrated in the next section, where we apply the methodology to an

eHealth scenario.

3.1.3 Application Example: eHealth

In this section we present an application of our methodology to a case study provided by

the EU project Network of Excellence on Engineering Secure Future Internet Software

Services and Systems (NESSoS)4. The scenario concerns managing Electronic Health

Record (EHR)s in clouds. EHRs contain any information created by health care profes-

sionals in the context of the care of a patient. Examples are laboratory reports, X-ray

images, and data from monitoring equipment.

Security concerns in this scenario include:

• Confidentiality of EHRs in communication and storage

• Data separation of EHRs and other data of the eHealth applications
4The NESSoS project: http://www.nessos-project.eu

59

http://www.nessos-project.eu


3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

• Authentication mechanism to guarantee confidentiality and integrity

• Availability of EHRs

• Availability of network connection

• Data Origin Authentication

Given these security concerns, the CSA threats that become more relevant are the

following: Insecure Interfaces and APIs (Threat 2), because these are essential for se-

curity functionalities like authentication; Malicious Insiders (Threat 3), because they

could steal EHRs and use them for blackmailing or similar criminal activities. Shared

Technology (Threat 4) and, specially, Data Loss & Leakage (Threat 5), can lead to a loss

of confidentiality of EHRs or data separation. Account or Service Hijacking (Threat 6)

leads to bypass authentication controls, including those for data origin authentication;

Unknown Risk Profile (Threat 7) and Unknown Causes (Threat 8)5 can also have a

negative effect on all the security concerns.

For the evaluation, we consider the following cloud vendors: Amazon, Apple, Mi-

crosoft and Google. We lay stakeholders evaluation aside and we focus on evaluating

trust in the threat and general dimensions; retrieving stakeholders information is more

difficult but the process and the aggregation would be similar. Next subsections include

each step in our methodology.

Trust Factor Quantification and Thresholds Definition Threats quantification

is based on a data set from CSA, which mapped 11 491 cloud security incidents to these

threats6.

As explained before, for each trust factor, including the threats, we assign a factor

value and a confidence value. For example, in the case of Threat 1 for Amazon, we as-

signed factor value 0 and confidence value 2. The rationale, which must also be included

as part of the analysis, is that we found three incidents on record and one that had a

significant amount of user accounts affected. As another example, for Security trust
5Note that the original CSA Top Threats are just 7, but the CSA documented cloud security

incident referenced numerous incidents that cannot be categorized because of a lack of information.
This lead us to adding an additional threat.

6Documented Cloud Security Incidents: https://cloudsecurityalliance.org/download/cloud-
computing-vulnerability-incidents-a-statistical-overview/

60

https://cloudsecurityalliance.org/download/cloud-computing-vulnerability-incidents-a-statistical-overview/
https://cloudsecurityalliance.org/download/cloud-computing-vulnerability-incidents-a-statistical-overview/


3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

factor in Microsoft, we assigned factor value 3 and confidence value 2. The rationale

is that Microsoft considers some certifications (e.g. ISO 27001) and complies with the

CSA control matrix and FedRAMP. Applying Definition 1, we obtain the trust interval

[0, 1] for the first example, and [2, 3] for the second example. Table 3.5 shows the whole

quantification for one of the cloud vendors.

In parallel and based on the security requirements of the scenario, we define min-

imum trust values for each trust factor. These thresholds, already aggregated in the

threat and general dimensions, are presented in Table 3.6.

Trust Aggregation We aggregate the trust intervals of every factor for a given cloud

provider. As an example, consider the following: Apple has trust interval [0, 2] for Secu-

rity and [0.33, 2.33] for transparency. We use the operator in Definition 3 to aggregate

these intervals. The resulting interval is [0.17, 2.17]. We would now aggregate this trust

interval with the one corresponding to Accountability and Auditing, and so forth, until

we reach a final trust interval in the general dimension. The resulting trust interval in

the general dimension for each cloud provider is shown in the last column of Table 3.7.

We assume that we have no direct previous experience with the providers. Therefore,

there is no need to aggregate trust intervals in the threat dimension, which this time only

considers information from 3rd party referrals, in this case, from CSA. Trust intervals

for each threat and cloud provider are presented in Table 3.7.

Trust Visualization Figure 3.2 shows the trust intervals of all cloud providers,

whereas Figure 3.3 compares the trust intervals with the trust thresholds.

As a conclusion, we see in Figure 3.3 that no cloud provider upholds all trust thresh-

olds. If we focus on data loss and leakage (Threat 5), we see that none of them fully

upholds it, but Apple and Amazon seem more interesting under this lens. Microsoft

seems to be the best cloud provider according to general properties such as security

or transparency, followed by Google. If we focus on the threats in general, we note

that again, no cloud provider performs well for all threats. However, according to our

analysis, the less bad performers are Microsoft, Apple, Amazon and Google in this

order.

Summing up, if we were analysts, we would either not pursue any cloud provider

for our scenario at this time and repeat the analysis later, or would confront the cloud

61



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

T
ab

le
3.5:

T
rust

Factors
Q
uantification

for
M
icrosoft

C
lou

d
P
ro vid

er
T
ru
st

Factor
S
u
b
-
tru

st
factor

Factor
valu

e
C
on

fi
d
en

ce
valu

e
R
ation

ale

M
icrosoft

3rd
P
arty

referral
T
hreat

1
3

2
N
o
incidents

on
record

and
there

an
assum

ption
that

the
provider

invests
a

lot
in

controls
to

prevent
those.

M
icrosoft

3rd
P
arty

referral
T
hreat

2
1

1
T
hree

incidents
on

record
and

one
has

affected
a
m
edium

am
ount

user
accounts

affected
(14000).

M
icrosoft

3rd
P
arty

referral
T
hreat

3
2

2
O
ne

incident
on

record
and

other
cloud

provider
do

not
seem

to
report

incidents
at

all.
A
ssum

ption
the

provider
is

transparent.
M
icrosoft

3rd
P
arty

referral
T
hreat

4
2

1
T
w
o
incidents

on
record

and
it
is

assum
ed

they
caused

lim
ited

affects.
M
icrosoft

3rd
P
arty

referral
T
hreat

5
1

2
T
hree

incidents
on

record
and

it
is
assum

ed
the

cloud
provider

has
problem

s
im

proving
its

security
controls.

M
icrosoft

3rd
P
arty

referral
T
hreat

6
1

2
N
o
incidents

on
record.

N
o
inform

ation
about

security
controls

for
this

threat
available.

M
icrosoft

3rd
P
arty

referral
T
hreat

7
2

2
O
nce

incident
on

record
w
ith

only
lim

ited
effect.

M
icrosoft

3rd
P
arty

referral
T
hreat

8
0

2
E
lev en

incidents
reported

and
the

trend
seem

s
to

increase.
T
his

is
the

largest
problem

of
the

provider.
M
icrosoft

Securit y
-

3
2

C
ertifications

exist
for

ISO
27001,SO

C
,C

SA
controlm

atrix,FedR
A
M
P.R

u-
m
ors

state
that

m
ore

should
follow

.
M
icrosoft

T
ransparency

-
2

2
W
e
saw

texts
about

identity
m
anagem

ent
and

access
controlon

the
hom

e-
page.

M
icrosoft

A
ccountability

-
0

1
W
e
did

not
find

any
inform

ation
about

this
on

the
hom

epage.
M
icrosoft

SLA
-

2
2

A
vailability

is
guaranteed

w
ith

99.99%
.
W
e
could

not
find

rum
ors

about
m
ajor

outages.
M
icrosoft

H
um

an
R
e-

sources
Security

-
0

1
N
o
inform

ation
w
as

m
ade

public
on

the
hom

epage
and

w
e
did

not
hear

rum
ours.

62



3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase

Table 3.6: Trust Thresholds

Threat 1 Threat 2 Threat 3 Threat 4 Threat 5 Threat 6 Threat 7 Threat 8 General
[1.0,1.0] [0.67,2.67] [0.33,2.33] [2.0,2.0] [2.0,2.0] [0.67,2.67] [0.33,2.33] [0.33,2.33] [0.67,2.67]

Table 3.7: Trust Intervals for Cloud Providers

Threat 1 Threat 2 Threat 3 Threat 4 Threat 5 Threat 6 Threat 7 Threat 8 General

A
m
az
on

[0,1] [0.67,1.67] [0,3] [0.33,2.33] [1.33,2.33] [0,3] [0.33,2.33] [0,1] [0.34,1.86]

A
p
p
le

[0.67,1.67] [0,1] [0,0] [0.33,2.33] [1.33,2.33] [0.33,2.33] [0.67,1.67] [0.67,2.67] [0.02, 2.02]

M
ic
ro
so
ft

[2,3] [0.33,2.33] [1.33,2.33] [0.67,2.67] [0.67,1.67] [0.67,1.67] [1.33,2.33] [0,1] [0.8, 2.25]

G
oo

gl
e

[1.33,2.33] [0,1] [0.33,2.33] [1.33,2.33] [0,1] [0.33,2.33] [0.33,2.33] [0,1] [0.53, 2.39]

providers with the results and ask for a detailed justifications for their security mecha-

nisms, especially regarding threat 5.

3.1.4 Discussion

As discussed in Chapter 2, there are many trust and reputation engines in the literature

(56). Given that this methodology is aimed at analysts and decision makers, who do not

necessarily have much mathematical background, a requirement for our trust engine was

its simplicity. The engine that we present in this work uses trust intervals to represent

trust information. There are other engines that are easier to use, such as summation or

average engines. However, they present two main problems. First, they usually require

weighting the attributes, and selecting weights is difficult and prone to trial-and-error

mechanics. Second, they lack the capability to represent uncertainty, which is a concept

highly coupled to the notion of trust. We believe that trust intervals present a good

trade-off between simplicity and expressiveness.

Best practices in risk assessment indicate that practitioners should set an even num-

ber of choices since users tend to choose the middle value in odd numbered scales (92).

This is why we quantify each trust factor with 4 possible values (i.e. from 0 to 3). We

think that 2 would give too few flexibility, whereas more than 4 would be confusing.

63



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Figure 3.2: Comparison of Trust Intervals for the selected Cloud Providers

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

1.40#

1.60#

1.80#

2.00#

2.20#

2.40#

2.60#

2.80#

3.00#

AMAZON#

APPLE#

MICROSOFT#

GOOGLE#

Threat 1 Threat 2 Threat 3 Threat 4 Threat 5 Threat 6 Threat 7 Threat 8 General

A disadvantage of our methodology is that it relies on data that in many cases may

not be accessible or available. Cloud providers may be reluctant to provide certain infor-

mation and it might not be straightforward to gather knowledge about the stakeholders

of a cloud provider.

Another source of imprecision is subjectivity. By definition, trust is subjective and

therefore some of the information that the methodology requires may have a subjectivity

bias. The results of the trust evaluation may not be completely accurate, but we

advocate that even minimal or partially subjective information is better than blind

decision-making. In order to avoid strong subjectivity bias, it is important to state the

rationale for each factor quantification.

Subjectivity draws a line between trust and trustworthiness. Having a trustworthi-

ness value would help in determining trust. Whereas trust usually depends on subjective

64



3.2 Trust-supported Threats Analysis

Figure 3.3: Contrasting Trust Thresholds and Trust Intervals

0.00#
0.20#
0.40#
0.60#
0.80#
1.00#
1.20#
1.40#
1.60#
1.80#
2.00#
2.20#
2.40#
2.60#
2.80#
3.00#

Threshold#

GOOGLE#

0.00#
0.20#
0.40#
0.60#
0.80#
1.00#
1.20#
1.40#
1.60#
1.80#
2.00#
2.20#
2.40#
2.60#
2.80#
3.00#

Threshold#

MICROSOFT#

0.00#
0.20#
0.40#
0.60#
0.80#
1.00#
1.20#
1.40#
1.60#
1.80#
2.00#
2.20#
2.40#
2.60#
2.80#
3.00#

Threshold#

APPLE#

0.00#
0.20#
0.40#
0.60#
0.80#
1.00#
1.20#
1.40#
1.60#
1.80#
2.00#
2.20#
2.40#
2.60#
2.80#
3.00#

Threshold#

AMAZON#

    1        2       3       4        5       6      7      8     9

    1        2       3       4        5       6      7      8     9

    1        2       3       4        5       6      7      8     9

    1        2       3       4        5       6      7      8     9

Note that the x-Axsis legend abbreviates Threat 1 to Threat 8 with just the values from 1 to 8. General dimension is value 9

information and may change among trustors, trustworthiness is an objective measure

of many different qualities. The ideal situation occurs when trust in a trustee matches

the trustworthiness of that trustee (95). This is the reason why we claim that we are

evaluating trust and not trustworthiness.

3.2 Trust-supported Threats Analysis

As reported by the 2014 CyberSecurity Watch Survey, 28% of cybercrimes were com-

mitted by insiders (120), and 46% of the respondents thought that damage caused by

insider attacks was more severe than damage from outsider attacks. In fact, insider

attacks can cause significant damage to the affected organizations e.g loss of money,

loss of reputation, or loss of customers, among others.

The CERT Insider Threat Center of the Software Engineering Institute (118) de-

fines an insider as “a current or former employee, contractor, or business partner who

has or had authorized access to an organization’s network, system, or data and in-

65



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

tentionally exceeded or misused that access in a manner that negatively affected the

confidentiality, integrity, or availability of the organization’s information or information

systems”. Insider attacks are more difficult to detect because they come from trusted

employees who have legitimate and often privileged access to critical or valuable assets,

and have knowledge of the organization and its processes. The effective defense from

insider attacks call for preventive measures that detect and assess the risks associate

with insiders, rather than for reactive measures after the attack has been conducted.

In this section, we present an approach to assist security engineers in the detection

of insider threats during the analysis phase of the system development life cycle. Our

approach is complementary to other threats identification approaches that rely on the

analyst level of expertise such as risk assessment (70). With our approach, the security

engineer can identify automatically the insider threats that exist in a given organization

and permission setting and assess the associated risks.

The approach consists of first modelling the actors7 (i.e. the system stakeholders),

their goals, their assets, the security properties (e.g confidentiality, integrity, availability)

that stakeholders want to hold for their assets, the permissions that the stakeholders

have on assets, and delegation and trust of permissions relationships among them.

Trust of permission relationships represent the belief of the grantor of a permission on

an asset that the grantee will not misuse it: an actor can be either trusted with a

permission or distrusted. The level of trust associated with an agent with respect to

a granted permission is crucial to assess the risk of the agent being an insider threat:

the lower the level of trust associated with a permission is, the higher is the likelihood

that the agent will misuse the permission according to the trustor’s perception. For

this modeling, we use the SI* requirements modeling language (77), because it targets

socio-technical systems.

In order to support the automatic detection of insider threats, we extend the SI*

requirements modelling language proposed in (7) with an asset and trust model. The

asset model associates assets with a sensitivity value that represent how valuable the

asset is for the owner. The trust model extends the native binary SI* trust model

(trusted, not trusted) and allows associating different levels of trust (e.g. high, medium

7We use the term actor instead of entity because we are using the nomenclature of SI*. However,
according to our conceptual model presented in Section 2.2, an actor is an entity, which can be a trustor
or a trustee.

66



3.2 Trust-supported Threats Analysis

and low trust) with a permission granted to an agent. Based on the sensitivity and trust

levels, we define a set of rules to automatically identify insider threats to an asset and

prioritize them based on the risk associated with the threat. The risk associated with

the insider threat is given by both the likelihood that the threat occurs and the cost

of the permission being misused. The former is quantified by the trust level associated

with the permission granted to the insider agent, whereas the latter is quantified by the

sensitivity of the asset being harmed.

The rest of the section is organized as follows. First, we introduce the SI* framework

and its extensions proposed in (7). Next, we present the asset and the trust model

followed by the process to identify and prioritize insider threats. Finally, we apply the

approach to an eHealth case study of patient monitoring.

3.2.1 The SI* Framework

The SI* modeling language (77) has been proposed to capture security and functional

requirements of socio-technical systems. SI* is founded on the concepts of agent, role,

service, and relations such as And/Or decomposition and means-end.

An agent is an active entity with concrete manifestations and is used to model

humans as well as software agents and organizations. A role is the abstract charac-

terization of the behaviour of an active entity within some context. An actor is the

general way of referring to agents and roles when we do not need to distinguish. The

term service is used to denote a goal, a task and a resource. A goal captures a strategic

interest that is intended to be fulfilled. A task represents a particular course of actions

that produces a desired effect. It can be executed to satisfy a goal. A resource is an

artifact produced/consumed by a goal or a task. And/Or decomposition is used to refine

a goal, while means-end identifies goals that provide means for achieving another goal

or resources produced or consumed by a goal or task.

SI* also captures social relationships (e.g., delegation and trust) for defining the

entitlements, capabilities and objectives of actors. Originally, a delegation marks a for-

mal passage of responsibility (delegation execution) or authority (delegation permission)

from an actor (delegator) to the actor receiving the responsibility/authority (delegatee)

to achieve a goal or to provide a resource.

Trust in SI* comes in two flavours. Trust of execution represents a relation between

two actors representing the expectation of one actor (trustor) about the capabilities of

67



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

the other (trustee). Trust of permission is represented as the expectation of the trustor

about the behaviour of the trusteee with respect to the given permission.

Asnar et al. (7) extends SI* to represent different types of actors’ permissions on

resources (Table 3.8) and different types of relationships between resources (Table 3.9).

Goals and resources are considered as assets that need to be protected because they

bring value to organizations. In order to specify how an asset needs to be protected,

we use the concept of security requirement defining a specific security property, such as

confidentiality, integrity, and availability. The permission type granted on a resource

determines the type of actions an actor can perform on a resource, as depicted in Table

3.8. Actors than own a resource has the manage permission type on that resource.

Actors that have the manage permission type on a resource automatically inherit the

modify and access permission types on that resource. Likewise, actors that have the

modify permission type on a resource inherit the access permission type on that resource.

A permission type might yield to the violation of a specific security property if the

actor misuses the actions granted by the permission type. Moreover, a given permission

granted on a resource can be extended to other resources that are related to the resource

by the relations reported in Table 3.9.

Table 3.8: Permissions on Resource

Permission
Type

Description
(Possible)

Affected Sec.
Property

Access
(low-level)

Actor only has the permission to
access/read/use the resource.

Confidentiality

Modify
(medium-level)

Actor can change the content of the resource. Integrity

Manage
(high-level)

Actor has the permission to modify the
resource, delegate permissions to other actors

and modify permissions to other actors.
Availability

In order to allow the formal analysis of SI* models, the semantics of SI* is defined

in the Answer Set Programming (ASP) paradigm, which is a variant of Datalog with

negation as failure and disjunction. This paradigm supports specifications expressed in

terms of facts and Horn clauses, which are evaluated using the stable model semantics.

68



3.2 Trust-supported Threats Analysis

Table 3.9: Relationships between Resources

Relationship Description

store_ in
An informational resource is stored in a

physical resource.
part_ of A resource consists of other resources.

require
A resource might require another resource to

function.

Here, SI* models are encoded as sets of facts. Rules (or axioms) are Horn clauses that

define the semantics of SI* concepts. To support the formalization in ASP, the DLV

inference engine (63) is used. Table 3.10 summarizes the predicates to formalize an SI*

model in ASP.

We perform two extensions over SI*: an asset model and a trust model, which are

described in the next sections.

3.2.2 Asset Model

An asset is a service for which the owner specifies the sensitivity and a security property

that expresses the need of protecting the service. We introduce the predicates shown in

Table 3.11.

In our model, we distinguish between two types of assets: direct and indirect as-

sets. Direct assets are services for which a security property and a sensitivity level are

explicitly modeled in the SI* model, while indirect assets are services for which the

security property and the sensitivity level is determined based on the relations with

other services. The identification of indirect assets is based on a set of rules, reported

in Table 3.12, that considers the relations among resources (i.e. stored_ in, part_ of

and require) and the relationship means_ end among the resources and the goals that

requires the resources to be fulfilled. We assume that if an asset is related to a service by

one of these relations, the same security property should hold for the asset and service

(axioms S1-S5) and that the two assets should have the same sensitivity level (axioms

S6-S9). If the direct asset is related to another direct asset only the security property

is propagated to the other asset.

69



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Table 3.10: Predicates for ASP SI* Formalization

Goal model
service(Service:s)
goal(Goal:g)
resource(Resource:r)
actor(Actor:x)
agent(Agent:a)
role(Role:p)
play(Agent:a,Role:p)
provide(Actor:a, Goal:g)
own(Actor:a, Goal:g)
own(Actor:a, Resource:r)
subgoal(Goal g1, Goal:g)
means_ end(Resource:r, Goal:g)
means_ end(Goal:g, Resource:r)
Resource model
stored_ in(Resource:r, Resource:r1)
part_ of(Resource:r, Resource:r1)
require(Resource:r, Resource:r1)
Permission model
permission(Actor:a, Resource:r, PType:pt)
del_perm(Actor:a, Actor:a1, Resource:r, PType:pt)
trust_perm(Actor:a, Actor:a1, Resource:r)
Security requirements and Threats model
secure_ req(Resource:r, SProperty:sp)
secure_ req(Goal:g, SProperty:sp, Resource:r)
threat(Actor:a, Resource:r, SProperty:sp)
threat(Actor:a, Goal:g, SProperty:sp, Resource:r)

3.2.3 Trust Model

The SI* trust model only supports binary trust values: either an agent is trusted or

is distrusted for a given permission on a resource. However, in real scenarios trust is

not a binary value but an agent can be assigned different levels of trust. As explained

in Chapter 2, a trust relationship holds between two entities: a trustor (the one who

70



3.2 Trust-supported Threats Analysis

Table 3.11: Predicates for the Asset Model

Predicate Meaning
sec_ req(s,sp,p) Security property sp should be preserved

for a service s owned by a role p.
service_ instance(s, a, p) Instance of service s owned by agent a who

plays role p.
sec_ req(service_ instance(s, a, p),sp,a,p) Security property sp should be preserved

for a specific instance of a service s.
sensitivity(s,sl,p) Service s owned by role p has sensitivity

level sl.
sensitivity_ instance(service_ instance(s, a, p),sl,a,p) Associates a sensitivity level sl to an in-

stance of the service s owned by the agent
a playing the role p.

asset(s, p) Service is an asset, where s is a service and
p is the role who owns it.

asset_instance(service_ instance(s, a, p),a,p) Instance of service s is an asset owned by
agent a playing the role p.

places trust) and a trustee (the one performing a given action and to who(m) the trustor

places trust in). The context in which this trust relationships takes place in this case is

a permission that is granted to the trustee on a given asset. The trust level is important

as it indirectly provides information about the likelihood (as perceived by the trustor)

that the trustee will misuse the granted permission to harm the asset.

The trust model that we propose associates a trust level with a trust of permission

relation between two agents. The trust levels are then translated into trust labels that

are used to define insider threats identification rules, which determine if an agent may

misuse a granted permission on an asset and the risk associated to the threat.

We assume that trust levels can be represented in two forms: numbers in the in-

terval [0, 1] and qualitative labels such as Very Good, Good, Neutral, Bad, Very Bad,

as proposed by Agudo, Fernandez-Gago and Lopez (2). We assume that some trust

values are already assigned to trust of permission relationships between agents in the

SI* model and that these values are leveraged by the organization stakeholders in order

to compute trust values for pairs of agents for which such relationships are not explic-

itly modelled. To determine the trust level that an agent A places on another agent B

regarding how B will behave with respect to a granted permission, we leverage the trust

of permission relationships that other agents have with A and B. Therefore, according

71



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Table 3.12: Axioms for Identifying Indirect Assets

S1
sec_ req(R,SP, P )←

store_ in(R1, R) ∧ sec_ req(R1, SP, P )

S2
sec_ req(R1, SP, P )←

part_ of(R1, R) ∧ sec_ req(R,SP, P )

S3
sec_ req(R,SP, P )←

require(R1, R) ∧ sec_ req(R1, SP, P )

S4
sec_ req(G,SP,R, P )←

secure_ req(R,SP, P ) ∧means_ end(G,R)

S5
sec_ req(G1, SP,R, P )←

subgoal(G1, G) ∧ sec_ req(G,SP,R, P )

S6
sensitivity(R,SL, P )←

store_ in(R1, R) ∧ sensitivity(R1, SL, P )

S7
sensitivity(R,SL, P )←

part_ of(R1, R) ∧ sensitivity(R1, SL, P )

S8
sensitivity(R,SL, P )←

require(R1, R) ∧ sensitivity(R1, SL, P )

S9
sensitivity(G,SL, P )←

means_ end(G,R1) ∧ sensitivity(R1, SL, P )

72



3.2 Trust-supported Threats Analysis

to the classification performed in Section 2.2.2, we propose the integration of a trust

propagation model into SI*. As explained in Section 2.2.3, propagation models require

two operators: a concatenator operator and an aggregator operator. Before defining

these operators though, we must introduce the concept of trust statement.

Definition 4 (Trust Statement) A trust statement is an element
(Trustor, T rustee, Context, V alue) ∈ E×E×C×TD, where E is the set of all entities
in the system; C is a set representing a context; and TD is a Trust Domain.

Trust of permission relationships are a particular instance of trust statements where

Context is the permission granted to the trustee on an asset instance and V alue is the

trust level placed by the trustor in the trustee for the permission. To represent trust

statements we introduce the predicate trust_ perm_ instance(A, A1,asset_ instance (ser-

vice_ instance(S,A,P)), PT, TL), which essentially means that agent A trusts agent A1

with a level TL to not misuse service S with permission type TL and owned by A.

Trust statements can form trust chains, and the concatenator and aggregator oper-

ators evaluate trust over these chains, as defined next.

Definition 5 (Concatenator Operator) A concatenator operator is a function,

f :
⋃∞

n=2

n︷ ︸︸ ︷
TD × · · · × TD −→ TD, that calculates the trust level associated to a path or

chain of trust statements, such that f(v1, . . . , vn) = 0 if, and only if, vi = 0 for any i ∈
{1, . . . , n}, where vi ∈ TD and TD is a trust domain.

Definition 6 (Aggregator Operator) An agregator operator is function is used to
calculate the trust level associated to a set of paths or chains of trust statements. It is

defined as, g :
⋃∞

n=2

n︷ ︸︸ ︷
TD × · · · × TD −→ TD, where TD is a trust domain and

1. g(z1, . . . , zi−1, zi, zi+1, . . . , zn) = g(z1, . . . , zi−1, zi+1, . . . , zn) if zi = 0

2. g(z) = z

As a consequence of applying these operators to SI* models, an agent might end up

holding several trust of permission relations with a given agent. However, it would be

optimal if an agent only holds one value for any other agent of the system. Resolution

functions could solve this.

73



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Definition 7 (Trust Resolution Function) A trust resolution function is a func-

tion, f :
⋃∞

n=2

n︷ ︸︸ ︷
TD × · · · × TD −→ TD, such that f(v1, . . . , vn) ≤ max(v1, . . . , vn) and

f(v1, . . . , vn) ≥ min(v1, . . . , vn), where vi ∈ TD and TD is a trust domain.

Basically, given a set of trust values, the resolution function produces one unique

representative trust value that is upper bounded by the maximum and lower bounded

by the minimum of the original trust values. Operators and the resolution function rely

on functions to compute the trust values. For this purpose, different functions could be

used, like the maximum, minimum, arithmetic or geometric means, etc.

Once we obtain the final numeric values for every trust of permission relationship,

transformation rules must be used in order to translate these values, which are in an

interval [a, b] ([0, 1] is the chosen one in this case) into a label in a given set of labels

that forms a trust scale (2).

The next section explains the threat model that we consider in this approach

3.2.4 Threat Model

We assume that an agent A is an insider for a given asset S when two conditions hold:

a) A is granted a permission PT on the asset S that is sufficient to violate the

security property associated with S;

b) The agent who owns the resource S does not fully trust A with permission PT .

We consider that the severity of a threat depends on the sensitivity levels of assets

and the trust levels on the trust of permissions relationships. We introduce a threat

predicate to specify when an agent is an insider for a given instance of an asset and the

risk associated with the insider threat. Figure 3.4 is an example of how the risk level

of a threat can be determined based on sensitivity and trust levels.

The identification of the insider threats and their risk level is based on a set of

axioms reported in Table 3.13, where we list the axioms to detect insider threats to

assets’ confidentiality, integrity and availability with extreme severity level.

The modeling and the reasoning based on the above axioms are supported by the SI*

tool which is an Eclipse plug-in equipped with a DLV engine. The tool interface allows

to draw an SI* model which is automatically translated into ASP specification. The

74



3.2 Trust-supported Threats Analysis

Figure 3.4: Threats Severity Levels

The rows of the table represent the trust levels, while the columns represent the sensitivity levels.
Each entry of the matrix specifies the severity level for a given combination of sensitivity and trust
levels. The severity level can assume one of the following values: Low, Moderate, High, Extreme.
How trust and sensitivity relates to each other depends on the organization’s policy and should
not be fixed beforehand. Intuitively, the higher the sensitivity of an asset, the higher the damage
for the organization. Similarly, the higher the trust level, the lower the likelihood that the agent
will misuse the granted permission

tool also allows to input the rules for insider threat identification so that the problem

of identifying insider threats is the same as checking a DLV program that formalize the

SI* model and the axioms.

The next section apply the process to an eHealth monitoring scenario.

3.2.5 Application Example: eHealth

To illustrate our approach, we use a patient monitoring scenario from the eHealth case

study proposed in the NESSoS European project8. The scenario involves five main

actors. Patient is monitored by a smart T-shirt which measures medical data (e.g.,

heartbeat rate, blood pressure, etc.) and transfers them to the Hospital’s computer

system. When the patient’s condition is abnormal, the doctor makes a diagnosis and

produces a prescription. The patient receives his prescription and requests the drug

delivery service to the pharmacy. The Hospital provides medical services to patients.

The hospital monitors patients’ health and manages patients’ data, which are stored

in the hospital’s computer. When the patient has some problems, the hospital assigns

a doctor to diagnose the patient. The Pharmacy is responsible for managing drugs

and provide them to the patients. All the information about drugs is stored in the

pharmacy’s computer. The Pharmacist works for the pharmacy and is responsible for
8http://www.nessos-project.eu/

75

http://www.nessos-project.eu/


3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Table 3.13: Axioms for Identifying Insider Threats

Insider Threat to Confidentiality
a threat(A1,asset_ instance(service_ instance(S, A, P), A, P) , confidentiality,
extreme) ← asset_ instance(service_ instance(S, A, P), A, P) ∧
sec_ req_ instance(service_ instance(S, A, P), confidentiality, A, P) ∧
permission_ instance(A1, service_ instance(S, A, P), access) ∧
sensitivity_ instance(service_ instance(S, A, P), very high, A, P) ∧
trust_ perm_ instance(A, A1, asset_ instance(service_ instance(S, A, P), access,
very bad) ∧ A1 6= A
b threat(A1,asset_ instance(service_ instance(S, A, P), A, P) , confidentiality,
extreme) ← asset_ instance(service_ instance(S, A, P), A, P) ∧
sec_ req_ instance(service_ instance(S, A, P), confidentiality, A, P) ∧
permission_ instance(A1, service_ instance(S, A, P), access) ∧
sensitivity_ instance(service_ instance(S, A, P), very high, A, P) ∧
trust_ perm_ instance(A, A1, asset_ instance(service_ instance(S, A, P), access,
bad) ∧ A1 6= A
c threat(A1,asset_ instance(service_ instance(S, A, P), A, P) , confidentiality,
extreme) ← asset_ instance(service_ instance(S, A, P), A, P) ∧
sec_ req_ instance(service_ instance(S, A, P), confidentiality, A, P) ∧
permission_ instance(A1, service_ instance(S, A, P), access) ∧
sensitivity_ instance(service_ instance(S, A, P), very high, A, P) ∧
trust_ perm_ instance(A, A1, asset_ instance(service_ instance(S, A, P), access,
neutral) ∧ A1 6= A

Axioms T1.a - T1.c identify insider threats to confidentiality: the insider has access permission
on the asset being harmed and the owner of the asset places very bad, bad or neutral trust level
in the insider for the granted permission.

76



3.2 Trust-supported Threats Analysis

providing drugs to be delivered according to the prescription received from the patient.

The prescription information is stored in the pharmacy’s computer. Finally, the Drug

manager works for the pharmacy and is responsible for managing the drugs. All the

drugs’ information is also stored in the pharmacy’s computer.

Figure 3.5 shows the SI* model for this scenario. The model consists of five roles:

the Hospital, the Patient, the Pharmacy, the Pharmacist, and the Drug Manager. In this

particular example, we assume that Patient (Role) can be played by three agents Bob,

Kate, and Jane. The Patient (Owns) the resources Patient data and Prescription. It

delegates to the Hospital the manage permission on Patient data, and it delegates the

access permission on Prescription to the Pharmacy. The Pharmacy has the intention

(Request) to fulfill the goal Sell drug which is (AND-decomposed) into subgoals Manage

drug and Provide drug: the fulfillment of Manage drug is delegated to the Drug Manager

while the fulfillment of Provide drug is delegated to the Pharmacist. The Pharmacy

(Owns) the resource PComputer. It grants to Drug Manager the manage permission on

PComputer and the access permission on Prescription to the Pharmacist. The Hospital

(Role) has an intention (Request) to fulfill the goal Provide medical service which is

(AND-decomposed) into subgoals Monitor patient, Manage patient data, and Diagnose.

Some goals can produce or consume resources. For example, the goal Diagnose requires

the resource Patient data and produces the resource Prescription. The Hospital (Owns)

the resource Smart T-shirt and delegates to the Patient the manage permission on it.

Table 3.14 depicts a snapshot of the formalization of the model in ASP.

Now we proceed to the identification of critical assets. There are three direct assets

owned by the Patient role: Prescription, Patient Data, and Monitoring Data. The Pa-

tient requires confidentiality to hold for Prescription, availability should hold for Patient

Data, while integrity should be satisfied for Monitoring Data. Smart T-Shirt, HComputer,

PComputer, Diagnose, Manage Patient data, Monitor Patient, and Provide Drug are indi-

rect assets. For example, PComputer is an indirect asset because the asset Prescription

is stored in PComputer and thus the confidentiality of PComputer needs to be preserved.

Similarly, the goal Diagnose is an indirect asset because it is linked to the asset Pre-

scription by a means_ end relation, and thus also the confidentiality of the goal needs to

hold.

Next we determine permissions on assets. This step determines the permissions

that roles are granted on assets. The permissions are assigned to roles based on a

77



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Figure 3.5: Patient Monitoring Scenario in SI*

The circles denote roles or agents, the ovals denote goals, while the rectangles represent resources.
Dp_a, and Dp_ma represent delegation of permission relation where the permission type is
access and manage respectively. Similarly, Tp_a, and Tp_ma represent trust of permission
relation where the permission type is access and manage. Services that are considered assets are
labeled with the security property that should be satisfied and their sensitivity level.

78



3.2 Trust-supported Threats Analysis

Table 3.14: ASP Formalization for SI* Model

role(patient)
role(hospital)
goal(provide_medical_ service)
goal(monitor_patient)
goal(diagnose)
..........
resource(monitoring_data)
resource(patient_data)
resource(prescription)
resource(computer)
resource(smart_ t_ shirt)
..........
means_ end(diagnose,prescription)
resource(smart_ t_ shirt)
del_perm_manage(smart_ t_ shirt,patient)
del_perm_manage(hospital,smart_ t_ shirt)
own(hospital,smart_ t_ shirt)
del_perm_manage(patient_data,hospital)
own(patient,patient_data)
role(pharmacy)
..........
own(pharmacy,pcomputer)
del_perm_manage(pcomputer,drug_manager)
..........
del_perm_access(prescription,pharmacy)
own(patient,prescription)
del_perm_access(pharmacy,prescription)
..........
agent(kate)
agent(bob)
play(kate,patient)
play(bob,patient)

set of axioms that take into account if a role is the owner of a resource and the re-

lations between resources: stored_ in, part_ of and require. The axioms assume the

owner of a resource has the highest permission on a resource (i.e., manage) or that a

role with the manage permission on a resource can delegate any permission type on

the resource to another actor. In addition, if a role has a manage permission on an

resource which stores another resource, s/he then has the manage permission also on

the stored resource. Last, if a role has a permission on a resource, then s/he has the

same permission on each subpart of the resource. For a complete list of the axioms, we

refer the reader to (6). In the example, the Patient has delegated the access permission

to the Pharmacy on Prescription, and thus the Pharmacy has the access permission on

79



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Table 3.15: ASP Rules for SI* Model Instantiation

Instantiating Assets
A1 sec_ req_ instance(service_ instance(S,A, P ), SP,A, P )← sec_ req(S, SP, P ) ∧ service_ instance(S,A, P ) ∧ instance(A,P )
A2 sensitivity_ instance(service_ instance(S,A, P ), SL,A, P )← service_ instance(S,A, P ) ∧ instance(A,P ) ∧ sensitivity(S, SL, P )
A3 asset_ instance(service_ instance(S,A, P ), A, P )← sec_ req_ instance(service_ instance(S,A, P ), SP,A, P )∧

sensitivity_ instance(service_ instance(S,A, P ), SL,A, P )

Instantiating Permissions
A4 permission_ instance(A, service_ instance(S,A, P )← permission(P, S, PT ) ∧ instance(A,P ) ∧ service_ instance(S,A, P )

A1 states that if a security property holds for a service at organizational level, this property should
hold for each instance of that service. A2 associates a sensitivity level to an asset instance: the
asset instance has the same sensitivity of the asset at organizational level. A3 determines if a
service instance is an asset: a service instance is an asset if there is a security property that holds
for the service instance and the service instance has sensitivity level. A4 states that an agent
playing a role inherits the permissions that the role is granted on assets.

Prescription. Moreover, the Pharmacy has the manage permission on PComputer and

thus it has also the manage permission on Drug Info and Prescription that are stored in

PComputer. The Pharmacist and the Drug Manager are granted by Pharmacy the manage

permission on the PComputer. In addition, the Pharmacist also gains access permission

on the Prescription from the Pharmacy. Since the Drug Manager has manage permission

on the PComputer and Prescription is stored in PComputer, Drug Manager has manage

permission on Prescription.

The next step instantiates the SI* organizational model. We only report the axioms

to instantiate the elements of the SI* model that are relevant for the insider threat

identification. A complete list of the ASP rules to instantiate an SI* model can be

found in (141). In the following, we introduce the rules to instantiate assets, agents’

permissions on assets and the trust of permission relations between agents.

Instantiate Assets Each instance of an asset is identified with its sensitivity level.

The identification is based on the rules given in Table 3.15.

In the example Prescription is an asset owned by the role Patient. The Patient role

is played by the agents Bob, Kate, Jane, thus each of them owns one of the following

instances of Prescription:

• asset_ instance(service_ instance(Prescription,Bob,Patient), Bob, Patient),

• asset_ instance(service_ instance(Prescription,Kate,Patient), Kate, Patient),

• asset_ instance(service_ instance(Prescription,Jane,Patient), Jane, Patient).

80



3.2 Trust-supported Threats Analysis

Instantiate Permissions on Assets This step identifies the permissions that agents

have on assets. The Pharmacy role delegates the manage permission on PComputer to

role Drug Manager. Since the Pharmacy is played by the agent Pharmacy San Raffaele,

and the Drug Manager is played by agents Ellen and Mary, Ellen and Mary are granted

the manage permission on the instance of PComputer owned by Pharmacy San Raffaele.

Instantiate Trust of Permissions relation In this step the trust of permission

relationship between agents owning assets and agents having permissions on their as-

sets are identified. This entails determining the level of trust that the owner places in

the other agent for the granted permission: the trust value can be already given or it

can be computed based on trust paths by the trust model proposed in Section 3.2.3.

For example, let us suppose that the agent Bob (playing the Patient role) wants to

determine the level of trust with which he can grant the access permission on its as-

set Prescription to Ellen (playing the Drug Manager role). Since Bob has no direct

trust relationship with Ellen we need to evaluate the trust value that Bob places in

Ellen based on the following trust chain: trust_ perm_ instance(Bob, Pharmacy Saint

Claire, asset_ instance(service_ instance(Prescription,Bob,Patient), Bob, Patient), ac-

cess, very good) ; trust_ perm_ instance(Pharmacy Saint Claire, Ellen,asset_ instance

(service_ instance (Prescription,Bob,Patient), Bob, Patient), access, good). Note that

Ellen has access to the instance of Prescription owned by Bob because it is stored in

the instance of PComputer owned by Pharmacy Saint Claire on which Ellen has been

granted manage permission with good trust level and having the manage implies the

access permission. Let us assume that the trust scale and the trust evaluation function

are defined as follows:

• Very Good → 1

• Good → 0.8

• Neutral → 0.6

• Bad → 0.4

• Very Bad → 0.2

81



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

This means that values in the range [0, 0.2] are assigned the label Very Bad, the

range (0.2, 0.4] is assigned Bad, (0.4, 0.6] maps to Neutral, (0.6, 0.8] is considered Good,

and (0.8, 1] denotes Very Good.

Let us also assume that in order to compute the trust value that Bob can place

in Ellen for the access permission we use the product as the concatenator operator.

Thus, the trust level for Ellen is 1 * 0.8 = 0.8 which corresponds to label Good. Thus,

we can add to the SI* model formalization the following trust of permission relation-

ship between Bob and Ellen: trust_ perm_ instance (Bob, Ellen, asset_ instance (ser-

vice_ instance(Prescription,Bob,Patient), Bob, Patient), access, good).

For the example, we are interested in determining all the possible insiders for the

instance of Prescription asset owned by the Patient Bob. The reasoning supported by

all the previous formalization steps report the following insiders:

• threat(Dr Stefano,asset_ instance(service_ instance(Prescription, Bob, Patient),

Bob, Patient), confidentiality, moderate)

• threat(Dr Alex,asset_ instance(service_ instance(Prescription, Bob, Patient), Bob,

Patient), confidentiality, moderate)

• threat(Ellen,asset_ instance(service_ instance(Prescription, Bob, Patient), Bob,

Patient), confidentiality, moderate)

• threat(Mary,asset_ instance(service_ instance(Prescription, Bob, Patient), Bob,

Patient), confidentiality, high)

• threat(Ellen,asset_ instance(service_ instance(Prescription, Bob, Patient), Bob,

Patient), availability, moderate) threat(Mary, asset_ instance(service_ instance

(Prescription, Bob, Patient), Bob, Patient), availability, high)

Dr Stefano and Dr Alex are two insiders who represent a moderate threat to the confi-

dentiality of Prescription instance owned by Bob because they have been granted access

permission on the asset instance and they are trusted good for such permission by Bob.

Ellen and Mary are insiders to both the confidentiality and the availability of Prescription

asset owned by Bob because the following conditions hold:

• the asset instance is stored in the instance of PComputer owned by the Pharmacy

Saint Claire and Pharmacy San Raffaele

82



3.2 Trust-supported Threats Analysis

• Pharmacy Saint Claire trusts good Ellen with the manage permission on the instance

of PComputer owned by the Pharmacy San Raffaele

• Pharmacy San Raffaele trusts bad Mary with the manage permission on the instance

of PComputer owned by the Pharmacy San Raffaele

• Ellen and Mary thus have the same permission on the Prescription asset owned by

the Patient Bob stored in the instances of PComputer owned by Pharmacy Saint

Claire and Pharmacy San Raffaele respectively

• having the manage permission on an asset implies to have also the access permis-

sion on an asset

• Ellen and Mary are trusted Bob good and bad with the manage permission on the

instance of Prescription owned by Bob

• manage permission is sufficient to violate the availability of a given asset while the

access permission is sufficient to violate the confidentiality of an asset.

3.2.6 Discussion

Our framework provides security engineers with a reasoning that automatically produces

a list of possible insiders for organizational assets and the risk they may represent to

the organization. The reasoning determines if an agent is an insider for an asset and the

risk the agent brings about, based on the sensitivity of the asset, the security property

specified for it, the permission assigned to the agent on the asset, and the level of trust

the asset owner places in the agent for the granted permission. Once the insider threat

is identified, further measures can be taken by the organization.

There are two scenarios in which using our approach would be beneficial. The first

scenario comprises an existing system onto which we want to analyse potential threats,

thus following a reactive approach. In this case, we can exploit the existing information

about the stakeholders (customers and employees) of the system in order to provide

an accurate SI* model, including existing trust relationships. This would yield a set

of threats that we can tackle by deploying security solutions on top of the system. In

the second scenario, which represents the primary motivation in the context of this

thesis, we apply the approach in a proactive manner when the system is in its early

83



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

stage of development. In this case, given that we still lack information (e.g. about

concrete instances of the different roles), we can generate fake agents, services and

initial relationships automatically, and use our approach to study potential threats that

may originate from these instances. We can repeat the process several times so that

we can extract the most likely potential threats and their cause, which can yield key

information to specify new security requirements or to design new security solutions

during the early phases of the SDLC.

We are aware that our approach has some limitations. First, the validity of the

results of the reasoning strictly depends on the quality and completeness of the SI*

model, which in turn depends on the level of expertise of the requirements engineer.

However, this is not different in more traditional risk assessment processes. Second,

the visual notation of SI* might not scale well for complex application scenarios and

therefore simplifications of the notation should be explored.

We are planning to evaluate the strengths and limitations of our framework by

conducting a controlled experiment where master students and professionals apply the

framework to a real industrial application scenario.

3.3 Eliciting and Representing Trust and Reputation Re-
quirements

This section deals with the representation of trust and reputation information early

in the analysis stage. The idea is to provide requirements engineers with expressive

ways to specify how trust integrates in the system, how it affects the context of the

system, and how it is affected by such context. For this purpose, we integrate trust and

reputation notions into the Problem Frames notation, which considers the context of a

system as a first-class citizen.

First, we give an overview of Problem Frames and its extensions, and we describe

how we can formally reason about and check the consistency of the models. We also

present the application of our work to a smart grid scenario and a final discussion.

3.3.1 Problem Frames

Problem frames are a means to describe software development problems. They were

proposed by Jackson (54), who described them as follows: “A problem frame is a kind

84



3.3 Eliciting and Representing Trust and Reputation Requirements

of pattern. It defines an intuitively identifiable problem class in terms of its context and

the characteristics of its domains, interfaces and requirement.”. It is described by a

frame diagram, which consists of domains, interfaces between them, and a requirement.

In Problem Frames, amachine represents the software to be developed, and a domain

is a part of the world we are interested in. Jackson distinguishes the domain types

CausalDomains that comply with some physical laws, LexicalDomains that are data

representations, and BiddableDomains that are usually people. Domains are connected

by interfaces that consist of shared phenomena, which may be events, operation calls,

messages and the like. Shared phenomena are observable by at least two domains, but

are controled by only one domain, indicated by an exclamation mark.

The task of the developer is to construct a machine based on the problem described

via the problem frame approach that improves the behaviour of the environment where

it is integrated, according to the requirements. Problem frames help analyzing the

problems to be solved by showing which domains have to be considered, and what

knowledge must be described and reasoned about.

Software development with problem frames proceeds as follows: first, the environ-

ment in which the machine will operate is represented by a context diagram. Like a

frame diagram, a context diagram consists of domains and interfaces, but the diagram

does not contain requirements. Domain knowledge diagrams focus on some particular

domains of the context diagram and elicit further domain knowledge about them in

terms of facts and assumptions. Then, the problem is decomposed into subproblems.

Each subproblem is represented by a problem diagram containing its domains, phe-

nomena, interfaces, and their relations to at least one requirement that expresses the

subproblem.

UML Profile for Problem Frames (UML4PF)9 is a UML profile that extends class

diagrams with stereotypes that contain the notions of problem frames (30, 49). The

next section looks further into UML4PF and explains the extensions performed in order

to add trust knowledge.

3.3.2 Trust Extensions to UML4PF

We proceed by extending UML4PF with trust and reputation concepts, as depicted in

Figure 3.6.
9http://www.uml4pf.org.

85

http://www.uml4pf.org.


3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Figure 3.6: A Trust Extension of the UML4PF Profile

abbreviation: String
description: String

<<stereotype>>
Domain

<<stereotype>>
Biddable Domain

(uml)
Class

<<stereotype>>
Machine

<<stereotype>>
Lexical Domain

<<stereotype>>
Causal Domain

<<stereotype>>
Fact

abbreviation: String [1]
description: String [1]

<<stereotype>>
DomainKnowledge

<<stereotype>>
Assumption

<<stereotype>>
Statement

<<stereotype>>
Entity

<<stereotype>>
Trust Information

<<stereotype>>
Human Entity

<<stereotype>>
Computation Engine

<<stereotype>>
Reputation Information

<<stereotype>>
Reputation Engine

<<stereotype>>
Trust  Engine(uml)

Class

(uml)
Property

<<stereotype>>
Trust Relationship

<<stereotype>>
Reputation Statement

<<stereotype>>
Claim

trustor: Entity
trustee: Entity
trustValue: TrustValue
timestamp: String [1]

source: Entity
target: Entity
claim: Claim
timestamp: String [1]

reputation: String [1]
trustRole: TrustRole
trustRel: TrustRelationship
objFactor: ObjectiveFactor
subFactor: SubjectiveFactor

<<stereotype>>
Event

about: String [1]
scale: String [1]
value: String [1]
format: Format
dimension: Integer
when: ClaimTemp

source: String [1]
consequence: String [1]

engineType: EngineType

<<enumeration>>
TrustRole

trustor
trustee
trustedThirdParty
witness
source
target
factor producer

<<enumeration>>
EngineType

summation
flow
belief
discrete
continuous
fuzzy

<<stereotype>>
Reputation Update Event

<<stereotype>>
Trust Update Event

(uml)
Dependency

<<stereotype>>
refersTo

<<stereotype>>
source

<<stereotype>>
considers

<<stereotype>>
Requirement

<<stereotype>>
securityRequirement

<<stereotype>>
trusts

<<stereotype>>
TrustValue

format: Format
scale: String [1]
value: String [1]
dimension: Integer

<<enumeration>>
Format

discrete
continuous
label

<<stereotype>>
Uncertainty

<<stereotype>>
Time

<<stereotype>>
Trust  Factor

value: String [1]
how: FactorMode
who: String [1]

<<stereotype>>
Objective Factor

<<stereotype>>
Subjective Factor

<<enumeration>>
FactorMode

assigned
monitored

trustDisposition: String [1]

<<enumeration>>
ClaimTemp

after interaction
any moment

<<stereotype>>
target

<<stereotype>>
constrains

The class with the stereotype machine represents the software to be developed. The

classes with some domain stereotypes, e.g., CausalDomain or BiddableDomain represent

problem domains that already exist in the application environment. The stereotype

86



3.3 Eliciting and Representing Trust and Reputation Requirements

causalDomain indicates that the corresponding domain is a causal domain, and the

stereotype biddableDomain indicates that it is a biddable domain. Interfaces among

domains are represented as associations, and the name of the associations contains the

phenomena and the domains controlling the phenomena.

Domain Knowledge consists of Statements about domains, in particular, Facts that

we can prove and Assumptions that we consider during software development. A Re-

quirement is a specific kind of Statement about domains that shall hold after the Ma-

chine has been built. Requirements constrain at least one domain and can referTo

further domains. A securityRequirement is a statement about the confidentiality, in-

tegrity, or availability concerns of domains and complement at least one functional

requirement in this regard.

We use the profile to create context diagrams, domain knowledge diagrams, and

problem diagrams using the elements described in Section 3.3.1. Our trust extensions

for the UML4PF profile are shown in Figure 3.610 in grey, and are underpinned by the

conceptual background provided in Chapter 2.

Trust concepts are represented as stereotypes or attributes of these stereotypes.

These stereotypes are part of a domain. Entity is a domain and Human Entity is a

Biddable Domain. Trust Information and Reputation Information are Lexical Domains.

When adding trust and reputation, the goal is to build a Machine that encapsulates

the behaviour of the trust and reputation mechanics. We specify this by stating that

Computation Engines are Machines, which in turn can be Trust Engines or Reputation

Engines, depending on whether they calculate trust or reputation, respectively.

Trust Engines are in charge of calculating Trust Values for Trust Relationships

among Entit ies. These engines take Trust Factors, associated to Entity as inputs, which

may be Objective Factors or Subjective Factors. Objective factors can be assigned

explicitly or can be obtained by monitoring; in any case, they are responsibility of

an Entity playing the role Factor Producer. Computation Engines can have different

mathematical mechanics, including belief or fuzzy logics. Uncertainty estimates the

reliability/credibility of a trust, reputation or factor value, whereas Time states when

the Trust Information or Reputation Information was generated, or when Factors were

produced.
10Note that for readability purposes we simplified the profile and several elements are not illustrated,

such as display domains and assets.

87



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

An Entity has reputation, plays a TrustRole (e.g. trustor, trustee, witness, etc),

has at least one TrustRelationship and may have several Objective Factors or Subjective

Factors. In addition, a Human Entity may have a trust disposition that states his

propensity towards higher or lower trust values.

A Trust Relationship consists of a trustor, which is the Entity placing trust, a trustee,

which is the Entity on which trust is placed, a TrustValue which is the actual value of

the relationship, and a timestamp to keep track of the temporal factor. A trust value

has a format, which represents the way the trust value is represented. It also has a

scale, a dimension stating whether it is composed of a single value or a tuple of values.

Entit ies playing the role Source can make Claims about other Entit ies with role

Target. This information is aggregated in the form of Reputation Statements, which are

used by Reputation Engines to compute reputation scores. A SourceEntity can make

Claims after an interaction or just asynchronously at any moment.

A Reputation Statement consists of an Entity playing the source role, an Entity

playing the target role, a Claim and a timestamp to keep a record of the temporal

dimension. A Claim is about some feature of the target entity, it has a scale, a format,

which represents the way the claim is represented, a dimension stating whether it con-

sists of a single value or a tuple of values. A Claim also specifies when the claim is

issued, which can be right after an interaction or at any moment.

Finally, Events are circumstances in the system that trigger a trust or reputation up-

date. These events can be visualized by dynamic diagrams, such as sequence diagrams,

and have a source that triggers it, and a consequence.

3.3.3 Formal Checking of Trust

One advantage of using UML is that it enables requirements engineers to query the

models using the Object Constraint Language (OCL). This can be useful to find prob-

able missing information. Table 3.16 lists the expressions that can be formulated in

OCL for both consistency checks and reasoning support. Consistency checks identify

mistakes prone to being made by requirements engineers, whereas reasoning support

expressions encompass issues that may require a detailed discussion among engineers.

Listing 3.1 and 3.2 show the listings of two of the OCL expressions. The interested

reader can check the work by Beckers et al. (13) for the rest of expressions.

88



3.3 Eliciting and Representing Trust and Reputation Requirements

Listing 3.1: IDHE001. List all biddable domains that are not a human entity
1 −− L i s t a l l b iddable domains that are not a human en t i t y
2
3 l e t stereotypeMain : S t r ing =
4 ’ BiddableDomain ’
5 in
6
7 l e t
8 b iddab l e s : Set ( Class ) =
9

10 Class . a l l I n s t a n c e s ( )−>s e l e c t (
11 l e t f i r s t : Set ( Stereotype ) =
12 getApp l i edSte reotypes ( )−>asSet ( )
13 in
14 f i r s t −>union ( f i r s t −>c l o s u r e (
15 gene ra l . oclAsType ( Stereotype ) ) )
16 . name−>inc l ud e s ( stereotypeMain ) )
17 in
18
19 l e t stereotypeHumanies : S t r ing = ’Human␣Entity ’ in
20
21 l e t
22 humanies : Set ( Class ) =
23
24 Class . a l l I n s t a n c e s ( )−>s e l e c t (
25 l e t f i r s t : Set ( Stereotype ) =
26 getApp l i edSte reotypes ( )−>asSet ( )
27 in
28
29 f i r s t −>union ( f i r s t −>c l o s u r e (
30 gene ra l . oclAsType ( Stereotype ) ) )
31 . name−>inc l ud e s ( stereotypeHumanies ) )
32 in
33
34 b iddab l e s − humanies

Listing 3.2: CCTV001. Check that all dependencies with a trust relationship have a
dependency to a TrustValue

1 Check that a l l dependenc ies with a t r u s t s r e l a t i o n s h i p have a dependency to a
TrustValue

2
3
4 −− Check that a l l dependenc ies with a t r u s t s r e l a t i o n s h i p have a depen− dency

to a TrustValue
5
6
7 −− Get a l l dependenc ies with a t r u s t s s t e r eo type
8
9 l e t

10 s t e r eo type : S t r ing = ’ t r u s t s ’

89



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

11 in
12
13 l e t
14 Trusts : Set (Dependency ) = Dependency . a l l I n s t a n c e s ( )−>s e l e c t (
15
16 l e t f i r s t : Set ( Stereotype ) = getApp l i edSte reotypes ( )−>asSet ( )
17 in
18
19 f i r s t −>union ( f i r s t −>c l o s u r e (
20 gene ra l . oclAsType ( Stereotype ) ) )
21 . name−>inc l ud e s ( s t e r eo type ) )
22 in
23
24
25 −− Get a l l Trust Values
26
27
28 l e t stereotypeMain : S t r ing =
29 ’ Trust ␣Value ’
30 in
31
32 l e t
33 TrustValueClasses : Set ( Class ) =
34
35 Class . a l l I n s t a n c e s ( )−>s e l e c t (
36 l e t f i r s t : Set ( Stereotype ) =
37 getApp l i edSte reotypes ( )−>asSet ( )
38 in
39
40 f i r s t −>union ( f i r s t −>c l o s u r e (
41 gene ra l . oclAsType ( Stereotype ) ) )
42 . name−>inc l ud e s ( stereotypeMain ) )
43 in
44
45 −− Get a l l Target Dependencies o f t r u s t va lue s
46
47 l e t stereotypeTargetOne : S t r ing = ’ t r u s t s ’ in
48
49 l e t haveTrustValues : Set (Dependency ) = TrustValueClasses−>s e l e c t (
50 c l ientDependency . t a r g e t . ge tApp l i edSte reotypes ( )
51 . name−>inc l ud e s ( stereotypeTargetOne ) )
52 . c l ientDependency . t a r g e t . oclAsType (Dependency )−>asSet ( )
53 in
54
55
56 −− Subtract t r u s t dependenc ies that have t r u s t va lue s
57
58
59 l e t notHaveTrustValues : Set (Dependency ) =
60
61 Trusts−>−(haveTrustValues )
62 in

90



3.3 Eliciting and Representing Trust and Reputation Requirements

63
64 notHaveTrustValues−>isEmpty ( )

3.3.4 Application Example: Smart Grid

Table 3.16: OCL Expressions that support Trust-based Security Reasoning and Consis-
tency Checks

OCL-EXPR-ID
Referenced
Class

Expression Supporting Analysis Questions

Reasoning Support

IDHE001 HumanEntity
- List all biddable domains that are not a
human entity

- Are human entities missing?

IDEN001
Entity,
HumanEntity

- List all domains that are not entities or
human entities

- Are some entities or human entities not
elicited yet?

IDHE002 HumanEntity
- List all human entities that do not have a
trusts relation.

- Are trust relations of HumenEntities missing?

IDEN002 Entity
- List all entities that do not have a trusts
relation.

- Are trust relations of Entities missing?

TRTE001 TrustEngine
- List all machine domains that have a direct
relation to a TrustEngine

- Are Trust Engines missing in the model?

TRRE001
Reputatio-
nEngine

- List all TrustEngines that have a direct
relation to a ReputationEngine

- Are ReputationEngines missing in the model?

TRJE001 TrustFactor
- Check that the how attribute is set and it is
set either to "assigned" or "monitored".

- Are all the trust factors either “assigned” or
“monitored”?

TRCL001 Claims
- Check that claims have set the when attribute
to either to “after interaction” or “any moment”.

- Do all claims specify when they must be
provided.

TROF001 ObjectiveFactor
- List all trust relationships that have no
objective factors.

- Are all objective factors of the entity
considered?

TRSF001 SubjectiveFactor
- List all trust relationships that have no
subjective factors.

- Are all subjective factors of the entity
considered?

Consistency Checks

CCRS001 HumanEntity
- Check that all HumanEntities have the value
trustRole set.

- Are HumanEntities modelled correctly ?

CCRS002 Entity
- Check that all EntitiesEntities have the value
trustRole set.

- Are Entities modelled correctly ?

CCCL001 Claim
- Check that all sources of claims are a Human
Entity

- Are claims modelled correctly ?

CCCL002 Claim
- Check that all targets of claims are an Entity
or Human Entity

- Are claims modelled correctly with respect to
entities?

CCCL003 Claim - Check that all claims have targets and sources - Have claims an origin and a target ?

CCSF001 SubjectiveFactor
-Have subjective factors the who value set and
refer to a trust relationship?

- Are trust relationships modelled considered
subjective factors ?

CCTV001 TrustValue
- Check that all dependencies with a trusts
relationship have a dependency to a TrustValue

- Are trust relationships modelled completely ?

CCLTR001 Trustor, Trustee
- Check that trust relationships have a trustor
and a trustee.

- Are all trust relationships modelled correctly?

CCLTR002 TrustFactor

- Check that All classes with a stereotype trust
factor including the inheriting classes subjective
and objective factor have a dependency to a
trusts relationship or to an entity

- Are all trust factors refer to trust relationship
or to entities?

As an example of our approach, we use the Common Criteria protection profile for

the smart metering gateway (21), which defines security requirements for this element.

91



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

The gateway is a part of the smart grid, which is a commodity network that intelligently

manages the behaviour and actions of its participants. The commodity consists of

electricity, gas, water or heat supply that is distributed via a grid or network. The

benefit of this network is envisioned to be a more economic, sustainable and secure

supply of commodities. Smart metering systems meter the production or consumption

of energy and forward the data to external entities. This data can be used for billing and

steering the energy production. We use the trust and reputation extensions of UML4PF

introduced in Section 3.3.2 in order to integrate trust and reputation requirements.

Likewise, we propose the methodology depicted in Figure 3.7 and we explain and apply

each step next.

Figure 3.7: Methodology Proposed for Engineering Trust and Reputation Requirements
into Systems

 e
xt

er
na

l 
in

pu
t

m
et

ho
d

in
pu

t/
ou

tp
ut

1. Establish the 
Context

Roles: Software 
Engineer, Domain 

Expert 

Context Diagram Domain Knowledge 
Diagrams with relevant 
trust and reputation 
information

Unstructured System 
and Environment 
Description

2. Elicit Trust and 
Reputation Knowledge

Roles: Software 
Engineer, Trust Engineer, 

Domain Expert

3. Trust Refinement and 
Integration

Roles: Software 
Engineer, Trust Engineer

4. Model Reasoning via 
OCL

Role: Software Engineer

Refined Domain Knowledge 
Diagrams, Problem Diagrams 
that contain elicited security 
requirements and computation 
engines

Consistent and evaluated 
diagrams with regard to 
trust and reputation

Trust and Reputation 
Information OCL Expressions for 

Model Consistency

Step 1: Establish the Context Trust relationships are only valid for a specific

context. The software engineer and the domain expert describe the context of the

software development in a context diagram. This diagram describes the machine in

its environment using domains and interfaces between them. A set of textual func-

tional requirements refers to the domains in the context diagram. Afterwards, the trust

engineer11 elicits assets and security requirements for them.

11We use the term trust engineer to refer to both a security engineer and an expert in trust models.
In some cases, these profiles may be covered by the same person. In others though, two different persons
with more specialized profiles may be required.

92



3.3 Eliciting and Representing Trust and Reputation Requirements

Figure 3.8 shows the context diagram that describes the machine to be built in

its environment. The Machine is the SmartMeteringGateway, which serves as a bridge

between the Wide Area Network wan and the Home Area Network han of the Consumer.

The Meter is connected to the machine via a Local Metrological Network lmn. This

is an in-house equipment that can be used for energy management. The Controllable

Local System (CLS) is a device located in the consumer house and which is connected

to the smart grid system; therefore, the energy of the CLS can be controlled by the

system. Some examples include the heater, the oven or the lights over an area of the

house.

As for requirements, the Meter sends meter data to the SmartMeteringGateway,

which can store this data. The Meter can also receive updates from the AuthorizedEx-

ternalEntity forwarded via the SmartMeteringGateway. The AuthorizedExternalEntity

receives meter data in fixed intervals from the SmartMeteringGateway. The Consumer

can retrieve meter data from the SmartMeteringGateway. The Consumer can also con-

figure the SmartMeteringGateway, send commands to the CLS, receive status messages

from the SmartMeteringGateway and store user data in it.

Figure 3.8: Context Diagram for the Smart Metering Gateway

<<Machine>>
SmartMeteringGateway

<<BiddableDomain>>
AuthorizedExternalEntity

<<causalDomain>>
Meter

<<causalDomain>>
CLS

<<BiddableDomain>>
Consumer

1

<<han>>
IF_GW_U

<<lmn>>
IF_GW_M

<<wan>>
IF_GW_WAN

<<han>>
IF_GW_CLS

Step 2: Elicit Trust and Reputation Knowledge The domain expert and the

trust engineer have to work together. The former elicits trust-unaware domain knowl-

edge diagrams, whereas the latter (together with the former) provides an initial trust

domain knowledge, where the high level aspects of the trust and reputation models are

first sketched. These aspects include specifying trust entities, their trust relationships,

claims, and trust factors.

93



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Once the context is established, trust and reputation information must be elicited.

We show in Figure 3.9 a domain knowledge diagram focusing on the main elements of

one trust relationship between the HumanEntity Consumer and the Entity CLS. The

trust relationship has a TrustValue and there is a SubjectiveFactor associated to the

Consumer.

On the other hand, Figure 3.10 shows relevant information for reputation purposes.

Concretely, we are specifying which entities can make Claims about others, and which

objective factors are considered to yield those claims. In this example, a HumanEntity

AuthorizedExternalEntity can make Claims about the Entity CLS, and the Objective-

Factor UnplannedReparis refers to the CLS.

Figure 3.9: Domain Knowledge Diagram - Analysing the Trust Relationship Consumer-
CLS

<<Entity>>
CLS

<<HumanEntity>>
Consumer

<<SubjectiveFactor>>
ExplicitTrust

<<refersTo>> 

<<trusts>> 

<<TrustValue>>
Consumer-CLS-Trustvaule

<<refersTo>> 

Figure 3.10: Domain Knowledge Diagram - Analysing Reputation Information

<<Entity>>
CLS

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<Claim>>
AuthorizedExternalEntity-CLS

<<source>> 

<<target>> 

<<ObjectiveFactor>>
UnplannedRepairs

<<refersTo>> 

Step 3: Trust Refinement and Integration The information in the trust domain

knowledge diagrams is refined in this step by the software and trust engineers. The

final diagrams contain detailed information about trust and reputation relationship, e.g.

roles played by the entities, insight on the claims, the trust values, and objective and

subjective factors. Figure 3.11 shows the refinement of the previous domain knowledge

diagrams.

The Consumer plays a trustor role in the Consumer-CLS-Trust relationship, it uses

the subjective factor ExplicitTrust for this relationship and his trust disposition is neu-

94



3.3 Eliciting and Representing Trust and Reputation Requirements

tral12. The ExplicitTrust subjective factor has 3 as initial value and is assigned by

the Consumer. The Consumer-CLS-Trustvalue is a unidimensional continuous value

between 0 and 5, with threshold value 3. This latter value refers to the threshold

over which we assume that a trustor trusts a trustee. The CLS plays a trustee role

in the Consumer-CLS-Trust relationship, although it also plays the target role with

regard to the AuthorizedExternalEntity-CLS claim. It presents an objective factor,

UnplannedRepairs, which is monitored (in contrast to manually assigned). The Au-

thorizedExternalEntity plays a source role because it can make claims about the CLS

after an interaction with it. Claims are about the past behaviour of the target, and are

represented by a unidimensional discrete number between 0 and 10.

In addition to refining trust and reputation information, the trust engineer and

the software engineer collaborate to analyse how the respective trust and reputation

engines integrate into the system-to-be and their relationship with the system require-

ments and the machine. Figure 3.12 depicts the interactions between the three ma-
12We consider that for this scenario, a neutral trust disposition is reasonable, whereas other scenarios

might require assuming that trust dispositions are lower or higher.

Figure 3.11: Domain Knowledge Diagram - Refinement of Trust and Reputation Infor-
mation

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<Claim>>
AuthorizedExternalEntity-CLS

about: past behaviour
scale: 0..10
format: discrete
dimension: 1
when: after interaction

<<source>> <<target>> 

<<ObjectiveFactor>>
UnplannedRepairs

description: It refers the amount of unscheduled 
maintenance activities and bug fixes of the CLS 
how: monitored

<<refersTo>> 

trustRole: Source

<<Entity>>
CLS

<<HumanEntity>>
Consumer

<<SubjectiveFactor>>
ExplicitTrust<<refersTo>> 

<<trusts>> 
Consumer-CLS-Trust 

<<TrustValue>>
Consumer-CLS-Trustvalue

<<refersTo>> 
trustRole: Trustor
subFactor: ExplicitTrust
trustDisposition: neutral

value: 3
how: assigned
who: Consumer

format: continuous
scale: 0…5
value: 3
dimension: 1

trustRole: Trustee, target
objFactor: UnplannedRepairs

95



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

chines of the system: the SmartMeeteringGateway, the CLS-TrustEngine and the CLS-

ReputationEngine. Both computation engines yield continuous values. The trust engine

can retrieve reputation values from the reputation engine in order to compute trust val-

ues13. The SmartMeeteringGateway can retrieve trust information and act accordingly.

Figure 3.12: Problem Diagram - Describing Trust and Reputation Engines

<<Machine,Entity>>
SmartMeteringGateway

<<causalDomain,Entity>>
CLS

<<BiddableDomain,HumanEntity>>
Consumer

<<Machine,TrustEngine>>
CLS-TrustEngine

engineType: continuous
description: "The engine calculates 
a trust value for CLS."

<<Machine,ReputationEngine>>
CLS-ReputationEngine

engineType: continuous
description: "The engine calculates 
a reputation value for CLS."

<<securityRequirement>>
Preventing Data Leackage

<<considers>>

<<Requirement>>
R1

<<complements>>

<<constrains>>

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<considers>>

CLS-TE!{getReputationValue}

CLS-TE!{sendTrustValue}

SMG!{sendCLSWarning}

We consider the following functional requirement of the smart metering gateway in

our example: R1 The CLS can receive energy consumption data from the Meter. We

elicit the security requirement Prevent Data Leakage that complements the functional

requirement R1. If the value of the Consumer-CLS-Trustvalue, which is computed by

the trust engine, is above the minimum trust threshold (initially set to 3), no action shall

be taken. Otherwise, communications with the CLS should be blocked by the Smart-

MeeteringGateway. In addition, the claims issued by the AuthorizedExternalEntity (i.e.

AuthorizedExternalEntity-CLS ) are used by the reputation engine to yield a reputation

value, which is fed into the trust engine. Both the trust events and the consequences

of trust decisions can be sketched by means of dynamic diagrams, as depicted in the

example in Figure 3.13.

Step 4: Model Reasoning via OCL We use the OCL expressions in Table 3.16 in

this step. In particular, we illustrate the expression CCCL001 in detail in the following.

13This is the traditional way of relating trust and reputation: reputation is a valuable source of
information for trust computation.

96



3.3 Eliciting and Representing Trust and Reputation Requirements

Figure 3.13: Sequence Diagram - Describing Trust and Reputation Events

<<CausalDomain, 
Entity>

CLS

<<Machine, 
Entity>

SmMeetGateway

<<Machine, 
RepEngine>>

CLS-ReputationEngine

<<Machine, 
TrustEngine>>

CLS-TrustEngine
<<TrustInfo>>

Consumer-CLS
<<ReputationInfo>>

CLS Reputation

Block CLS 
communication

Weekly Checking

<<BiddableDomain, 
HumanEntity>

AuthorizedExEntity

Claim (Negative)

Bad response

Claim
Update reputation

New reputation value
Update trust

New trust value (below threshold)

Everything starts with the AuthorizedExternalEntity performing a weekly check on an CLS. After
such interaction (which we assume is negative), the AuthorizedExternalEntity issues a negative
claim, which is forwarded by the SmartMeeteringGateway to the ReputationEngine, which uses this
claim to recompute a new reputation value. This new reputation value is sent to the TrustEngine,
which recalculates the trust value between the Consumer and the CLS, and this new trust value
(together with some other information such as the the threshold of the relationship) is sent back
to the SmartMeeteringGateway. As a result of the new trust value being lower than the threshold,
the SmartMeeteringGateway blocks the communication with the CLS, because the Consumer no
longer trusts the CLS.

The expression shown in Listing 3.3 collects all classes with the stereotype Claim

(lines 1-8) and all dependencies with the stereotype source (lines 9-15). The expression

filters the dependencies that start at a class with the stereotype Claim and end at a

class with the stereotype HumanEntity (lines 16-21). Finally, the expression subtracts

the classes with the stereotype Claim that are at the end of the previously mentioned

dependencies from all classes with the stereotype Claim (lines 22-24). In our case all

the claims originate from the human entities and the expression returns an empty set.

Otherwise we would get a list of classes for analysis.

Listing 3.3: CCL001. List all sources of claims that are not a Human Entity
1 l e t stereotypeMain : S t r ing = ’Claim ’ in
2 l e t
3 c l a imCla s s e s : Set ( Class ) =
4 Class . a l l I n s t a n c e s ( )−>s e l e c t (
5 l e t f i r s t : Set ( Stereotype ) = getApp l i edSte reotypes ( )−>asSet ( ) in
6 f i r s t −>union ( f i r s t −>c l o s u r e ( g ene ra l . oclAsType (
7 Stereotype ) ) ) . name−>inc l ud e s ( stereotypeMain ) )

97



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

8 in
9 l e t s t e r eo type : S t r ing = ’ source ’ in

10 l e t
11 Sources : Set (Dependency ) = Dependency . a l l I n s t a n c e s ( )−>s e l e c t (
12 l e t f i r s t : Set ( Stereotype ) = getApp l i edSte reotypes ( )−>asSet ( ) in
13 f i r s t −>union ( f i r s t −>c l o s u r e ( g ene ra l . oclAsType (
14 Stereotype ) ) ) . name−>inc l ud e s ( s t e r eo type ) )
15 in
16 l e t s t e r eo typeSource : S t r ing = ’Claim ’ in
17 l e t s t e r eo typeTarget : S t r ing = ’Human␣Entity ’ in
18 l e t
19 DependencyClaims : Set (Dependency ) =
20 Sources−>s e l e c t ( source . ge tApp l i edSte reotypes ( ) . name −>inc l ud e s (

s t e r eo typeSource ) and ta r g e t . ge tApp l i edSte reotypes ( ) . name −>inc l ud e s (
s t e r eo typeTarget ) )

21 in
22 l e t co r r ec tC la ims : Set ( Class ) =
23 DependencyClaims . source . oclAsType ( Class )−>asSet ( ) in
24 c la imClasse s−cor rec tC la ims

We illustrate our tool support in Figure 3.14, which shows the modelling of a

UML4PF trust model. Figure 3.15 depicts an OCL expression executed on that model

and its results.

3.3.5 Discussion

The proposed methodology uses an extension over the problem frames notation in order

to accommodate trust and reputation concepts and relationships among these concepts.

Intensive context-awareness is an envisioned property of future, complex software sys-

tems, and problem frames fit well due to their focus on describing the context around

the system-to-be. Also, the context becomes of paramount importance when analysing

trust relationships and reputation information, because most of the valuable sources of

information for computing trust and reputation will come from this context.

We discussed the approach with the security practitioners in the ClouDAT project14

in a brainstorming session. We presented the methodology to practitioners in the field

of security engineering that were familiar with the Protection Profile. As a result, we

found that our methodology helped the practitioners distinguish between the concepts

of trust and reputation.

The practitioners mentioned that this structured procedure helps identify trust re-

lationships, supports the identification of reputation claims, helps not forget relevant
14http://ti.uni-due.de/ti/clouddat/en/

98

http://ti.uni-due.de/ti/clouddat/en/


3.3 Eliciting and Representing Trust and Reputation Requirements

entities and their attributes, and supports the creation of consistent trust and reputation

diagrams.

However, the following concerns towards our methodology were raised:

• The results of the OCL reasoning expression might lead engineers to add random

elements to achieve completeness.

• Reading the output of all expressions might be too time consuming.

• The UML profile and the methodology have to be learned beforehand.

• Our method does not integrate into common security development life cycles such

as the Microsoft SDL15.

The outcome of our methodology is a set of requirement artifacts that represent

functional requirements and trust concerns of the system. Given that these artifacts

are shaped around the problem frames approach, and that this approach encourages the

modularization of the system into domains, the artifacts provide a good starting point

for sketching the architecture of the system. In our methodology, trust and reputation

models are decomposed in their constituent elements, which provide developers with

sufficient information to implement the models and to integrate them into the system

in the next stages of the development life cycle.

15Microsoft Security Lifecycle http://www.microsoft.com/security/sdl/default.aspx.

99

http://www.microsoft.com/security/sdl/default.aspx


3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Figure 3.14: Tool-Supported Modelling of Trust-Aware UML4PF

Figure 3.15: Tool-Supported OCL Evaluation

100



3.4 Designing Trust and Reputation Solutions

3.4 Designing Trust and Reputation Solutions

We provide an extension over UML called UMLTRep in order to help requirements

engineers and software designers have a clear understanding of the trust and reputation

requirements of the system, as well as a means to provide an initial specification of the

trust and reputation solutions. We choose UML because it is a de facto standard in

the industry and because other relevant security-oriented profiles exist that could be

potentially integrated with ours.

This approach can be considered complementary to the one presented in Section 3.3,

where we extended the Problem Frames notation and methodology to specify and in-

tegrate trust and reputation requirements into the system. The main difference with

the previous approach is that now we are not so concerned with the context where the

system will operate. Our focus now is on providing a description of trust and reputation

elements that allows an easy implementation in the subsequent phases of the SDLC. We

also provide now two valuable pieces of information that were missing in the Problem

Frames approach: the rationale behind using trust and reputation, that is, the decision-

making process that trust and reputation aim to assist; and an infrastructure view of

the system through deployment diagrams. This, together with the rest of information

conveyed by class diagrams, provide a holistic view of the trust and reputation models

that we want to implement.

Even when we do not extend any behavioural diagram, we consider indispensable

their use (e.g. activity diagrams) in order to show the possible trust events that can

be triggered in the application. We consider that a trust event is something that may

occur in the system so that it triggers an update of trust relationships or reputation.

These diagrams are useful to represent the dynamic aspects of trust and reputation

models, but more importantly, to make clear the glue and interaction patterns between

the trust and business layers of the application. There are three important questions

that these diagrams should answer: who, how and what? Who refers to which actor in

the system can trigger the event, whereas how indicates how the actor actually triggers

the event. The consequences of the event is the answer to what. In Section 3.4.4 we

discuss how this information can be presented in an activity diagram.

The following sections describe the extended diagrams in further detail and explain

how the profile can be used in an eHealth case study, as well as some lines for future

101



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

research.

3.4.1 Use Case Diagram

The goal of use case diagrams in the context of trust is to depict, at a glimpse, the

trust relationships that exist between the different entities in the system. We can also

describe which entities can make a claim about which other entities, thus incorporating

reputation information in the diagram. There is however more interesting information

that we can represent in this diagram: the rationale for the trust or reputation model

and how it affects to the use cases. The extensions performed on the use case diagram

are summarized in Table 3.17.

Table 3.17: Use Case Diagram Extensions

Stereotype Base Class Explanation
Trustor Actor Entity playing the trustor role
Trustee Actor Entity playing the trustee role
Witness Actor Entity playing the witness role
Source Actor Entity capable of making a claim
Target Actor Entity capable of receiving a claim
FactorProducer Actor Entity capable of producing a factor
Trusts Connector Trust relationship
Claims Connector Source makes a claim about a Target
Decides Connector Use case affected by a trust/reputation decision

Trustor, trustee, witness, source, target and FactorProducer are roles that entities

can play in the system. Trust relationships are made explicit by means of the extension

trusts, whereas claims represent that a given source can make a claim about a given

target. As the ultimate goal of trust is aiding in making a decision, we also add the

decides connector, which captures the idea that a use case can be affected by trust or

reputation information. An entity could perform the same use case in different ways

(or even could decide not to perform it at all), and this decision can be influenced by

trust or reputation information.

In addition to the previous UML extensions, we define two adornments: decision

criteria and context. The former is used to annotate the decides relationship between

102



3.4 Designing Trust and Reputation Solutions

an entity and a use case, and it specifies whether the decision is based on trust or

reputation. The latter annotates trusts and claims relationships and specifies their

context. This captures the idea that trust and reputation are context dependent.

3.4.2 Class Diagram

Class diagrams can provide more insight about certain aspects of trust and reputation.

The stereotypes used to extend class diagrams are depicted in Table 3.18. We find

the same stereotypes as in the use case diagram extension regarding the roles of the

entities. Also, we find TrustRelationship, which represent the trust relationship between

a trustor and a trustee, and Claim, which captures the notion of a claim made by

a source entity about a target entity. We add also three important notions for the

evaluation of trust and reputation, namely TrustEngine, ReputationEngine and Factor.

They represent how trust and reputation are computed, and the factors considered for

such computation.

Table 3.18: Class Diagram Extensions

Stereotype Base Class Explanation
Trustor Class Entity playing the trustor role
Trustee Class Entity playing the trustee role
Witness Class Entity playing the witness role
Source Class Entity capable of making a claim
Target Class Entity capable of receiving a claim
FactorProducer Class Entity capable of producing a factor
TrustRelationship Class Trust relationship between trustor and trustee
Claim Class Claim that a source makes about a target
TrustEngine Class Engine in charge of updating a trust relationship
ReputationEngine Class Engine in charge of computing a target’s reputation
Factor Class Factor used by a trust or reputation engine

Tagged values are used in order to define more precisely the aforementioned concepts.

The list of tagged values is shown in Table 3.19. To mention some of them, subjective

factors and objective factors refer to subjective and objective factors of trustors and

trustees. Dimension is the number of components of a trust or reputation value, and

103



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

how specifies whether the value of a factor is explicitly assigned (interactively) by the

entity playing the role factorProducer or is monitored by another system.

Table 3.19: Tagged Values for Class Diagrams

Value Class Explanation
type Trustor, Trustee, Witness, Source, Target The type of entity (i.e. human, system)
subFactor Trustor, trustee Subjective factors
objFactor Trustor, trustee Objective factors
context TrustRelationship, Claim Context
dimension TrustRelationship, Claim Dimension of a trust relationship or a claim
scale TrustRelationship, Claim, Factor Upper and lower bounds
default TrustRelationship Default/Bootstrapping value
format TrustRelationship, Claim Quantitative vs. qualitative
display ReputationEngine Visualization by human entities
engine Engine Type of computation engine
factors Engine List of factors used by the engine
attribute Factor Attribute(s) captured by the factor
source Factor System or entity that triggers the factor update
how Factor Assigned vs. monitored

Note that some of these tagged values could be almost directly mapped to attributes

of design classes, whether others are just informative and require further refinement. For

example, attribute represents the attribute(s) captured by a factor. This information

might be useful for aiding designers to keep in mind what the factor actually should

represent, the semantics of the factor, but could hardly be mapped directly to the

attribute of a design class.

3.4.3 Deployment Diagram

Deployment diagrams are useful as they represent the system from the infrastructure

point of view, and trust and reputation must often be considered not only at the ap-

plication level (i.e. trust among entities or among system components), but also at

the infrastructure level (104). Platforms and networks can trust each other and they

can even hold reputation values. This is particularly useful when designing large-scale

distributed systems, where a given processing node (e.g. a mobile phone or a server)

can choose among different nodes in order to collaborate or communicate information.

How trust and reputation information is derived from lower to higher level abstrac-

tion (e.g. from a system component to a system package, or from a system package to

104



3.4 Designing Trust and Reputation Solutions

a processing node) is an interesting field of research but it is out of the scope of this

section. However, we must be consistent. For example, if we specify that a node decides

to use another node due to its reputation, we must consider, in the deployment diagram

itself, where this reputation is going to be stored. This in turn may drive the design of

a new claim that the first platform (source) can make about the second one (target),

which can be further detailed in a class diagram, leading to a new design iteration.

The extensions performed on deployment diagrams are shown in Table 3.20. We

can specify which node acts as reputation manager in a centralized reputation model.

Reputation managers compute reputation, store it, and distribute it (or just publish

it) when necessary. The decides stereotype captures the decision process made by one

entity (processing node) when communicating with other processing nodes. As in the

case of use case diagrams, this stereotype can be adorned in order to make explicit

whether this decision is based on trust or reputation with decision criteria. Finally, we

also add a tagged value entities to specify the reputation of which entities the reputation

manager should store.

Table 3.20: Deployment Diagram Extensions

Stereotype Base Class Explanation
ReputationManager Node Node that acts as reputation manager
decides Connector Trust-based decision

The next section puts all the concepts discussed in this section together by applying

them to an eHealth scenario.

3.4.4 Application Example: eHealth

We present in this section how we can apply UMLTrep to a real scenario. The case study

comes from the NESSoS project16 and belongs to an eHealth scenario as described in a

project deliverable (87).

The case study presents a patient monitoring scenario, which aims to collect health-

related data independently of the location of the patient. This is useful for patients, who

can receive immediate feedback under critical situations and be assisted by physicians

at any moment and place. In order to make this scenario feasible, the patient must
16http://www.nessos-project.eu

105



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

wear a device capable of measuring vital signs (e.g. blood pressure). This device must

be able to send this information to other systems that will show it to physicians for

monitoring purposes.

The goal is to build a web application through which the physician and the patient

can interact in a trusted way17. In this application, the physician can add and remove

a wearable device to the system, start the process to assign the device to a patient,

configure both critical and uncritical alerts, ask patient consent to use his data for

research purposes, create an advice for the patient based on the patient’s data, demand

an immediate reading from the wearable and start the process to change a patient’s

wearable. Patients can configure uncritical alerts, ask for second opinions (to other

physicians), accept or deny consent about their data being used for research, read the

physician’s advices, complete the device assignment process started by the physician

and demand a physician change. These requirements are represented by the use cases

illustrated in Figure 3.16.

Figure 3.16: Use Case Diagram

Patient

Physician

Add 
Weareable 
to System

Remove 
Wearable From 

System
Configure 
Uncritical 

Alerts

Configure 
Critical 
Alerts

Ask Patient 
Consent

Create 
Advice

Assign 
Device to 
Patient 1

Demand 
Immediate 

Read

Ask for 
Urgent new 
Wearable

Ask for 
Second 
Opinion

Ack/Deny 
Consent

See Recent 
Advices

Assign 
Device to 
Patient 2

Ask for 
Doctor 

Change

Ensuring security in this scenario is very important. On the one hand, it is required

to ensure that data of one patient do not appear in the EHRs of other patients. Confi-

dentiality and integrity of the data, as well as integrity of the wearable is also required.
17As discussed in Section 1.1.3, we assume that basic security mechanisms (e.g. TLS/SSL for Internet

communications) are underpinning the trust and reputation solutions that we will develop.

106



3.4 Designing Trust and Reputation Solutions

Yet even though there are important hard security requirements, the system must also

be trust-aware, in the sense that physicians and patients must trust the information

provided by each other.

A possible trust-aware use case diagram is shown in Figure 3.17. We state that

there is a trust relationship between the patient and the physician. The patient plays

a trustor role and the physician plays a trustee role. In addition, there is a trusts

connector, which is adorned by the context where this trust relationship is set, namely

monitoring. There is another trust relationship between the physician (who therefore

also plays a trustor role) and the wearable. The patient also plays the source role and

can therefore make claims (claims connector) about the physician, who plays in this

case the target role.

Figure 3.17: Trust-aware Use Case Diagram

<<trustor>>
<<source>>
Patient

<<trustee>>
<<trustor>>
<<target>>
Physician

Add 
Weareable 
to System

Remove 
Wearable From 

SystemConfigure 
Uncritical 

Alerts Configure 
Critical 
Alerts

Ask Patient 
Consent

Create 
Advice

Assign 
Device to 
Patient 1

Demand 
Immediate 

Read

Ask for 
Urgent new 
Wearable

Ask for 
Second 
Opinion

Ack/Deny 
Consent

See Recent 
Advices

Assign 
Device to 
Patient 2

Ask for 
Doctor 

Change

<<trustee>>
Wearable

<<trusts>>

<<trusts>>

<<claims>>

<<decides>>

<<decides>>

<<decides>>

<<decides>>
<<decides>>

<<decisionCriteria>>
reputation

<<trustContext>>
monitoring

Up to now, we have defined the main entities, the trust roles they can play, and

the trust relationships and possible claims that the application considers. We also need

to include for which purpose this information is going to be used, and this is the role

of the decides connector. The patient may decide to ask another physician for second

opinion. In order to decide who this other physician is, he uses reputation information

about the physician (annotation decision criteria). Also, the physician may ask for a

107



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

new wearable if his trust in the actual wearable falls below a certain threshold. Thus,

we are using trust and reputation to help entities make decisions at runtime.

Claims and trust relationships can be further refined in trust-aware class diagrams,

as shown in Figure 3.18, 3.19 and 3.20. Regarding the patient-physician relationship,

we specify the context of this relationship, which should be consistent with the context

in the use case diagram, the dimension and format, which are 1 and numeric in this

case, the scale, which is the interval [0, 1], and the default value, which is 0.5. Thus,

every trust relationship between a patient and a physician could be assigned by default

(i.e. during bootstrapping) the value 0.5 and could take values between 0 and 1 over the

system life. Also, we specify some information regarding the trustor and the trustee.

In this relationship, the trustor is a human entity and has a subjective factor that

influences the trust relationship: capability belief. This means that the belief that the

patient has in the capability of the physician must be considered when assessing the

trust relationship, as stated also by the trust engine that updates the trust relationship.

This engine uses a continuous engine, meaning that it will yield a continuous value by

aggregating continuous factors. The list of factors used by the engine are the reputation

of the trustee, the belief of the trustor, and the trustor’s quality feedback. In this quality

feedback, illustrated in Figure 3.20, there is a reputation engine which provides target

entities with reputation scores. The reputation engine gathers the claims that different

patients make about a given physician and computes a final reputation using an average,

which should be displayed by a 3 stars notation. In addition to the claims, time is also

used to derive this reputation score.

Figure 3.18: Patient-Physician relationship

<<trustor>>
Patient

{type = human, 
subFactor = capability}

<<trustee>>
Physician

{type = human}

<<trustRelationship>>
PatientMonitoring

{context = monitoring,
dimension = 1,

format = quantitative,
scale = [0,1],
default = 0.5}

<<trustEngine>>
PatientPhysicianEngine

{engine = continuous,
factors = (reputation,capability belief, 

trustor's qualityFeedback)}
<<computesTrust>>

<<Factor>>
Capability Belief

{attribute = capability,
scale = [0,1],

source = patient,
how = assigned}

<<uses>>

108



3.4 Designing Trust and Reputation Solutions

Figure 3.19: Data Retrieval Trust Relationship

<<trustor>>
Physician

{type = human}
<<trustee>>

Wearable
{type = system,

objFactor = reliability}

<<trustRelationship>>
DataRetrieval

{context = monitoring,
dimension = 1,

format = quantitative,
scale = [0,10],

default = 5}

<<trustEngine>>
PatientPhysicianEngine

{engine = discrete,
factors = trustee's reliability}<<computesTrust>>

<<Factor>>
Wearable Reliability

{attribute = (reliability, precision),
scale = [0,5],

source = physician,
how = monitored}

<<uses>>

Figure 3.20: Quality Feedback Claim

<<source>>
Patient

{type = human}
<<target>>
Physician

{type = human}

<<claim>>
qualityFeedback

{context = monitoring,
dimension = simple
format = qualitative,
scale = (bad,good)}

<<reputationEngine>>
PatientPhysicianEngine

{engine = average,
factors= (qualityFeedback, time),

display = 3 stars}

<<computesReputation>>

For every factor defined in the engine, we can define a new Factor stereotype and

specify some of the important properties of them. Figure 3.18 shows that capability

belief, assigned by the patient, should take a value in the interval [0, 1] and should

capture the attribute trustor’s capability belief. Figure 3.19 illustrates the wearable

reliability factor, which measures the reliability and precision of the wearable in a scale

of [0, 5], being the physician the one that triggers a system that monitors the factor.

Note that from the class diagrams information, especially after identifying the factors

that we need, we can go back to the use case diagram during the second iteration and

add new information as needed. The patient should have means of rating a physician

and to set the physician preferences. This last use case captures the capability belief,

as the preference list will likely be made by the patient in terms of this capability belief

about the physicians. The physician should be able to measure the wearable reliability

and update this factor, therefore he also should play the role factor producer. These

109



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

changes are depicted in Figure 3.21.

Figure 3.21: Trust-aware Use Case Diagram (2nd Iteration)

<<trustor>>
<<source>>
Patient

<<trustee>>
<<trustor>>
<<target>>

<<factorProducer>
Physician

Add 
Weareable 
to System

Remove 
Wearable From 

SystemConfigure 
Uncritical 

Alerts Configure 
Critical 
Alerts

Ask Patient 
Consent

Create 
Advice

Assign 
Device to 
Patient

Demand 
Immediate 

Read

Ask for 
Urgent new 
Wearable

Ask for 
Second 
Opinion

Ack/Deny 
Consent

See Recent 
Advices

Ask for 
Doctor 

Change

<<trustee>>
Wearable

<<trusts>>

<<trusts>>

<<claimsAbout>>

<<decides>>

<<decides>>

<<decides>>

<<decides>>

<<decides>>

<<decisionCriteria>>
reputation

Rate 
Physician

Set 
Physician 

Preferences

Measure 
Wearable 
Reliability

<<trustContext>>
monitoring

How the business and trust layers of the application interact may be a valuable

information for designers. This can be depicted by a behavioural diagram, such as an

activity diagram. The goal is to represent which actor can trigger a trust event and

how, and what are the consequences of that trust event. We propose using swim lanes

in order to separate the responsibilities of actors, the business logic and the trust logic

in the whole application. Figure 3.22 shows the trust event triggered as a consequence

of the patient changing its preference list of physicians, whereas Figure 3.23 depicts the

trust event triggered when the patient asks for a second opinion.

The basic deployment for this application, without considering trust information,

consists of a sensor that communicates with a wearable, which in turn, aggregates the

information and sends it to a front-end server running the application. This front-end

server will send the information to a back-end server that will store it into the patient’s

EHR and that executes a configuration application only available to administrators.

Figure 3.24 shows a trust-aware deployment diagram. The wearable device can decide,

based on the front-end server reputation, to which server to send information. The

same happens between the front-end server and the back-end server. Of course we are

110



3.4 Designing Trust and Reputation Solutions

Figure 3.22: Activity Diagram for Use Case Set Physician Preferences

Patient Business Layer Trust Layer 

Change	  physician	  
order	   Store	  new	  order	   Update	  

capability	  belief	  

Update	  trust	  
rela8onship	  

<<localPreCondition>>
{New order is different from 

current order}

<<localPostCondition>>
{Trust Relationship is updated  using the 

PatientPhysicianEngine}

Figure 3.23: Activity Diagram for Use Case Ask for Second Opinion

Patient Business Layer Trust Layer 

See	  list	  of	  
physicians	  

Retrieve	  list	  of	  
physicians	  

Retrieve	  
physicians’	  
reputa5on	  

Show	  list	  of	  
physicians	  Choose	  physician	  

<<localPostCondition>>
{The list is ordered by physician's 

reputation}

assuming that the final deployment will consist of, at least, two front-end servers and

two back-end servers. Otherwise, a decision is not possible. We can also make explicit

on which node the reputation values for different entities in the system will be stored

(i.e. assuming a centralized reputation model). In this case, a node is reserved to play

the role of a reputation server that will store the reputation values for physicians, the

front-end servers and back-end servers.

111



3. INCORPORATING TRUST ENGINEERING IN EARLY PHASES OF
THE SDLC

Figure 3.24: Trust-aware Deployment Diagram

<<device>>
FrontEndServer

<<device>>
BackEndServer

<<device>>
Wearable

<<device>>
Sensor

Configuration 
Server

Database

Application
Server

<<ReputationManager>>
Reputation Server
{entities=(physician, 

FrontEndServer,BackEndServer)}

<<decides>>

<<decides>>

<<decisionCriteria>>
reputation

3.4.5 Discussion

Our goal with this work has been to bridge the gap that prevents trust from being

properly addressed during the initial phases of the SDLC. Nonetheless more work

still remains to be done. First, the profile should be further extended in order to

represent policies, credentials and trusted third parties, which constitute key concepts

of many trust management systems nowadays, as explained in Section 2.1.2. The profile

should also allow representing how trust information can be propagated between entities

in the system. Trust derivation from lower software abstractions (e.g. trust among

components) to higher level abstractions (e.g. trust among processing nodes), if possible

at all, is an interesting field that requires much further exploration. Finally, there is a

need for defining the semantics and constraints of each syntactic element. Tool support

is then required to check compliance with these constraints and to derive design patterns

and code from the specification. In this direction, how to integrate our approach with

existing frameworks (e.g. UMLsec) should be analysed.

112



Chapter 4

Enabling Trust and Reputation
during Implementation

This chapter describes the requirements, the architecture and some implementation

guidelines of a trust and reputation development framework that allows software devel-

opers to implement a wide range of trust and reputation models. The framework builds

upon the concepts introduced in Chapter 2, and its goal is supporting the design and

development of trust and reputation models specified by means of the tools explained

in Chapter 3. The focus of this framework is on evaluation models (see Chapter 2), and

therefore decision models are laid aside.

From a high-level point of view, the framework is a middle-tier server that mediates

between the client application and the database tiers, as depicted in Figure 4.1. The

application requests trust and reputation information from the databases, and requests

updates on new trust and reputation information as a response of some events signalling.

The kind of Application Programming Interface (API) that the framework exposes

depends on the implementation details, and could range from remote procedure calls to a

REST- or SOAP-based API. Even though we do not provide a concrete implementation,

some implementation guidelines are outlined.

The chapter is organized as follows. Section 4.1 discusses the high-level requirements

that the framework must meet. Section 4.2 presents a high-level architecture of the

framework, which is refined into a low-level architecture in Section 4.3. Hints towards

the implementation of the framework are provided in Section 4.4, and a social cloud

application example is presented in Section 4.5. Finally, Section 4.6 discusses some

113



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

Figure 4.1: The Framework in Context

Developer

Application Trust Framework
update

retrieve

design and implementation aspects of the framework, as well as some challenges and

lines for future research.

4.1 Framework Requirements

This section summarizes the requirements that the framework must meet. The frame-

work has to support the implementation of evaluation models. Pure evaluation models

establish trust relationships between entities, and their main goal is to compute trust

values for these relationships and to help entities decide whether to collaborate or not

with each other. Propagation models also build on trust relationships, and their primary

goal is to disseminate existing trust information in order to derive new trust relation-

ships. Reputation models compute reputation scores for entities, which must be stored

( either centrally or distributively) and entities should be able to access this information

when required.

The following list of requirements describes the coarse-grained functionality with

which the framework should provide developers:

• Entities management: entities hold trust values in other entities. The framework

must be able to give a unique identifier to each entity in the system and to retrieve

trust and/or reputation information from an entity.

• Trust relationships management: trust relationships might change over time. New

trust relationships might be created (e.g. by propagation models), other rela-

tionships might be deleted, and trust values attached to these relationships may

change. Trust relationships can be affected by reputation, but also by objective

and subjective factors of trustors and trustees.

114



4.2 High-Level Architecture

• Computation engines definition: computation engines are in charge of computing

a trust or reputation score, depending on the model. Although the framework

can provide some default built-in metrics implementations, it is important to let

developers define their own trust metrics, as they are the core concept in evaluation

models.

• Events definition: events that occur in the system trigger the communication

with the framework. It is required to configure the framework to respond to these

events accordingly.

• Claim management: the type and value of a claim may determine a reputation

score. It should be possible to configure claims in order to support application-

specific needs.

• Factors management: a trust metric comprises objective and subjective factors.

It is important to let developers create new factors, which can be used by user-

defined metrics.

• Trust dissemination: trust information can be propagated by means of operators

along trust chains. Developers should be empowered to define their own operators,

or to use some built-in ones.

• Time and uncertainty: these factors may play an important role when computing

a trust or reputation score. The framework should provide the developer with

mechanisms to include them as part of the computation process.

• Trust and reputation separation: the framework should allow developers to con-

sider trust and reputation as different concepts. However, given their strong

relationship, it should be possible to take each other into consideration when

computing a trust/reputation score.

4.2 High-Level Architecture

A high-level architecture of the framework is depicted in Figure 4.2. This architecture

bridges a gap between the conceptual model presented in Chapter 2 and the low-level

architecture and implementation that will be discussed in Sections 4.3 and 4.4. Its goal

115



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

is to offer a clean separation of logic units that represent the most important concepts

related to trust and reputation.

Figure 4.2: High-Level Architecture of the Framework

External DB System 

User-Defined Layer 

Computation 
Layer 

Relational Layer 

Model Layer 

setContext(ctx)
addEntity(Entity )
addFactor(Factor )
Factor getFactor(String )
setMetric(CEngine )
CEngine getMetric()

context
entities

EvaluationModel

DBConnector getConnector()
setConnector(DBConnector )
updateReputation()

connector
RepType type

ReputationModel
CENTRALIZED
DISTRIBUTED

<<enumeration>>
RepType

getTRelationship()
setTRelationship(Trust Relationship)

TrustRelationship tr[]
TrustModel

setSeqOperator(Operator )
setParOperator(Operator )
calculateIndirectTrust(Entity, Entity)

TRelationship tr
Operator seqOp
Operator parOp

PropagationModel

updateEntry(Entity, 
Value, DBUri )

DBuri
DBConnector

Trust Database

String getName()
setName(String )
DBConnector getConnector()
setConnector(DBConnector )
TrustMetric getMetric()
setMetric(TrustMetric )

name
id
connector
metric

Entitiy

Entity getTrustor()
Entity getTrustee()
setTrustor(Entity )
setTrustee(Entity )
TrustMetric getMetric()
setMetric(TrustMetric )

Entity trustor
Entity trustee
value
metric

TrustRelationship

compute()
factors

<<interface>>
TrustMetric

String getName()
Object getValue()
setName(String )
setValue(Object )

name
value

Factor
String getName()
setName(String )

name
Operator

compute(TrustRelationships[] )
ConcatenatorOperator

compute(Object[] )
AggregatorOperator

compute()
SummationEngine

Float getWeight()
setWeight(Float )

weight
WeightedFactor

compute(TrustRelationships[] )
MinimunFunction

compute(TrustRelationships[] )
MaximunFunction

compute()
WeightedSummationEngine

The architecture follows a layered design, where each layer uses the services provided

by the lower layer. Likewise, the framework follows a grey-box approach, where the

developer can use several functionalities in a black-box fashion as well as define new

functionalities based on his needs. Next, we describe the classes and relationships for

each of the layers.

4.2.1 Model Layer

In this layer we find the models that the developer can implement, namely reputation

models, trust models (i.e. pure evaluation models), and propagation models. Repu-

tationModel, TrustModel and PropagationModel are inherited classes from Evaluation-

Models and as such, they share a context (a string describing the context under which

116



4.2 High-Level Architecture

the model operates) and a list of entities that take part in the model. EvaluationModel

also provides other methods, and their functionality will be delegated to lower layer

classes, depending on the model type.

A reputation model adds a connector to an external database system to store rep-

utation scores, and it holds the type of reputation model, which might be centralized

or distributed. Moreover, this class exposes the method updateReputation, which com-

putes the reputation score and saves it in the trust database. A trust model contains a

list of trust relationships and exposes methods to retrieve and set these relationships.

Finally, a propagation model, in addition to containing a list of trust relationships, it

also contains concatenator and aggregator operators, and exposes a method to calculate

indirect relationships.

4.2.2 Relational Layer

This layer contains the basic building blocks on which the models of the upper layer

rely: entities and trust relationships.

Entities have a name, an automatically-generated identifier, a database connector

and a trust metric. The fact that each entity holds a database connector enables

distributed reputation systems, where each entity must store the reputation information

regarding another entity in a personal database. Likewise, as each entity holds a trust

metric instance, we allow each entity in the model to use a different trust metric to

compute other entities’ reputation.

Regarding trust relationships, they consist of a tuple that specify which is the entity

that places trust (trustor), the entity on which trust is placed (trustee), the extent to

which the trustor trusts the trustee (value), and the trust metric used to derive this

value.

The decision that both an entity and a trust relationship may define their metrics

supports the implementation of more advanced trust models where the final trust value

that a trustor places on a given trustee might be determined by both, the reputation of

the trustee, and the trust relationship between the trustor and the trustee.

4.2.3 Computation Layer

Evaluation models rely on trust metrics to perform trust values calculations. This is

the layer in charge of such computation.

117



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

TrustMetric is an interface that a developer should implement to override the com-

pute() method, where the trust calculation takes place. Trust metrics use factors,

through the class Factor, which have a name and a value, as well as methods to retrieve

and set these parameters. Operators for propagation models belong also to this layer.

Note that trust metrics contain instances of factors. As entities and trust rela-

tionships hold in turn instances of trust metrics, each entity or relationship might use

different factors, increasing the flexibility of the framework to accommodate complex

models.

4.2.4 User-Defined Layer

This layer is created when users extend the computation layer to accommodate their

own definitions. Users can create new computation engines (implementations of the

TrustMetric interface) and new factors to implement a wide range of models. For

illustration purposes, the architecture includes a summation engine (that basically sums

up the factors that it contains) and a weighted summation engine (that adds a weight

to each factor). The latter requires creating a specialized factor class that adds the

weight to its internal state.

4.3 Low-Level Architecture

In the previous section, we have described the main elements and their relationships from

a logical and layered point of view. This section provides deeper insight and includes

elements that are close to the implementation of pure evaluation and reputation models.

Some considerations for the implementation of propagation models are discussed in

Section 4.6.

The low-level architecture is shown in Figure 4.3. The framework API provides

three interfaces: write event, to explicitly signal that an event has occurred, get trust

information, to retrieve trust-related information, such as the reputation of a given

entity or existing trust relationships. Additionally, the API may provide mechanisms

to configure the trust database attributes and tables.

There are three components that represent queues: the Event Queue, which stores

events, the Reputation Statement Queue, which stores reputation statements and the

Trust Statement Queue, which stores trust statements.

118



4.3 Low-Level Architecture

Figure 4.3: Framework Architecture: Component Diagram

API Client write event

Event 
Queue

Event
Handler

Reputation 
Statement Queue

Engine 
Dispatcher

Data Manager

Trust Data 
Store

Trust 
Statement 
Queue

read 

event
write reputation 

statement

read reputation

statement

write trust statement

query

read trust statementdatabase connector

get 

trust information

API client

Developer

Trust Framework

configure 

data store

Client 
Application

«develops»

«adapts»

The Event Handler component is in charge of reading events from the Event Queue,

creating reputation statements according to the event type and writing these events into

the Reputation Statement Queue. The Engine Dispatcher component reads reputation

statements and creates engines that perform computation on these statements, produc-

ing trust statements. The Data Manager component prevents the rest of components

from needing to know the internal details of the database schema and technology used.

It basically transforms queries and write actions into technology-dependent statements

(e.g. Structured Query Language (SQL) statements). The Trust Data Store compo-

nent represents the Relational Database Management System (RDBMS) that provides

persistence to the framework.

Figure 4.4 depicts a coarse-grained sequence diagram that describes the steps trig-

gered by an event signalled by the client application. Note that there are two architec-

tural elements that are not shown in the component diagram, but have been added here

for a clearer understanding. The Reputation Statement entity represents a reputation

statement, that is, a tuple < source, claim, target >. The other entity is Engine Fac-

tory, which is used by the Engine Dispatcher in order to create an appropriate engine

according to the reputation statement type.

The bottom part of Figure 4.4 describes the steps carried out if the target of a

119



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

Figure 4.4: Framework Architecture: Sequence Diagram

alt Update user 

reputation
[if target is reputation 
statement]

API Client Event 
Handler

Event 
Queue

Rep.State. 
Queue

Trust Data 
Store

write event
(SOURCE ID,
TARGET ID
TYPE, CTX) read event

Rep. Statement Engine 
Dispatcher

Engine Factory Data Manager

create reputation
statmenet 
(TYPE, CTX)

write reputation statement

read reputation
statement

create engine 
(REPUTATION STATEMENT)

write trust statement read trust 
statement

update target 
reputation

insert 
reputation statement

retrieve reputation statement

reputation statement

write 
reputation statement

query db

Trust Statement 
Queue

update trust 
relationship

reputation statement is, in turn, a reputation statement. In this case, the original rep-

utation statement is retrieved from the database through the data manager component

and a new reputation statement will be written in the Reputation Statement Queue

for later processing. In a real scenario, this typically happens when a user states that

the information provided by another user (that is, a reputation statement), has been

helpful. In this case, the reputation of the reputation statement would be updated, but

the reputation of the user who provided the information could be updated as well. This

behaviour could be configured by the developer, for instance, by an optional parameter

passed as an argument.

4.3.1 Components Decomposition

The Engine Dispatcher, Event Handler and Data Manager components are decomposed

into modules in Figure 4.5, Figure 4.6 and Figure 4.7 respectively.

In the case of the Engine Dispatcher, the Engine Manager module uses the Reputa-

tion Statement Reader module in order to retrieve a reputation statement. It also uses

an Engine Factory, which accesses a Computation Manager in order to figure out how

to make two engines: a Reputation Engine and a Trust Engine. The manager creates a

Trust Statement and uses a Trust Statement Writer that knows to which queue to for-

120



4.3 Low-Level Architecture

Figure 4.5: Engine Dispatcher Component

Reputation 
Statement 
Reader

Engine 
Manager

Computation 
Manager

Engine Factory

ENGINE DISPATCHER

read reputation

statement

write trust 

statement

Trust 
Statement
Writer

Reputation 
Engine

Trust Engine

Trust 
Statement

uses uses

makes

makes

creates
uses

query

looks up

write 

reputation statement

ward a trust statement. Finally, the manager allows querying information and writing

reputation statements into queues in order to cover the case in which the target of the

reputation statement is itself a reputation statement.

Figure 4.6: Event Handler Component

Event Reader Event Manager

Claim Manager

Claim Factory

EVENT HANDLER

read event

write 

reputation 

statement

Reputation 
Statement
Writer

Claim
Reputation 
Statement

uses uses

creates

query

looks up

makes

uses

uses

The Event Handler uses an Event Reader in order to retrieve events from an event

queue, and a Claim Factory in order to create a Claim. The factory inspects a Claim

Manager to determine which type of claim to make. The manager creates a Reputation

Statement, which uses a Claim and a Reputation Statement Writer in order to forward

a reputation statement to a queue.

As for the Data Manager, it has an API Translator module that uses the Trust

Statement Reader in order to retrieve a trust statement and translates the native API

call (e.g. Java) into a technology-dependent statement (e.g. SQL) through a database

connector. The API translator may encapsulate information in data structures (e.g

trust relationship) that will be sent back to other components or the client application.

121



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

Figure 4.7: Data Manager Component

Trust Statement 
Reader

API Translator
uses

read trust 
statement

database 
connector

configure data storeget trust information

DATA MANAGER

Entity
Reputation 
Statement

Trust Statement

uses

Trust 
Relationship

4.3.2 Data Structures

Even though more modules and structures might arise in a further detailed design, there

are four data structures that are specially relevant as they encapsulate crucial informa-

tion that flow between components. If we consider them from an Object-Oriented (OO)

perspective, they could be refined as classes, which are shown in Figure 4.8. For each

of these structures, only the most important attributes and applicable functions (i.e.

methods in OO design) are shown.

The Event structure represents an event by means of a name, a context, a source of

the event, and a target of the event. Several event types can be pre-defined, but new

events can be created.

A Claim represents the assessment made by an entity. The type of event that is

triggered determines the type of claim that is made. A claim has a scale (minimum

and/or maximum boundaries) and a value, which might be numeric or qualitative. A

claim can be normalized (resp. denormalized) from its range scale (resp. interval [0, 1])

to the interval [0, 1] (resp. its range scale).

A trust metric comprises a set of subjective and objective Factors. Two typical

subjective factors are introduced in the next section, but there might be more factors

that the trust metric may require. A factor is identified by a name, a value, a source

entity and a target entity. In some situations a factor may represent a property or

aspect of an entity that is independent of any other entity (e.g. an objective factor

about an entity, such as the number of transactions that the entity has completed), and

therefore the factor will only have a target entity.

A Reputation Statement, as stated previously, contains a source, a claim and a tar-

get. Source and target are entities. In order to allow developers to take time into

122



4.3 Low-Level Architecture

account, a reputation statement holds a time stamp, which indicates when the reputa-

tion statement was made. Also, as a reputation statement is made in a context, the

latter is considered as part of the statement.

A Trust Statement (which is a new notion that has not been mentioned previously)

contains a reputation statement, a reputation value and a trust value. This structure

allows the framework to convey trust and reputation information separately, fostering

the idea that trust and reputation are two different concepts. A trust statement is the

structure that is passed onto the data manager in order to update the different database

tables.

A Trust Relationship represents the trust value that a trustor (the source Entity)

places on a trustee (the target Entity). As in the case of reputation statements, trust

relationships need to consider time and the context under which they make sense.

An Entity represents any object that can be evaluated. It has a unique name,

a type (Human, Non-Human and Reputation Statement), a reputation score and the

context under which the reputation score is assigned. A HumanEntity is an entity

which, additionally to the previous fields, also holds a rating bias and a list of beliefs,

which can be actually represented by factors.

Figure 4.8: Important Data Structures

name: String
context: String
source: String
target: String

Event

isNormalizable(): Boolean
normalize(): float
denormalize(float): ClaimValue

name: String
scale: Scale
value: ClaimValue

Claim

rs: ReputationStatement
rep: RepValue
trust: TrValue

Trust Statement

source: Entity
target: Entity
claim: Claim
context: String
timestamp: Time

Reputation Statement

trustor: Entity
trustee: Entity
trust: Claim
context: String
timestamp: Time

Trust Relationship

name: String
type: EntityType
repScore: RepValue
context: String
trs: List<TrustRelationship>

Entity

ratingBias: float
beliefs: List<Factor>

Human Entity

context: String
name: String
value: FactorValue
source: Entity
target: Entity

Factor

123



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

4.3.3 Incorporating Trustor’s Subjective Factors

When an entity rates another entity, their trust relationship may change. As explained

in Chapter 2, there are other factors that influence trust beyond reputation, such as

the trustor’s subjective properties. The framework provides developers with support to

include the following properties:

• Rating bias: this property indicates the usual disposition of an entity to high or

low ratings. If the entity has always rated others with the maximum value in the

past, the fact that now the same entity rates a new entity with a high value does

not give much information. However, it would give a lot of information if the

entity rated another entity with a low value. There are different ways to provide

built-in support for this. One way is by using standard deviation of all the claims

made by the entity over a period of time.

• Beliefs: they indicate how much an entity believes in the capability, honesty, etc.

of a target entity. This information could be directly assigned by the entity, or it

could be derived automatically from several events depending on the context. In a

social network application, for example, the number of visits to the target’s profile

or the ratings given to other entities’ claims could provide insightful information

for determining beliefs among entities. Beliefs can be represented as factors data

structures (see previous section) where the source entity holds the belief about

the target entity.

The next section provides further details on possible implementation options.

4.4 Implementation Guidelines

The framework can be deployed as a JavaEE1 application that constitutes a runtime

platform onto which to develop trust-aware applications. The hint of implementing the

framework in Java is two-fold: since Java is a quite popular development language, it

may be easier for developers to familiarize with the framework and with the mechanisms

to adapt it to their needs. Furthermore, we achieve portability, as the framework can

be executed on any platform and operating system.
1http://docs.oracle.com/javaee/7/index.html

124

http://docs.oracle.com/javaee/7/index.html


4.4 Implementation Guidelines

As an example, Figure 4.9 shows the steps that a client application would perform

in order to query trust-related information from the trust database. The client appli-

cation would need to look up an instance of the trust server from the Java Naming and

Directory Interface (JNDI) in order to invoke the query API call, implemented by EJBs

(Enterprise Java Beans) that connect to an SQL server by means of a Java Database

Connectivity (JDBC) connector.

Figure 4.9: Query API Call Sequence Diagram

loop More Data

Client Application API Client
JNDI

Trust API 
Services

SQL Server
initialize

lookup

get trust API call

resultSet := EJB API call
JDBC Query

In the next sections, we elaborate on some implementation ideas for different archi-

tectural elements and concepts.

4.4.1 Context

As we mentioned in Section 2.2.3, the context is very important in the trust and rep-

utation domains. Every trust relationship and reputation score make sense in a single

context and cannot (usually) be transferred directly to another context. In order to

take into account the context, whenever an event is triggered, the developer introduces

a string that represents this context. It will then be stored together with all the rest of

trust or reputation information, as explained in the next section.

4.4.2 Database Tables

An RDBMS such as SQL can be the implementation choice in order to store persistently

all the trust-related information. The tables design is of paramount importance for the

efficiency and correct behaviour of the framework, as they may support more or less

easily the implementation of the concepts discussed above. As an example, we propose

125



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

Table 4.1, Table 4.2, Table 4.3 and Table 4.4. For each one, we explain the main

attributes they should hold and their meaning.

Table 4.1: Entity Table

Attribute Description

ID Unique identifier
Type Human, Non-Human or Reputation Statement

Reputation Reputation score
Context Context where this information applies
Claim Type of the claim that corresponds to this evaluation
Time Indicates when this reputation score was first created

LastTime Indicates the last time this entity’s reputation was changed
Number of evaluations Number of evaluations made on this entity

Table 4.2: Trust Relationship Table

Attribute Description

ID Unique trust relationship identifier
ID Trustor The unique identifier of the entity placing trust
ID Trustee Unique identifier of the entity onto which trust is placed
Trust value Trust value placed by the trustor on the trustee
Context Context where this trust relationship holds

Number of updates Times that the value of this relationship has changed
Time Indicates when this trust relationship was first established

Last Time Indicates when this trust relationship was last updated

Primary keys could be a made up of the ID and the Context, since the same entity

could hold different trust or reputation values for different contexts. Unique identities

could be the foreign keys used in order to relate tables among each other.

The Data Manager component must provide the interface required to set and obtain

most of this information. For this purpose, it uses a JDBC connector in order to

translate from Java method calls to SELECT, INSERT and UPDATE SQL statements.

Given that this can be complex, a suitable, more maintainable design approach would

126



4.4 Implementation Guidelines

Table 4.3: Reputation Statement Table

Attribute Description

ID Unique identifier
Source Source entity’s ID
Target Target entity’s ID
Claim Name of the claim

Claim value The value of the claim
Context Context where the statement is applicable
Time Time when the claim was made

Table 4.4: Beliefs Table

Attribute Description

ID The unique identifier of the belief (e.g. capability, honesty, ...)
Source Source entity’s unique ID
Target Target entity’s unique ID
Value Belief value

Context Context where this belief is applicable

be to create different objects to manage each table. The API translator would be split

into a mediator object that delegates the queries to these specialized objects. Thus, one

object would not need to know how to interact with all the database tables.

Note that these tables support taking the trustor’s subjective factors into account.

In order to compute the rating bias of an entity, the Data Manager would first retrieve

all the claims made by the entity, normalize them (in order to consider different types of

claims with different scales), and then compute the average and the standard deviation.

This can be achieved by looking up the Reputation Statement table (see Table 4.3).

Another implementation choice would be using an Object-Oriented Database Man-

agement System (OODBMS), which provides higher flexibility and avoids the tedious

mapping between two representation models (i.e. from objects to relational tables), as

they allow storing objects directly. This simplifies greatly the implementation of the

Data Manager, which would basically become a direct mediator between an API call

127



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

and the database system, without requiring the translation process. However, RDBMS

are often more efficient, above all when considering simple objects and relationships.

4.4.3 Messaging Infrastructure

The main components of the architecture communicate with each other via asyn-

chronous, optimistic queue-based messaging system, which could be implemented onto

the Java Message Service (JMS). This solution scales well in the presence of many

entities, which can continue their operations in most cases without the need to wait for

results from the framework. Whenever a new event is triggered, the client application

does not wait for a response from the server, but it continues doing other tasks. The

application knows that the trust server will eventually update the trust relationships

and reputation scores, but there is no hard time limit.

The same happens in the case of the Event Handler, Engine Dispatcher and Data

Manager components. They are listening to their specific queues. As soon as a new

piece of information arrives, they take it out from the queue, process it, and place it in

another queue for further processing. This way, the framework can adjust, on-demand,

the number of instances of the same component that is listening to a queue, providing

higher performance and scalability. This is especially true for the Data Manager, which

can receive queries and writes requests from different components: the Trust Statement

Queue, the Engine Dispatcher, the Event Handler, and even from the client application.

Therefore, many instances could be concurrently listening to queries from these sources.

4.4.4 Engines

When an Engine Dispatcher instance reads a reputation statement, it uses an Engine

Factory to create the appropriate Engine to deal with such statement. The Engine

Factory creates an engine by inspecting computation rules, which define which type of

engine to create under which circumstances. This can be implemented as an XML file

that the factory reads. This file includes a set of conditions and an effect, which states

the engine type to build. A simple example is shown in Listing 4.1:

Listing 4.1: Engine Configuration

1 <CompRule RuleId= ‘ ‘CompRule CounterUp ’ ’ Engine= ‘ ‘CounterUp ’ ’>
2 <Context>Film Review</Context>
3 <Claim>Pos i t i v e Vote</Claim>

128



4.4 Implementation Guidelines

4 <Source>
5 <SourceType>Human</SourceType>
6 </Source>
7 <Target>
8 <TargetType>Non−Human</TargetType>
9 </Target>
10 </CompRule>

This file specifies that if the context of the reputation statement is Film Review, the

claim is Positive Vote, the type of the source of the reputation statement is Human,

and the type of the target of the reputation statement is Non-Human, then the engine

to apply is CounterUp. The Engine Factory would read the file (through another XML

reader object), compare the conditions against the reputation statement fields, and

create an instance of this type of engine.

Listing 4.2 shows how the class EngineManager would work.

Listing 4.2: Excerpt of EngineManager

1 public f ina l class EngineManager {
2
3 // . . . more s t u f f
4
5 //A Reputat ion Statement Reader in s tance s i g n a l l e d t ha t a new

repu ta t i on s ta tement has a r r i v ed .
6 public void onNewReputationStatement ( ReputationStatement r s ) {
7 Engine [ ] e = EngineFactory . getEngine ( r s ) ;
8 //e [ 0 ] ho l d s an ins tance o f the r epu ta t i on engine
9 //e [ 1 ] ho l d s an ins tance o f the t r u s t engine
10 i f ( e [ 0 ] != null ) {
11 reputa t i on = e [ 0 ] . compute ( r s ) ;
12 }
13 i f ( e [ 1 ] != null ) {
14 t r u s t = e [ 1 ] . compute ( t s ) ;
15 }
16 // tsw i s an ins tance o f a t r u s t s ta tement wr i t er , a JMS c l i e n t
17 //which a c t u a l l y knows how to send data to which queue
18 tsw . wr i t e (new TrustStatement ( rs , e [ 0 ] , e [ 1 ] ) ) ;
19 }
20 }

129



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

4.4.5 Deployment

The decision on how deployment is done is of paramount importance when pursuing high

performance behaviour in environments with thousands of entities. There are several

choices:

• Everything on the same machine: this is the simplest deployment option. It does

not scale and does not allow for failover capabilities in case of electrical problems.

• The application server on one machine, the trust server and the RDBMS server on

other machine: an intermediate solution where the trust server can be replicated

on-demand, offering a higher scalability.

• Everything on different machines: this is the most flexible choice, although it is

more vulnerable to network and bandwidths problems.

As an example, Figure 4.10 shows the first and the third deployment options dis-

cussed above.

Figure 4.10: Two Deployment Configurations

JavaEE Server

Application Server

Client 
Application Trust API

Application Server

SQL Server

Client 
Application

Trust API

SQL Server

JMS

JMSRMI

JDBC

The next section ties together all the concepts discussed here by showing how the

framework can be applied in a social cloud scenario.

4.5 Application Example: Social Cloud

This section presents a motivating scenario that would benefit from the use of the

presented framework. We describe the scenario, its trust and reputation requirements

130



4.5 Application Example: Social Cloud

and how the framework can be used in order to implement these requirements.

4.5.1 Scenario Description

The scenario that will be used as benchmark to validate our framework is the following.

A developer needs to implement a social website for cloud providers. Cloud providers

can register in the site. Once registered, they can publish web services on the site

by posting a full description of the service, including the API calls (e.g. by using Web

Service Description Language (WSDL)). Cloud providers can also look up a web service

according to their needs, and use the service in order to create a larger, composed web

service. When one cloud provider consumes a service from another provider, the latter

can charge the former according to the type or complexity of the service. Thus, the site

acts as a software market between cloud providers, following the software as a service

model. Eventually, each cloud provider will use its own infrastructure to provide the

resulting services to their customers, although this is out of the scope of the scenario.

Figure 4.11 depicts the main elements of the scenario together with trust and repu-

tation considerations that are further explained in the following section.

4.5.2 Trust Requirements

The underlying framework must enforce trust and reputation requirements in order to

prevent risks for the cloud providers and to foster trust in the site.

There are two basic reputable entities in this scenario: cloud providers and web

services. Each of them might have a reputation value that can be derived from the

personal opinions and feedbacks from other providers in the site. For example, if a

provider uses a service and notices that the service is not running appropriately, it could

rate negatively the service, which in turn could negatively affect the service provider’s

reputation.

In addition to reputation, cloud providers can establish trust relationships among

themselves. The way trust and reputation are computed depends on the models im-

plemented, and the developer of the website should be provided with mechanisms to

decide which model to use at design-time.

For a particular instance of this scenario, we focus on a small subset of possible trust

requirements:

131



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

Figure 4.11: Social Cloud Scenario

Cloud 

Provider

Cloud 

Provider

Cloud 

Provider

Cloud 

Provider

Web Service

Web Service

Web Service

Reputation

Reputation

Reputation

Reputation

Reputation

Reputation

Trust

Trust Trust

publishes publishes

publishes

searches
Reputation

buys

1. Cloud providers can rate web services with one, two or three stars. When cloud

providers rate a web service, this affects the reputation of the web service and the

trust relationship between the evaluator and the web service creator.

2. Cloud providers can rate each other by using a I like and I don’t like statement.

When cloud providers rate other providers, this affects only the trust relationship

between them, but not the reputation.

3. Reading a cloud provider profile increases the capability belief of the reader.

4. Reputation scores in the context WebServiceForOffice must be normalized to the

range [0, 1] prior to being written in the trust database, and must be denormalized

to the original range of the model prior to being sent to the application.

The next section discusses how we can implement these requirements by using the

framework.

4.5.3 Implementation

The realization of the first requirement would be as follows. As the framework updates

trust information after an event has occurred, the first step for the developer is deciding

132



4.5 Application Example: Social Cloud

the name of the event. Then, he must decide the claim type that is associated to this

event. In this case, the chosen event name is WebServiceRating. Listing 4.4 shows how

a new claim type could be created.

Listing 4.3: Creating a Bounded Claim

1 //BoundedClaim i s a c laim tha t i s ( de ) norma l i zab l e accord ing to
2 //a l i n e a r t rans format ion . This c laim would be o f f e r e d by d e f a u l t .
3 public class BoundedClaim extends Claim {
4
5 int value , minimum , maximum;
6 St r ing name ;
7
8 BoundedClaim ( St r ing n , int v , int min , int max) {
9 name = n ;
10 value = v ;
11 minimum = min ;
12 maximum = max ;
13 i sNorma l i zab l e = true ;
14 }
15
16 public f loat normal ize ( ) {
17 // App l i e s a l i n e a r t rans format ion
18 // [minimum ,maximum] −> [0 , 1 ]
19 }
20 public int denormal ize ( ) {
21 // App l i e s a l i n e a r t rans format ion
22 // [ 0 , 1 ] −> [minimum ,maximum]
23 }
24 }

Then, it is required to bind the claim to the event. This can be done by configuring

an XML file as shown in Listing 4.4.

Listing 4.4: Binding Claim Type and Event

1 <EventClaim evId= ‘ ‘EV Example ’ ’ Engine= ‘ ‘CounterUp ’ ’>
2 <Event>
3 <Name>WebServiceRating </Name>
4 </Event>
5 <Claim>
6 <Name>WebServiceRating</Name>
7 <Class>BoundedClaim</Class>

133



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

8 <Min>1<Min>
9 <Max>3<Max>
10 <Value>EVENTVALUE</Value>
11 </Claim>
12 </EventClaim>

The developer is specifying that when an event with name WebServiceRating is

triggered, a BoundedClaim object must be created with the parameters name, minimum,

maximum and value. The value parameter is given by the value parameter in the event

object.

The next step is creating the trust and reputation engines. This is done by extend-

ing the Engine abstract class and implementing the compute() method, as shown in

Listing 4.5. Note the use of Java generics2 to specify the type of the values returned by

the engines.

Listing 4.5: Implementing Trust and Reputation Engines

1 public class RepExampleEngine extends Engine<Float> {
2
3 // I t computes the t a r g e t ’ s r epu ta t i on by mu l t i p l y i n g the
4 // claim va lue by the r epu ta t i on o f the source
5 public Float compute ( ReputationStatement r s ) {
6 return r s . getClaim ( ) . getValue ( ) ∗ r s . getSource ( ) . getReputat ion

( ) ;
7 }
8 }
9
10 public class TrustExampleEngine extends Engine<Str ing> {
11
12 // I t computes the t r u s t va lue between the t r u s t o r and the t r u s t e e

by mu l t i p l y i n g
13 // the t r u s t o r ’ s b e l i e f in the t a r g e t ’ s c a p a b i l i t y by the c laim

va lue .
14 public St r ing compute ( ReputationStatement r s ) {
15 List<Factor> lb = r s . getSource ( ) . g e tB e l i e f s ( ) ;
16 f loat c apBe l i e f = r e t r i e v eFa c t o r ( lb , " c a p ab i l i t y " , t a r g e t ) ;
17 f loat aux = capBe l i e f ∗ r s . getClaim ( ) . getValue ( ) ;
18
19 i f ( aux > THRESHOLD) {

2http://docs.oracle.com/javase/tutorial/java/generics/types.html

134

http://docs.oracle.com/javase/tutorial/java/generics/types.html


4.5 Application Example: Social Cloud

20 return ’TRUSTWORTHY’ ;
21 } else {
22 return ’UNTRUSTWORTHY’ ;
23 }
24 }
25
26 private f loat r e t r i e v e ( Lis t<b e l i e f s > lb , S t r ing name , HumanEntity

t a r g e t ) {
27 //This method r e t r i e v e s the va lue o f the b e l i e f wi th name ’

name ’
28 // about an e n t i t y ’ t a r g e t ’ from the l i s t o f b e l i e f s ’ l b ’
29 }
30 }

Finally, the developer should configure the computation rules by XML, as shown in

Listing 4.7.

Listing 4.6: Configuring Engines

1 <CompRule RuleId= ‘ ‘CompRule Example ’ ’ RepEngine= ‘ ‘RepExampleEngine ’ ’
TrustEngine= ‘ ‘TrustExampleEngine ’ ’>

2 <Context>
3 <Name>any<Name>
4 </Context>
5 <Claim>
6 <Name>WebServiceRating</Name>
7 </Claim>
8 </CompRule>

The developer is specifying that, no matter which the context is, if the name of a

claim is WebServiceRating, then apply RepExampleEngine and TrustExampleEngine as

reputation and trust engines respectively. Once all this is configured, the developer only

needs to retrieve a trust server instance through JNDI and to make the corresponding

API call, where eventName should be WebServiceRating :

Listing 4.7: API Call for Sending the Event

1 public void sendEvent ( S t r ing eventName , S t r ing ctx , S t r ing source ,
S t r ing t a r g e t )

A detailed sequence diagram of this use case is depicted in Figure 4.12 and Fig-

ure 4.13. The server, upon receiving the call, creates the Event and sends it to the

135



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

Figure 4.12: Detailed Sequence Diagram of sendEvent API Call

Client Application API Client

JNDI

Event Reader

initialize

lookup

sendEvent

Event Queue

Event Manager Claim Factory

Claims.XML

Reputation 

Statement Writer

Reputation 
Statement Queue

Reputation 

Statement Reader

writeEvent

readEvent

newEvent
createClaim

lookup

getEntities

sendReputationStatement
writeReputationStatement

readReputationStatement

to DataManager...

Figure 4.13: Detailed Sequence Diagram of sendEvent API Call (cont.)

Engine Manager Engine Factory
Trust Statement 

Writer

Trust Statement 

Reader

SQL Server

API Translator

getEntities JDBC Query 
(SELECT FROM Entity)

newReputationStatement

createEngines

Reputation Engine Trust Engine

CRules.XML

lookup

rep:=compute(Reputation Statement)

trust:=compute(Reputation Statement)

Trust Statement 
Queue

sendTrustStatement

writeTrustStatement
readTrustStatement

newTrustStatement
JDBC Query 
(UPDATE Entity)

JDBC Query 
(UPDATE TrustRelationship)

JDBC Query 
(INSERT ReputationStatement)

Reputation 

Statement Reader

...from EventManager

Events Queue. From that moment, the client application can continue its execution.

An Event Manager instance is asynchronously notified by an Event Reader that a new

Event is available for processing, and it creates a Claim according to the rules specified

in the XML file. The Event Manager also retrieves the complete information about

136



4.5 Application Example: Social Cloud

the entities using a Data Manager instance, and with all this information it creates a

Reputation Statement, which is sent to the Reputation Statement Writer, which in turn

writes it in the Reputation Statement Queue.

The Engine Manager is asynchronously notified by a Reputation Statement Reader

instance that a new Reputation Statement is in the queue ready for processing, and it

creates an Engine using the computation rules codified in the XML file. The values

returned by the reputation and trust engines are encapsulated in a Trust Statement

instance by the Engine Manager, and sent to a Trust Statement Writer instance, which

writes it into the Trust Statement Queue.

Finally, the Data Manager is notified by a Trust Statement Reader instance upon the

arrival of the new Trust Statement. Using the JDBC connector, it translates the Trust

Statement into the appropriate INSERT/UPDATE statements in the Entity, Reputation

Statement and Trust Relationship tables.

An instantiation of this use case could be as follows. Let us assume that a cloud

provider CP1 rates the web service created by another provider CP2 with 3 stars. The

resulting tables after this event occurs are shown in Table 4.5, Table 4.6 and Table 4.7.

Table 4.5: Entity Table Example

Attribute CP1 WebService RepStatement

ID CP1-ID CP2-WebService0123 RepStatementCP1-CP2
Type Human Non-Human RepStatement
Reputation 0,7 2,1 -
Context WebServiceRatingCtx WebServiceRatingCtx WebServiceRatingCtx
Claim AnotherClaim BoundedClaim -
Time 10-05-Mon25Sep2012 14-30-Tue05Dec2011 -
LastTime 10-05-Mon25Sep2012 09-24-Wed24Jan2012 -
Number of eval-
uations

1 5 0

The second requirement is similar to the previous one, therefore the steps are also

similar. However, there are two major differences. The first one is that the value of the

new claim is set to null (there is no value in a I Like or I don’t Like statement) and

therefore it is not possible to normalize it. The second one is that the reputation engine

is set to null in the computation rules XML file, since no reputation update is required.

137



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

Table 4.6: Trust Relationship Table Example

Attribute CP1 - CP2

ID CP1-CP2-RelID
ID Trustor CP1-ID
ID Trustee CP2-ID
Trust value TRUSTWORTHY
Context WebServiceRatingCtx

Number of evaluations 1
Time 09-24-Wed24Jan2012

Last Time 09-24-Wed24Jan2012

Table 4.7: Reputation Statement Table Example

Attribute RepStatement

ID RepStatementCP1-CP2
Source CP1
Target CP2-WebService0123
Claim BoundedClaim

Claim value 3
Context WebServiceRating
Time 09-24-Wed24Jan2012

The developer, upon detecting that a cloud provider has rated another provider, would

call the sendEvent call with the new event name provided by himself.

Regarding the third requirement, updating trust-related information (such as beliefs,

or other types of factors) does not require the developer to trigger an event, but only to

use the API call that requests the Data Manager to update this information. Therefore,

upon detecting that a cloud provider has seen other provider’s profile, it would perform

a call similar to the following:

Listing 4.8: Changing a Belief

1 public void changeBe l i e f ( S t r ing beliefName , S t r ing ctx , S t r ing
source , S t r ing target , f loat i n c r ea seVa lue )

138



4.6 Discussion

As for the last requirement, the framework should offer hot spots or hooks in order

to provide developers with extension points for application-specific needs. The methods

of an abstract class InfoFilter can play this role, as depicted in Listing 4.9.

Listing 4.9: Framework Hooks

1 abstract class I n f o F i l t e r {
2
3 //This method i s c a l l e d r i g h t b e f o r e an engine r e c e i v e s a

r epu ta t i on s ta tement
4 public ReputationStatement beforeComputation ( ReputationStatement

r s ) ;
5
6 //This method i s c a l l e d r i g h t a f t e r an engine computes a t r u s t

s ta tement
7 public TrustStatement afterComputation ( TrustStatement t s ) ;
8
9 //This method i s c a l l e d r i g h t a f t e r r e t r i e v i n g some t r u s t

in format ion
10 //and r i g h t b e f o r e sending t h i s in format ion to the c l i e n t

a p p l i c a t i o n
11 public RepValue a f t e rR e t r i e v a l (RepValue rv ) ;

Developers need to extend this class and implement the methods according to their

needs. In the case of the last requirement, a reputation score in the context WebSer-

viceForOffice must be normalized in the range [0, 1], and denormalized to the original

range prior to being sent back to the application. Therefore, the developer would need

to place the normalization code in the afterComputation() method, and denormalization

code in the afterRetrieval() method.

4.6 Discussion

We have presented a trust framework that assists developers to implement applications

that need to take into account trust and reputation requirements. This kind of appli-

cations are steadily emerging, responding to an increasing demand of users eager to

participate in collaborative environments. We have seen this trend with the success of

blogs and social networks.

139



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

In spite of their importance, trust and reputation are often discussed in the literature

from a theoretical perspective: hundreds of trust and reputation models can be found,

but few works address them from a more pragmatic point of view. Moreover, the con-

cepts of trust and reputation are often mixed up, which prevents security engineers from

designing coherent models where trust and reputation support each other. We believe

that counting on this kind of solutions can greatly simplify the task of implementing

successful applications that users can trust and are willing to use.

We are aware that learning a framework may be a daunting task. For this reason, we

have tried to keep a simple, event-based design. We advocate that the work of learning

a new framework can significantly pay off over the burden of hard-coding trust and

reputation solutions from scratch every time, in addition to enabling the maintainability

of the whole system (34).

There are several issues that require further attention. Up to now, the framework

design does not support the implementation of propagation models. Therefore, no

trust information can be transferred between entities. For enabling the implementation

of these models, it is first required to add algorithms that generate trust chains (i.e.

graphs) from the trust relationships stored by the trust server. The developer can define

rules to transfer trust between the entities following the trust paths. These rules can

be implemented by extending base classes, namely Concatenator and Aggregator, and

by implementing their abstract method compute(). The output of the method would be

new trust values, which in turn represent new trust relationships between entities that

had no prior direct encounters.

A relevant, challenging research question arises: Is the trust framework actually

improving the security of the application or improving the decision-making processes?

In systems including trust and reputation models, there are usually human users behind

the decision-making processes and trust/reputation dynamics. Users usually provide

feedback after certain operations and trigger events that update trust relationships

and reputation values. It would be interesting to research how the notions of trust

and reputation can be effectively tailored for system components and physical devices,

without any kind of human interaction. In this direction, we should decide under which

terms a system component can trust another component. Even more interestingly, we

could ask ourselves whether trust and reputation information can be used to make

reconfiguration decisions on the system architecture, or whether system developers can

140



4.6 Discussion

be provided with usable tools to achieve this. Next chapter addresses these research

challenges.

141



4. ENABLING TRUST AND REPUTATION DURING
IMPLEMENTATION

142



Chapter 5

Enabling Trust and Reputation at
Runtime

Preceding chapters discuss how to model and implement trust-aware systems, focus-

ing on design-time solutions. However, two important changes are coming to the

Information and Communication Technology (ICT) world that requires looking beyond

design time. On the one hand, the service-oriented vision enables on-the-fly improve-

ments upon the functionality available to users. Applications are more dynamic and

call for rapid adaptation strategies in order to meet new requirements and to respond

to their changing environment. On the other hand, the boundaries between physical

and virtual worlds are vanishing with the emergence of the Internet of Things (IoT),

where sensors and actuators are embedded in daily life objects and are linked through

networks capable of producing vast amount of data. The aforementioned reasons blur

boundaries between design and runtime (41) as they prevent designers from envisioning

all possible circumstances that might appear during the execution of an application.

Models@run.time is a model-driven approach that supports the runtime adapta-

tion of distributed, heterogeneous systems. It allows working with abstractions and

self-adaptive software in order to cope with unforeseeable changes. However, frame-

works that accommodate this paradigm have limited support to address security con-

cerns, hindering their usage in real scenarios. We address this challenge by enhancing

models@run.time with the notions of trust and reputation, leading to what we call

trust@run.time.

In this chapter, we take a step ahead and discuss how we can build systems that

143



5. ENABLING TRUST AND REPUTATION AT RUNTIME

make reconfiguration decisions at runtime based on trust relationships and reputation

values. With this goal in mind, we present a trust and reputation framework that is

integrated into a distributed component-model that implements the models@run.time

paradigm, thus allowing the system to include trust in their reasoning process. The

framework is illustrated in a chat application by implementing several state-of-the-art

trust and reputation models. We show that the framework entails negligible computa-

tional overhead and that it requires a minimal amount of work for developers.

The chapter is structured as follows. An introduction to a models@run.time platform

called Kevoree is given in Section 5.1, whereas Section 5.2 presents the framework and

some details of its implementation. Section 5.3 presents our approach for allowing

trust- and reputation-based reconfigurations of the system. An example scenario that

illustrates the use of the framework in a chat application is described in Section 5.4.

Section 5.5 yields experimental results as for the overhead and the amount of work that

the development of such application requires. Finally, Section 5.6 concludes the chapter

by presenting research challenges that were identified during the implementation of the

framework.

5.1 Kevoree: A Models@run.time Development Platform

Traditionally, the Model-Driven Software Development area has primarily focused on

using models at design, implementation and deployment phases of the SDLC. However,

as systems become more adaptable, reconfigurable and self-managing, they are also

more prone to failures, which demands putting in place appropriate mechanisms for

continuous design and runtime validation and monitoring. Models@run.time (16) aims

to tame the complexity of dynamic adaptations by keeping an abstract model of the

running system, pushing the idea of reflection one step further. The abstract model

is synchronized with the actual system and every change performed on the model is

automatically accommodated by the system.

Kevoree1 is an open-source dynamic component model that relies onmodels@run.time

to properly support the design and dynamic adaptation of distributed systems (36). Six

concepts constitute the basis of the Kevoree component metamodel. A node is an ab-

straction of a device on which system components can be deployed, whereas a group
1http://kevoree.org

144



5.1 Kevoree: A Models@run.time Development Platform

defines a set of nodes that shares the same representation of the reflecting architec-

tural model. A port represents an operation that a component provides or requires.

A binding represents the communication between a port and a channel, which allows

the communication among components. The core library of Kevoree implements these

concepts for several platforms such as Java, Android or Arduino. Figure 5.1 depicts a

snapshot of the aforementioned concepts in the Kevoree Editor, which allows building

systems in a visual environment.

Figure 5.1: Kevoree Architectural Elements

Component ChannelGroup

Binding Provided port Required port

Node

Kevoree adopts the models@run.time paradigm and it boils down the reconfiguration

process to moving from one configuration, represented by the current model, to another

configuration represented by a target model, as shown in Figure 5.2. First, the target

model is checked and validated to ensure a well-formed system configuration. Then,

the target model is compared with the current one and this comparison generates an

adaptation model that contains a set of abstract primitives that allows the transition

from the former to the latter. Finally, the adaptation engine instantiates the primitives

to the current platform (e.g. Java) and executes them. If an action fails, the adaptation

engine roll backs the configuration to ensure consistency between the models@run.time

layer and the running system.

Building an application with Kevoree entails two steps. First, developers create

business components through the framework provided by the Kevoree platform. Second,

components are deployed on nodes and wired together through bindings and channels.

Next sections explain these steps in further detail.

145



5. ENABLING TRUST AND REPUTATION AT RUNTIME

Figure 5.2: Adaptation Process

5.1.1 Kevoree Development Framework

The framework is based on annotations. Components that run on the Kevoree runtime

are created by annotating them with ComponentType2.

Components can have parameters, which are attributes that are mapped to the

reflection layer and can be changed at runtime via Kevscript, a scripting language

provided by Kevoree, or via the visual editor. Additionally, components provide and

require services through their ports.

Listing 5.1 defines a Console component with one required port, one provided port

and one parameter. The parameter (lines 4-5) determines the appearance of the console

frame and can be changed easily at any time both from the editor and with Kevscript.

The required port (lines 7-8) allows sending text to other consoles, whereas the provided

port (lines 10-14) allows receiving text from other consoles and showing it to the user.

Listing 5.1: Definition of Console in Kevoree

1 @ComponentType
2 public class Console {
3
4 @Param( de fau l tVa lue = " true " )
5 protected Boolean showInTab = true ;
6
7 @Output
8 protected Port textEntered ;
9

2In the same way, there are annotations to create new channels (ChannelType) and nodes (Node-
Type). For the purpose of this chapter, however, we only need to create new components.

146



5.1 Kevoree: A Models@run.time Development Platform

10 @Input
11 public void showText ( Object t ex t )
12 {
13 //Show rec e i v ed t e x t
14 }
15 }

The services offered by the Kevoree runtime can be accessed by components through

services injected at runtime. Requesting these services entail adding an attribute of

the correspondent service type, and annotate such attribute with @KevoreeInject. For

example, by using the ModelService type, developers gain access to the system model

and can query it programmatically. Listing 5.2 shows how to find the name of all

component instances of a given component type componentType running in a node with

name nodeName3.

Listing 5.2: Querying the model@runtime layer

1 stat ic List<Str ing> getComponentInstanceName ( ContainerRoot model ,
S t r ing componentType , S t r ing nodeName)

2 {
3 List<Str ing> components = new ArrayList<Str ing >() ;
4 for ( ContainerNode node : model . getNodes ( ) ) {
5 i f ( node . getName ( ) . equa l s (nodeName) ) {
6 for ( ComponentInstance component : node . getComponents ( ) ) {
7 i f ( component . ge tTypeDe f in i t i on ( ) . getName ( ) . equa l s (

componentType ) ) {
8 components . add ( component . getName ( ) ) ;
9 }
10 }
11 }
12 }
13 return components ;
14 }

First, a list of the existing nodes in the model is retrieved (line 4), and for each

of these nodes, we check its name with the searched name. If they are equal, all the

components running on the node are retrieved (lines 5-6). For each component, if

3Kevoree elements can also be queried using the Kevoree Modeling Framework (http://kevoree.
org/kmf/), which provides a less verbose and more efficient query language.

147

http://kevoree.org/kmf/
http://kevoree.org/kmf/


5. ENABLING TRUST AND REPUTATION AT RUNTIME

the name of the component type matches the searched one, the instance name of the

component is added to the result list (lines 7-8), which is finally returned (line 13).

5.1.2 Deployment in Kevoree

Once business components are developed, they can be deployed in nodes and connected

through ports. This deployment phase can be realised through the Kevoree editor or

by Kevscript.

The editor provides a set of basic, built-in libraries (e.g. nodes, basic components

and channels) and allows loading custom libraries (i.e. custom business components,

customized nodes, channels, etc). It provides drag and drop functionality and a visual

representation of the system architecture, as illustrated in Figure 5.3. The models can

be converted to Kevscript instructions, being possible to save the model as a .kevs file

containing these instructions.

As the complexity of the system increases, the editor may end up overloaded with

too much information. In these cases, it is possible to deploy the system by manually

specifying Kevscript instructions. Figure 5.4 shows an excerpt of this scripting lan-

guage. In this example, a Java node is added and started, and a component of type

CentralReputationAwareConsole is deployed on this node and started. The component

parameters showInTab, trustContext and group are set.

Kevoree platform does not support reasoning about security concerns, therefore any

architectural element such as a node or a software component can join the system

without further checks. Also, there is no cross-cutting criteria to guide the runtime

changes. Our goal is to provide components with trust and reputation capabilities,

which in turn can guide some reconfiguration decisions.

5.2 Integrating Trust and Reputation in Models@Run.time

In this section we explain how we integrate the notions of trust and reputation into the

Kevoree component model described in Section 5.1. Developers can use this framework

in order to build trust and reputation models for self-adaptive systems. Trust and

reputation information that these models generate can be used to make reconfiguration

decisions, as further discussed in Section 5.3.

148



5.2 Integrating Trust and Reputation in Models@Run.time

Figure 5.3: Kevoree editor with three nodes

Three components are deployed in node0 and two in node1 and node2. Components communicate
through channels (orange circles) that bind their ports. Parameters can be set for each component
(bottom-right grey dialog).

Figure 5.4: Kevscript Instructions

The framework consists of an API for developers with some base components that

can be extended, some methods that can be overridden, and configuration files. The rest

of this section describes the most important aspects of the framework implementation

and its integration in the Kevoree component model.

149



5. ENABLING TRUST AND REPUTATION AT RUNTIME

5.2.1 Trust and Reputation Metamodels

We use the Eclipse Modelling Framework (EMF)4 to create metamodels for trust and

reputation. These metamodels gather a set of concepts and relationships among these

concepts that abstract away from the particularities of different trust models, in such

a way that different metamodels instantiations yield different models. Figures 5.5 and

5.6 show the trust and reputation metamodels, respectively.

Figure 5.5: Trust Metamodel

The trust metamodel includes the concept of TrustRelationship, which is a tuple

of a Trustor, Trustee and TrustValue. Trustors use Metrics to evaluate their trust in

Trustees. Metrics use a set of Factors, which in turn have a FactorValue. Different trust

models are created by instantiating the entities that play the trustor and trustee roles,

the factors that are considered and the way these factors are combined in a metric.

The core concept of a reputation metamodel is a ReputationStatement, which is a

tuple containing a Source entity, a Target entity and a Claim, which has a ClaimValue.

A ReputationMetric is used in order to aggregate Claims. Reputation models are created

by instantiating the entities that play the source and target roles, the way claims are

generated and their type, and the way the metric combines the claims.

Note that these metamodels gather many of the concepts explained in Section 2.2.3.

In both metamodels, other important concepts from the conceptual framework are in-
4http://www.eclipse.org/modeling/emf/

150



5.2 Integrating Trust and Reputation in Models@Run.time

Figure 5.6: Reputation Metamodel

cluded as attributes, like Context and Time. Other concepts from the conceptual frame-

work that are not presented explicitly in the metamodel are included implicitly in the

implementation. For example, factors can be objective and subjective, but the differ-

ence is only made at the implementation level with methods available to entities, such

as addSubjectiveFactor. Engines are concrete implementations of Metrics.

Another example concerns centralized and distributed reputation models. As we will

see in the next section, centralized reputation models include entities that must send

their claims to a component that stores them and which compute reputation, whereas

distributed reputation models comprise entities that store their own claims and which

compute reputation themselves. In summary, metamodels provide a basic skeleton of

relevant concepts, which are enriched during implementation to accommodate more

concepts discussed in the conceptual model.

From these metamodels, the EMF generates code that constitutes an API to man-

age these metamodels. This code does not need to be visible to developers, who can

be oblivious about how trust models are instantiated and managed internally by the

framework. We use this code as an internal API that acts as an interface between

the trust and reputation components offered to developers and the underlying trust or

reputation model.

The following sections describe the trust and reputation components, respectively,

that constitute the framework.

151



5. ENABLING TRUST AND REPUTATION AT RUNTIME

5.2.2 Trust Framework

This section describes how the trust part of the framework is implemented. As men-

tioned earlier, this implementation is hidden from developers, as they do not need to

know the implementation details in order to use the framework.

One of the main components in the trust framework is TrustEntity, which describes

an entity capable of participating in a trust relationship. That is, each business compo-

nent that we want to include in the trust dynamics must inherit from this component.

Listing 5.3 shows an excerpt of the implementation.

Listing 5.3: TrustEntity Component

1 @ComponentType
2 public class TrustEntity<T, F>
3 {
4 @Param( de fau l tVa lue = "both" )
5 private St r ing r o l e ;
6
7 @Param( de fau l tVa lue = "MyContext" )
8 private St r ing trustContext ;
9
10 @Param( de fau l tVa lue = "MyGroup" )
11 private St r ing group ;
12
13 @Param( de fau l tVa lue = "0" )
14 private St r ing bootstrappingTrustValue ;
15
16 @Param
17 private St r ing sub j e c t i v eFac to r sF i l ePa th ;
18
19 @Output
20 private Port requestTrustUpdate ;
21
22 @Output
23 private Port i n i tT ru s tRe l a t i o n sh i p s ;
24
25 @Output
26 private Port addFactor ;
27
28 @KevoreeInject
29 private Context context ;

152



5.2 Integrating Trust and Reputation in Models@Run.time

30
31 private St r ing uid ;
32
33 @Start
34 protected f ina l void s t a r t ( )
35 {
36 uid = context . getInstanceName ( ) + "@" + context . getNodeName

( ) ;
37 i n i t i a l i z eT r u s tR e l a t i o n s h i p s ( ) ;
38 s t o r eSub j e c t i v eFac t o r s ( ) ;
39 }
40 }

We use Java generics5 in order to allow developers to set the types for the trust

values and the factor values, respectively. We define several parameters. The role

parameter states whether the entity plays a trustor role, a trustee role, or both roles.

The entity can also specify a trust context where its relationships are framed. Entities

can belong to groups and their relationships are to be initialized according to the value

of bootstrappingTrustValue parameter. The last parameter denotes the name of a file

containing subjective factors information during initialization.

A trust entity requires services in order to update a trust relationship through the

port requestTrustUpdate, to initialize its trust relationships through initTrustRelation-

ships, and to add factors through addFactor. In the start() method, which will be called

by the Kevoree framework at start-up, a unique identifier for the component is gener-

ated by the context service of Kevoree, which provides some basic context information

such as the name of the instance and the node where the instance is running. Then,

a request to initialize trust relationships is sent to a TrustManager component, and

finally subjective factors are stored in the model.

Subjective factors are initialized by means of a file that the developer can configure

for each trust entity. The format of the file is:

FactorName FactorValue <TargetEntity>

The last parameter is optional and denotes the entity to which the subjective factor

applies. For instance, if an entity A thinks that another entity B is competent, the file

with A’s subjective factors would include:
5http://docs.oracle.com/javase/tutorial/java/generics/

153

http://docs.oracle.com/javase/tutorial/java/generics/


5. ENABLING TRUST AND REPUTATION AT RUNTIME

PerceivedCompetence High B

The most important methods offered by this component are changeSubjectiveFac-

tor(), requestTrustUpdate(), and trustRelationshipUpdated(). The former allows trust

entities to increment or decrement an existing subjective factor or to create a new one.

The second one requests an update of a trust relationships with a trustee, and the latter

is called by the framework when the update is done. Clients can invoke the first two

methods and can override the last one in order to make business-level decisions based

on trust values. By default, when the client calls requestTrustUpdate(), reconfigura-

tion of the system might occur, although developers can inhibit this reconfiguration by

invoking an overloaded version of the method. Trust entities also can access recently

computed trust values through the method getLastTrustValue(), which acts like a cache,

saving network resources.

As mentioned above, trust relationships are initialized in the method initializeTrustRe-

lationships(), which is depicted in Listing 5.4. This method calls the static method get-

TrusteesInstanceName(), provided by the GetHelper class, which is a utility class that

allows querying and retrieving information from the reflection layer. We consider that

an entity is trustee with respect to another entity if it plays the role trustee and it has

the same context as the latter. Once we have all the trustees of the entity, we create a

trust relationship structure with the context of the relationship, the trustor, the trustee,

the initial value of the relationship and a time stamp, and send this structure to the

TrustModel component. These two components, the TrustEntity and TrustModel, will

be eventually connected through their ports during the deployment phase, as explained

in Section 5.1.

Listing 5.4: Trust Entities Initialization

1 HashMap<Str ing , L i s t<Str ing>> trusteesAndNodes = GetHelper .
getTrusteesInstanceName ( model . getCurrentModel ( ) . getModel ( ) ,
trustContext , trustorInstanceName ) ;

2
3 t r u s t e e s = new ArrayList<Str ing >() ;
4
5 //For every node in the model . . .
6 for ( S t r ing nodeName : trusteesAndNodes . keySet ( ) ) {
7 // . . . g e t the l i s t o f t r u s t e e s running on t ha t node
8 for ( S t r ing compName : trusteesAndNodes . get (nodeName) ) {

154



5.2 Integrating Trust and Reputation in Models@Run.time

9 //The uid o f a component i s o f the form :
compInstance@nodeWhereRunning

10 t r u s t e e s . add (compName + "@" + nodeName) ;
11 }
12 }
13
14 for ( S t r ing t r u s t e e : t r u s t e e s )
15 {
16 long t s = Calendar . g e t In s tance ( ) . getTime ( ) . getTime ( ) ;
17 Trus tRe la t i on In fo t r i = new Trus tRe la t i on In fo ( trustContext , uid ,

t ru s t e e , bootstrappingTrustValue , t s ) ;
18 i n i tT ru s tRe l a t i o n sh i p s . send ( t r i ) ;
19 }

The TrustModel component manages the trust metamodel and is in charge of com-

puting trust values. Listing 5.5 shows how the component adds the trust relationship

to the metamodel, for which the EMF API (see Section 5.2.1) is used.

Listing 5.5: Adding Trust Relationships with the EMF API

1 private void addTrustRelat ionsh ip ( S t r ing context , S t r ing idTrustor ,
S t r ing idTrustee , S t r ing i n i t i a lVa l u e , long timeStamp )

2 {
3
4 Trustee t r u s t e e = trustModel . f indTrusteesByID ( idTrustee ) ;
5 i f ( t r u s t e e == null )
6 {
7 t r u s t e e = fa c t o ry . c r ea t eTrus t e e ( ) ;
8 t r u s t e e . s e t IdTrus t ee ( idTrustee ) ;
9 trustModel . addTrustees ( t r u s t e e ) ;
10 }
11
12 //Creat ion o f the r e s t o f t r u s t r e l a t i o n s h i p s e lements
13 }

Clients of TrustModel can invoke several methods in order to retrieve factor infor-

mation, and can override two methods, compute() and computeThreshold(). This is

illustrated in Listing 5.6. Retrieving factor values is essential in order to implement the

trust engines, which need these values to compute trust. Trust engines are implemented

by overriding the compute() method, and optionally, the computeThreshold() method.

155



5. ENABLING TRUST AND REPUTATION AT RUNTIME

The last important component of the trust framework is the FactorProducer6. This

type of entity adds objective factors about other entities by using low-level platform

services that provide information about the components and their communications.

This is a key component to QoS-based trust models, as it allows the model to easily

take into account information about the response times, number of failures, uptime

percentage of services, and so on.

Listing 5.6: TrustModel Component

1 protected f ina l St r ing getFactorValue ( S t r ing context , S t r ing name ,
S t r ing uidTarget )

2 {
3 for ( Factor f : trustModel . ge tFactor s ( ) )
4 {
5 i f ( context . equa l s ( f . getContext ( ) ) && name . equa l s ( f . getName ( ) )

&& uidTarget . equa l s ( f . get IdTarget ( ) ) )
6 {
7 return f . getValue ( ) . getValue ( ) ;
8 }
9 }
10 return null ;
11 }
12
13 public T compute ( St r ing context , S t r ing idTrustee , S t r ing idTrustor )
14 {
15 return null ;
16 }
17
18 protected T computeThreshold ( S t r ing context , S t r ing idTrustee ,

S t r ing idTrustor )
19 {
20 return null ;
21 }

Clients of this component must set the instance identifier of the target entity and

override the method doEvaluation(). This component can work in two ways: by assign-

ing a value at initialization time, and by monitoring the target at a regular interval that

developers can also specify in another parameter. The value returned by the method is
6In the scope of this dissertation, we are interested in the social notions of trust and reputation,

therefore the chosen models in Section 5.4 do not use this component.

156



5.2 Integrating Trust and Reputation in Models@Run.time

automatically included as a factor in the method, and engines can retrieve the factor

during the computation.

The next section revises the most important implementation details of the reputation

framework.

5.2.3 Reputation Framework

The reputation framework allows the implementation of centralized and distributed

reputation models by means of CentralReputableEntity and DistReputableEntity com-

ponents, respectively. The former requires the communication with a ReputationMan-

ager component in order to send to it the claims and retrieve reputation information,

whereas the latter requires a ReputationEngine that will be in charge of computing

reputation for the component.

An excerpt of the CentralReputableEntity implementation is presented in Listing 5.7.

Again, reputation takes place in a trust context, and entities may belong to a group and

need a unique identifier uid. These entities also require a port through which to send

their claims and request reputation information. Two important methods offered to

clients are makeClaim() and requestReputation(), which allow sending claims to and

retrieving reputation information from the ReputationManager. Another important

method that client code can override is reputationReceived(), as depicted in Listing 5.7.

This method is called by the framework when a new reputation value of an entity is

computed. When a reputation update is requested, the default behaviour is reconfig-

uring the system in case it is required, although the client can explicitly disable the

reconfiguration by setting the corresponding parameter to false. CentralReputableEn-

tity also caches the last computed reputation values in order to provide fast access,

through the method getLastReputation(), to the reputation of an entity with which it

interacted in the past.

Listing 5.7: CentralReputableEntity Component

1 @ComponentType
2 public class CentralReputableEntity<T> implements IClaimSource {
3
4 @Param( de fau l tVa lue = "MyContext" )
5 private St r ing trustContext ;
6
7 @Param( de fau l tVa lue = "MyGroup" )

157



5. ENABLING TRUST AND REPUTATION AT RUNTIME

8 private St r ing group ;
9
10 @Output
11 private Port sendClaim ;
12
13 @Output
14 private Port requestReputat ion ;
15
16 private St r ing uid ;
17
18 protected void reputat ionRece ived ( St r ing target , T newVal ) { }
19 }

The other important component of a centralized reputation model is the Reputa-

tionManager, which interacts with the reputation metamodel and offers methods to

retrieve claims information. It also provides the method compute(), which clients must

implement for their reputation engines. An excerpt of the implementation is depicted

in Listing 5.8. As an example, the method getClaimValues() retrieve the values of all

the claims that are issued in a specific context, with a specific name and for a concrete

target entity. Clients can inherit from this class and override the method compute().

Listing 5.8: ReputationManager Component

1 @ComponentType
2 public class ReputationManager<T> implements IComputationEngine
3 {
4 // . . .
5
6 protected f ina l List<Str ing> getClaimsValues ( S t r ing context ,

S t r ing name , S t r ing t a r g e t ) {
7 Lis t<Str ing> c la ims = new ArrayList<Str ing >() ;
8 for ( ReputationStatement r s : repRoot . getStatements ( ) )
9 {
10 i f ( r s . getContext ( ) . equa l s ( context ) && rs . getTarget ( ) .

get IdTarget ( ) . equa l s ( t a r g e t ) )
11 {
12 for ( Claim cla im : r s . getClaim ( ) )
13 {
14 i f ( c la im . getName ( ) . equa l s (name) )
15 {

158



5.2 Integrating Trust and Reputation in Models@Run.time

16 c la ims . add ( c la im . getClaimValue ( ) . getValue ( )
) ;

17 }
18 }
19 }
20 }
21 return c la ims ;
22 }
23
24 public T compute ( S t r ing context , S t r ing idTarget , S t r ing

idSource )
25 {
26 return null ;
27 }
28
29 // . . .
30 }

The other type of reputation model, namely distributed reputation models, are

built around two components: DistReputableEntity and ReputationEngine. The former

represents an entity capable of issuing claims (such as CentralReputableEntity), but

which is responsible to store its own claims and to send them to other entities that may

request them. The latter is a reputation engine that belongs to a distributed entity. A

reputation engine is bound to an entity at start-up, as illustrated in Listing 5.9. As

in the case of the CentralReputableEntity, this component provides several methods to

issue claims and to request reputation updates. Clients can also override methods to

react when a new reputation value arrives.

Listing 5.9: DistReputableEntity Component and Reputation Engine Initialization

1 public class DistReputableEntity<T> implements IClaimSource {
2
3 @Param( de fau l tVa lue = "MyContext" )
4 private St r ing trustContext ;
5
6 @Param( de fau l tVa lue = "MyValue" )
7 private St r ing group ;
8
9 @KevoreeInject
10 private Context ctx ;

159



5. ENABLING TRUST AND REPUTATION AT RUNTIME

11
12 @Output
13 private Port requestCla im ;
14
15 private St r ing uid ;
16 private ReputationEngine<T> reputat ionEngine ;
17
18 @Start
19 public void s t a r t ( ReputationEngine repEngine )
20 {
21 uid = ctx . getInstanceName ( ) + "@" + ctx . getNodeName ( ) ;
22 reputat ionEngine = repEngine ;
23
24 // . . .
25
26 }
27
28 // . . .
29 }

Listing 5.10: ReputationEngine Class

1 protected f ina l List<ReputationStatementInfo> getClaimsFromSource (
S t r ing name , S t r ing idSource )

2 {
3 List<ReputationStatementInfo> c la ims=new ArrayList ( ) ;
4 for ( Reputat ionStatementInfo c In f o : reputat ionStatements )
5 {
6 i f ( name . equa l s ( c In f o . getClaim ( ) . getName ( ) ) && cIn f o .

getSource ( ) . equa l s ( idSource ) )
7 {
8 c la ims . add ( c In f o ) ;
9 }
10 }
11 return c la ims ;
12 }

Clients using ReputationEngine must implement the method compute() and can

gain access to the claims in the system by methods like the one shown in Listing 5.10,

which retrieves all the claims made by an entity about a particular subject, represented

by the name of the claim. In order to have access to all the claims, the entities send

160



5.3 Trust-based Self-Adaptation

them all to their engines right before the computation.

Next section discusses how the framework provides trust-based self-adaptation.

5.3 Trust-based Self-Adaptation

The interesting advantage of implementing the framework on top of a self-adaptive

platform is that developers can use trust and reputation information to change the

system at runtime. Regardless of the implemented model, the output of the model (i.e.

the trust or reputation value) can be used to make reconfiguration decisions.

5.3.1 Policy-based Reconfiguration

The framework supports this reconfiguration process by means of policies in the form of

simple rules. In the case of reputation-based reconfiguration, rules are in the following

form:

ComponentType BooleanCondition Action Arguments

where ComponentType is the type of the component for which the reputation is to be

used in the BooleanCondition. If it is true, then Action is executed with the required

Arguments. Trust-based reconfiguration rules are similar:

ComponentType ComponentType BooleanCondition|“threshold” Action Arguments

where the first ComponentType is the type of the trustor and the second one is the type

of the trustee. Either the trust value is compared according to the BooleanCondition or

the model threshold is used to determine whether the Action should be executed with

the required Arguments.

The actions currently implemented in the framework are remove and substitute. The

former does not require arguments and tells the runtime system to remove the compo-

nent if the boolean condition is met. The latter requires at least one argument, which

is another component type, and tells the system to substitute the current component

for another component of the new type if the condition is fulfilled.

Let us illustrate with a couple of examples. Consider the following reputation-based

reconfiguration policy file:

161



5. ENABLING TRUST AND REPUTATION AT RUNTIME

CentralReputationAwareConsole <1 substitute FilteredCentralReputationAwareConsole

FilteredCentralReputationAwareConsole <0 remove

This policy is specifying the following: “if the reputation of any instance of type

CentralReputationAwareConsole is less than 1, then substitute it for another component

instance of type FilteredCentralReputationAwareConsole. Likewise, if the reputation of

any instance of type FilteredCentralReputationAwareConsole is less than 0, then remove

it”.

Consider now the following trust-based reconfiguration policy file:

TrustAwareConsole TrustAwareConsole threshold substitute TrustAwareConsole

TrustAwareConsole TrustAwareConsole <0 remove

The policy is specifying the following: “if a trustor of type TrustAwareConsole does

not trust a trustee of type TrustAwareConsole over a threshold (defined by the model),

then substitute the trustee for a new component of type TrustAwareConsole. Like-

wise, if the trust that a trustor of type TrustAwareConsole places in a trustee of type

TrustAwareConsole is less than 0, then remove the trustee”.

In addition to the new component type, the substitute action can have an undefined

number of parameters that represent attributes of the new instances and their values.

If no parameters are found, it is assumed that new instances should replicate the same

values of the attributes of the instances removed.

As an example, consider the following:

Console <1 substitute FilteredConsole group A

FilteredConsole >5 substitute Console

This policy is specifying the following: “if the reputation of any instance of type

Console is less than 1, then substitute it for another component instance of type Fil-

teredConsole and set its parameter group to the value A. Likewise, if the reputation of

any instance of type FilteredConsole is more than 5, then substitute it for a component

instance of type Console and set all the parameters that have the same name to the

same values that the previous instance had”.

162



5.3 Trust-based Self-Adaptation

5.3.2 Implementation

In this section, we explain some details of the implementation. The main class is

ScriptEngine, which encapsulates the actions and generates the Kevscript instructions.

The reputation framework provides the class ReputationRulesEngine, which processes

the policy file and calls the script engine to generate the adaptation script. Likewise,

the trust framework uses the class TrustRulesEngine for the same purpose. Listing 5.11

shows the initialization of DistReputableEntity. Note that instances of ScriptEngine and

ReputationRulesEngine are created, and that the former is passed as an argument to the

latter, together with the name of the policy file (RepRules.policy by default). The listing

also shows an internal method of the framework which calls the compute() method of

the reputation engine and which determines whether the user wants to reconfigure the

system, in which case the method executeRules() of the ReputationRulesEngine class is

called. In turn, this method reads the file and executes, via the instance of ScriptEngine,

the rules for which the boolean conditions are met.

Listing 5.11: Reconfiguration Rules Processing

1 @ComponentType
2 public class DistReputableEntity<T> implements IClaimSource {
3
4 @Start
5 public void s t a r t ( ReputationEngine repEngine , S t r ing f i leName )
6 {
7 se = new Scr iptEng ine ( model ) ;
8 r r e = new ReputationRulesEngine ( f i leName , se ) ;
9 }
10
11 private void computeReputation ( St r ing idTarget , boolean

r e con f i gu r e , L i s t<ReputationStatementInfo> r s I n f o )
12 {
13 T r e s = reputat ionEngine . compute ( model , trustContext ,

idTarget , uid , r s In f o , this ) ;
14
15 i f ( r e c on f i g u r e )
16 {
17 r r e . executeRules ( model , idTarget , r e s . t oS t r i ng ( ) ) ;
18 }
19

163



5. ENABLING TRUST AND REPUTATION AT RUNTIME

20 // . . .
21 }
22 }

As an example of how ScriptEngine executes Kevscript instructions, Listing 5.12

shows the implementation of the action remove. Once the name of the instance in

the reflection layer is obtained (by trimming the node name where it is executing), the

script is executed by means of the ModelService variable model, which allows submitting

scripts as a String and checking the results in a callback.

Listing 5.12: ScriptEngine: Remove Component

1 private void removeComponent ( S t r ing idComponent )
2 {
3 Str ingToken ize r s t = new Str ingToken ize r ( idComponent , "@" ) ;
4 S t r ing in s t anc e = s t . nextToken ( ) ;
5 S t r ing node = s t . nextToken ( ) ;
6
7 St r ing s c r i p t = "remove␣" + node + " . " + in s t ance ;
8 model . submitScr ipt ( s c r i p t , new UpdateCallback ( ) {
9 @Override
10 public void run ( Boolean app l i ed ) {
11 // check i f a pp l i e d = true
12 }
13 }) ;
14 }

Substituting a component entails more work, as a new component must be created

and must be ensured that it will be able to continue its communication with the rest

of components. Given that the code is much longer, we simply enumerate the steps

required for this action7:

1. Obtain information (if necessary) about the attributes of the instance to be re-

moved.

2. Obtain information about the bindings and channels of the component to be

removed.
7The interested reader can check the Javadoc and source code in https://www.nics.uma.es/

development/trust-and-reputation-framework-modelsruntime

164

https://www.nics.uma.es/development/trust-and-reputation-framework-modelsruntime
https://www.nics.uma.es/development/trust-and-reputation-framework-modelsruntime


5.4 Application Example: A Trust-Aware Distributed Chat

3. Remove component.

4. Create new instance name of the type specified in the policy file.

5. Add the component and link it to the channels via new bindings.

6. Add new attributes (which could be the same as the attributes of the just removed

instance).

5.4 Application Example: A Trust-Aware Distributed Chat

In this section, we explain how we can implement several well-known trust and reputa-

tion models. First, we provide a brief description of each model followed by high-level

steps required to implement them. We also show the most relevant code for each model8.

The chosen scenario is a distributed chat application, because it is a simple scenario

that allows illustrating the use of trust and reputation models easily. The mechanics are

similar for every model: a console receives a message from another console and inspects

the contents of the message. Depending on these contents (e.g. if it detects a swear

word), it provides a stimuli to the trust or reputation model. This stimuli may come in

the form of claims or changes in factors, as it will be illustrated in each model.

5.4.1 eBay Model

In the eBay reputation model, after a transaction finishes, both the seller and the buyer

can rate each other by a positive (−1), neutral (0) or negative feedback (1). The

reputation for an individual is then calculated by summing up the distinct ratings for

such individual (108). The model is centralized, in such a way that all the feedbacks

are sent to a central system that computes the reputation, and each user can query and

see this reputation in the form of an html page.

This model is mapped to our example in the following way. Once a console receives

a message from another console, it looks for offensive words contained in the message,

which are previously configured by the user. If any offensive word is included, then

a negative feedback about the sender is issued (−1); otherwise, a positive feedback is

submitted (1).

8We omit some error checking and boiler plate code for the sake of better understandability.

165



5. ENABLING TRUST AND REPUTATION AT RUNTIME

The implementation of this model in the framework requires the following coarse-

grained steps:

• Consoles must inherit from CentralReputableEntity,

• Consoles invoke the method makeClaim with the appropriate value upon receiving

a message.

• Reputation engine inherits from ReputationManager and overrides the method

compute().

Further details are provided in Listing 5.13. In the former, a console component

inheriting from a central reputable entity is created. The generic type is instantiated

to Integer because that is the format in which we want to represent the reputation

value. Then, upon receiving a message through the input port showText, it retrieves

the identity of the sender and the text itself (provided by the console or by the mid-

dleware itself), and if any offensive word is found, it issues a negative claim with name

CleanWords; otherwise, it issues a positive one. The message is temporarily stored in

lastMessageReceived (if there are no offensive words) and an update of the reputation

of the sender is requested, which will call the reputation engine. In turn, the reputa-

tion engine will automatically call the method reputationReceived() with the identity

of the entity and the new reputation value, and we could perform additional checks to

determine whether the console should print the message or not.

Listing 5.13: Console in the Ebay Reputation Model

1 @ComponentType
2 public class CentralReputationAwareConsole extends

CentralReputableEntity<Integer> {
3
4 // I t s t o r e s the l a s t message r e c e i v e
5 private St r ing lastMessageRece ived ;
6
7 @Input
8 public void showText ( Object t ex t )
9 {
10 i f ( t ex t != null ) {
11 St r ing msg = text . t oS t r i ng ( ) ;
12 Str ingToken ize r s t = new Str ingToken ize r ( msg , " . " ) ;

166



5.4 Application Example: A Trust-Aware Distributed Chat

13 St r ing idTarget = s t . nextToken ( ) ;
14 St r ing message = s t . nextToken ( ) ;
15 i f ( badWordsInMessage ( message ) )
16 {
17 lastMessageRece ived = "" ;
18 makeClaim ( "CleanWords" , "−1" , idTarget ) ;
19 }
20 else
21 {
22 lastMessageRece ived = message ;
23 makeClaim ( "CleanWords" , "1" , idTarget ) ;
24 }
25 requestReputat ion ( idTarget ) ;
26 }
27 }
28
29 @Override
30 public void reputat ionRece ived ( St r ing target , I n t eg e r newVal )
31 {
32 //We cou ld check i f the r epu ta t i on i s above a g iven t h r e s h o l d

p r i o r to showing the message
33 th i sConso l e . appendIncomming ( "−>" + lastMessageRece ived ) ;
34 }
35
36 }

The reputation model, depicted in Listing 5.14, implements the Ebay reputation

engine. First, it retrieves all the claims named CleanWords about the target idTarget.

If there are no claims about the target, then a default value is returned, otherwise, the

reputation value is computed by summing up all the claim values.

Listing 5.14: Ebay Reputation Engine

1 @ComponentType
2 public f ina l class EBayReputationModel extends ReputationManager<

Integer> {
3
4 @Override
5 public I n t eg e r compute ( S t r ing context , S t r ing idTarget , S t r ing

idSource ) {
6

167



5. ENABLING TRUST AND REPUTATION AT RUNTIME

7 List<Str ing> c la ims = getClaimsValues ( context , "CleanWords"
, idTarget ) ;

8 int r e s = 0 ;
9 i f ( c la ims != null )
10 {
11 //By d e f a u l t r epu ta t i on
12 i f ( c la ims . s i z e ( ) == 0 )
13 {
14 return 1 ; // I n i t i a l r epu ta t i on
15 }
16 for ( S t r ing c : c la ims )
17 {
18 r e s += Int eg e r . valueOf ( c ) ;
19 }
20 }
21 return r e s ;
22 }
23 }

5.4.2 Marsh’s Trust Model

Marsh was one of the first authors that formalised trust in a computational setting (75).

His model considers the following factors:

• Utility (Ux): this factor measures the utility that entities would obtain from a

successful collaboration.

• Basic trust or trust disposition (Tx): this subjective factor indicates what is the

attitude of an entity towards higher or lower values of trust.

• Importance (Ix): this subjective factor indicates how important a situation is for

an entity.

• Perceived Competence: this subjective factor states how competent the trustor

thinks that the trustee is for the task in play.

• Perceived Risk: this subjective factor denotes how risky the entity thinks the

situation is.

168



5.4 Application Example: A Trust-Aware Distributed Chat

• General trust (Tx(y)): this refers to the trust that the trustor places in the trustee

as a consequence of the history of interactions.

The model uses the aforementioned factors to calculate the so-called situational

trust, which according to the author is the most important when considering trust in

cooperative situations. In particular, situational trust is defined as:

Tx(y, α) = Ux(α)× Ix(α)× T̂x(y)

where x is the trustor, y is the trustee, and α is the situation9. Marsh also models what

he calls a cooperation threshold :

CTx(α) =
PerceivedRiskx(α)

PerceivedCompetencex(y, α) + T̂x(y)
× Ix(α)

The model states that an agent engages in a collaboration with another agent if the

situational trust is greater than the cooperation threshold. In order to implement the

model in the framework, the following steps must be performed:

• Consoles inherit from TrustEntity.

• Consoles add their subjective factors.

• Consoles change their factors in response to the received messages.

• Trust engines inherit from TrustModel and overrides the methods compute() and

computeThreshold().

In order to initialize their subjective factors, we create a simple text file with a list

of factor value < target >, where factor represents the factor name, value denotes

the value of the factor and target, which is an optional parameter, the name of the

component instance to which the factor refers. An example of this file for one of the

consoles in Marsh’s is illustrated in Table 5.1. The name of this file is assigned in

Kevscript or from the editor for each console. Right after the trust relationships of the

console have been initialized, the file is read and the factors are stored.

Listing 5.15 shows the console implementation. First, it inherits from TrustEntity,

the generics of which are instantiated to String and Float, because this is the format
9The situation for Marsh is what we call context.

169



5. ENABLING TRUST AND REPUTATION AT RUNTIME

Table 5.1: Trust Factors for Marsh’s Model

Factor Value Target
utility 1.0 -

trustDisposition 0.8 -
importance 0.4 -

perceivedRisk 0.2 -
perceivedCompetence 0.9 console234@node0

we are computing the trust values and the trust factors, respectively. When a console

receives a new message and after retrieving metadata (e.g. sender, which is the trustee

of the relationship), it stores the message and looks for offensive words in the text.

If any offensive word is found, it invokes the method changeSubjectiveFactor(). The

arguments tell that the factor perceivedCompetence that refers to the trustee entity

should be decreased by 0.1, and in case this factor does not exist, it should be initialized

to 0.510. Finally, the console requests a trust update about its trustee.

When the trust update is completed by the trust engine, the method trustRelation-

shipUpdated() is called, which indicates the trustee to which it refers, and a list with

two potential values. The first value represents the actual new trust value, whereas the

second value is the threshold value11. Depending on their relationship, the message is

finally printed or not.

Listing 5.15: Console in Marsh Trust Model

1 @ComponentType
2 public class TrustAwareConsole extends TrustEntity<Str ing , Float>
3
4 // . . .
5
6 @Input
7 public void showText ( Object t ex t )
8 {
9 i f ( t ex t != null ) {
10 St r ing msg = text . t oS t r i ng ( ) ;

10The factor may not exist if a reconfiguration has taken place and a new component has been added
for which there is not such factor.

11We say potentially because not all trust models include a trust threshold computation and there-
fore, in that case, it would be up to the developer to hard-code a reasonable threshold.

170



5.4 Application Example: A Trust-Aware Distributed Chat

11 Str ingToken ize r s t = new Str ingToken ize r ( msg , " . " ) ;
12 St r ing t r u s t e e = s t . nextToken ( ) ;
13 St r ing group = s t . nextToken ( ) ;
14 St r ing message = s t . nextToken ( ) ;
15 lastMessageRece ived . put ( t ru s t e e , message ) ;
16
17 i f ( badWordsInMessage ( message ) )
18 {
19 changeSubject iveFactor ( "perceivedCompetence " , −0.1 f ,

0 . 5 f , t r u s t e e ) ;
20 }
21 requestTrustUpdate ( t r u s t e e ) ;
22 }
23 }
24
25 @Override
26 protected void t rustRe lat ionsh ipUpdated ( f ina l St r ing t ru s t e e ,

L i s t<Str ing> newVal ) {
27
28 f loat t rustVa lue = Float . valueOf ( newVal . get (0 ) ) ;
29 f loat th r e sho ld = Float . valueOf ( newVal . get (1 ) ) ;
30
31 i f ( t rustVa lue >= thre sho ld )
32 {
33 th i sConso l e . appendIncomming ( lastMessageRece ived . get (

t r u s t e e ) ) ;
34 }
35 }
36 }

The trust engine is shown in Listing 5.16. First, it inherits from TrustModel and

instantiates the generics to String and Float, which again are the formats of the trust

values and trust factors. Developers must implement the methods compute() and in-

crementFactor() and can implement the method computeThreshold(). The former com-

putes a trust value from the trust factors as discussed earlier in the description of the

model. The second method determines how an increment/decrement should be per-

formed depending on the concrete generics instantiation. The latter allows computing

a threshold from the trust factors as discussed earlier in the description of the model.

Listing 5.16 shows an excerpt of the implementation, in particular the compute() and

171



5. ENABLING TRUST AND REPUTATION AT RUNTIME

the incrementFactor() methods.

Listing 5.16: Trust Engine for Marsh’s Model

1 @ComponentType
2 public class MarshModel extends TrustModel<Str ing , Float>
3 {
4 @Override
5 public St r ing compute ( S t r ing context , S t r ing idTrustee , S t r ing

idTrustor )
6 {
7 f loat u t i l i t y = Float . valueOf ( getFactorValue ( context , "

u t i l i t y " , idTrustor ) ) ;
8 f loat importance = Float . valueOf ( getFactorValue ( context , "

importance " , idTrustor ) ) ;
9 S t r ing gene ra lTrus tS t r ing = getFactorValue ( context , "

genera lTrust " , idTrustor , idTrustee ) ;
10 f loat genera lTrust = Float . valueOf ( getFactorValue ( context ,

" genera lTrust " , idTrustor , idTrustee ) ) ;
11
12 f loat s i t u a t i o na lT ru s t = u t i l i t y ∗ importance ∗
13 genera lTrust ;
14
15 return St r ing . valueOf ( s i t u a t i o n a lT ru s t ) ;
16 }
17
18 // . . . Compute t h r e s ho l d in a s im i l a r way . . .
19
20 @Override
21 protected St r ing incrementFactor ( S t r ing currentValue , S t r ing

increment ) {
22 return St r ing . valueOf ( Float . valueOf ( currentValue ) + Float

. valueOf ( increment ) ) ;
23 }
24 }

5.4.3 PeerTrust

Xiong and Liu (137) propose PeerTrust, a distributed reputation model oriented towards

Peer-to-Peer scenarios. This model, as in the case of most reputation models, builds a

reputation score upon feedbacks that peers yield after their collaboration. In addition

172



5.4 Application Example: A Trust-Aware Distributed Chat

to the feedbacks, the model proposes using the following factors:

• Number of transactions that a peer has had with another peer.

• Credibility of the feedback; feedbacks from more trustworthy peers should weight

more in the calculation.

• Transaction context, which refers to metadata about the context where the trans-

action or collaboration is taking place.

• Community context, which relates to incentives for providing feedbacks.

The general trust metric is the following:

T (u) = α ·
I(u)∑
i=1

S(u, i) · Cr(p(u, i)) · TF (u, i) + β · CF (u)

where I(u) is the total number of transactions that peer u had with the rest of peers,

p(u, i) denotes the other participating peer in peer u’s ith transaction, S(u, i) is the

satisfaction peer u receives from p(u, i), Cr(v) denotes the credibility of the feedback

submitted by v, TF (u, i) is the transaction context factor for u’s ith transaction, and

CF (u) denotes the community context factor for peer u. α and β are weights for the

collective evaluation and the community context factor.

In our example, we identify each transaction with a message sent and received by two

communicating consoles. We lay the community context aside (i.e. β = 0) and focus

entirely on the collective evaluation (i.e. α = 1). The authors of the model provide

hints about how to calculate the credibility and the context factor. In particular, the

credibility can be calculated using the following formula:

Cr(u) =
T (p(u, i))

I(u)∑
i=1

T (p(u, i))

which uses the ratio between the current reputation of the peer that sent the feedback

and the total reputation of all peers that previously had a collaboration with u.

Regarding the context factor, the authors mention that a time-stamp of the trans-

action can be used in order to give more relevance to more recent transactions. One

way to model this is by the following formula:

173



5. ENABLING TRUST AND REPUTATION AT RUNTIME

TF (u, i) =
TS(u, i)

CurrentT ime

where TS(u, i) is the time when the ith transaction took place.

Once we have this, we can implement the model in the framework following these

high-level steps:

• Consoles must inherit from DistReputableEntity,

• Consoles invoke the method makeClaim upon receiving a message.

• Reputation engine inherits from ReputationEngine and overrides the method com-

pute.

• Console is assigned the reputation engine created.

The console code is similar to the one shown in Listing 5.13. The difference is

that in this case we are dealing with a distributed reputation model, therefore consoles

must inherit from DistKevReputableEntity and each console is responsible to compute

reputation values, instead of delegating this task to a reputation manager. Thus, in the

start method of the console, we need to specify which reputation engine the console will

use, as depicted in Listing 5.17.

Listing 5.17: Binding Reputation Engine and Console

1 @ComponentType
2 public class DistReputationAwareConsole extends

DistKevReputableEntity<Float>
3
4 @Start
5 public void s t a r tConso l e ( )
6 {
7 super . s t a r t ( new PeerTrustModel ( ) ) ;
8
9 //More conso le−s p e c i f i c i n i t i a l i z a t i o n s t u f f
10 }
11 }

The code for the reputation engine is illustrated in Listing 5.18, which implements

the formula described earlier for PeerTrust. Note that the method calculateTotalRepu-

tation() is not part of the framework, but a way to modularize the compute method.

174



5.4 Application Example: A Trust-Aware Distributed Chat

Listing 5.18: Reputation Engine for PeerTrust

1 public class PeerTrustModel extends ReputationEngine<Float>
2 {
3 @Override
4 public Float compute ( S t r ing context , S t r ing idTarget , S t r ing

idSource )
5 {
6 List<ReputationStatementInfo> al lStatementsAboutTarget =

getClaimsAboutTarget ( "CleanWords" , idTarget ) ;
7 f loat to ta lReputat ion = ca l cu la t eTota lReputa t i on ( idTarget ) ;
8 double currentTime = (double ) Calendar . g e t In s tance ( ) . getTime

( ) . getTime ( ) ;
9 f loat targetReputat ion = 0 .0 f ;
10 for ( Reputat ionStatementInfo r s : a l lStatementsAboutTarget )
11 {
12 St r ing source = r s . getSource ( ) ;
13 f loat sourceReputat ion = Float . valueOf (

getLastReputat ion ( source ) ) ;
14 f loat c r e d i b i l i t y = sourceReputat ion / tota lReputat ion ;
15 targetReputat ion += Float . valueOf ( r s . getClaim ( ) .

getValue ( ) ) ∗ c r e d i b i l i t y ∗ Double . valueOf ( r s .
getTimeStamp ( ) ) / currentTime ;

16 }
17 return targetReputat ion ;
18 }
19
20 private f loat ca l cu la t eTota lReputa t i on ( St r ing idTarget )
21 {
22 List<ReputationStatementInfo> al lStatementsAboutTarget =

getClaimsAboutTarget ( "CleanWords" , idTarget ) ;
23 Set<Str ing> con s i d e r e dEn t i t i e s = new HashSet ( ) ;
24 f loat tota lRep = 0 .0 f ;
25 for ( Reputat ionStatementInfo r s : a l lStatementsAboutTarget )
26 {
27 St r ing sourceEnt i ty = r s . getSource ( ) ;
28 St r ing sourceReputat ionStr ing = getLastReputat ion (

sourceEnt i ty ) ;
29 f loat sourceReputat ion = Float . valueOf (

getLastReputat ion ( sourceEnt i ty ) ) ;
30 c on s i d e r edEn t i t i e s . add ( sourceEnt i ty ) ;
31 tota lRep += sourceReputat ion ;

175



5. ENABLING TRUST AND REPUTATION AT RUNTIME

32 }
33 f loat targetReputat ion = Float . valueOf ( getLastReputat ion (

idTarget ) ) ;
34 tota lRep += targetReputat ion ;
35 return tota lRep ;
36 }
37 }

5.4.4 REGRET

REGRET (114) is a trust model that considers three reputation values, one for each

considered dimension: an individual dimension, a social dimension and an ontological

dimension. The three reputation values are calculated from a set of impressions gathered

by the entities. These impressions are about a subject and a target, and map to what

we call claims.

The individual dimension calculates a so-called subjective reputation value by using

impressions of an agent about another target agent, as follows:

Ra→b(subject) =
∑
ρ(t, ti) ·Wi

where a is the source entity, b is the target entity, Wi is the claim value in the range

[−1, 1], and ρ is a function that gives recent impressions a higher weight.

For the social dimension, the model considers that agents belong to groups, de-

noted by A, B, etc, and calculates the reputation at the group level, considering the

impressions about each agent of the group. In particular, the model considers:

Ra→B(subject) =
∑

bi∈Bw ·Ra→bi(subject)

RA→b(subject) =
∑

ai∈Aw ·Rai→b(subject)

RA→B(subject) =
∑

ai∈Aw ·Rai→B(subject)

where w are weights that must sum up 1. The final reputation value consists of a

weighted sum of all the previous values.

The model also considers an ontological dimension, where a subject (or context)

might be decomposed into other subjects, which allows generalizing a reputation value

for a new subject from weighting the contributing existing subjects.

176



5.4 Application Example: A Trust-Aware Distributed Chat

In order to implement this model in our framework, we make some slight simplifi-

cations. The most important one is that we do not consider the ontological dimension,

because contexts relationships are not supported in the framework. Also, in order to

simplify calculations and show a clearer code, we assume a uniform distribution of

weights across impressions and we do not consider reliability of the reputation values.

The coarse-grained steps we must follow for the implementation of this model are

the following:

• Inheriting from DistKevReputableEntity, invoking the method makeClaim upon

receiving a message, which simulates the impressions.

• Set the group to which each entity belongs.

• The reputation engine must retrieve the impressions of all entities to compute the

different reputation values, and the groups to which each entity belongs.

The code for the console is the same as the one depicted in Listing 5.17, except

that we need to bind the console to another reputation engine in the start method.

The reputation engine simply implements the formula described previously, as shown

in Listing 5.19.

Listing 5.19: Reputation Engine for REGRET

1 public class RegretReputationModel extends ReputationEngine<Float>
2 {
3 @Override
4 public Float compute ( S t r ing context , S t r ing idTarget , S t r ing

idSource ) {
5
6 //1) Ca l cu l a t e s u b j e c t i v e r epu ta t i on
7 List<ReputationStatementInfo> c la ims = getClaims ( "

CleanWords" , idSource , idTarget ) ;
8 f loat sub j e c t i veReputa t i on = 0 .0 f ;
9 f loat to ta lC la ims = c la ims . s i z e ( ) ;
10 double currentTime = (double ) Calendar . g e t In s tance ( ) . getTime

( ) . getTime ( ) ;
11 for ( Reputat ionStatementInfo r s : c la ims )
12 {
13 f loat claimVal = Float . valueOf ( r s . getClaim ( ) . getValue ( )

) ;

177



5. ENABLING TRUST AND REPUTATION AT RUNTIME

14 double claimTimeStamp = (double ) r s . getTimeStamp ( ) ;
15 sub j ec t i veReputa t i on += ( claimVal / to ta lC la ims ) ∗ (

claimTimeStamp / currentTime ) ;
16 }
17
18 //2) Now, r e t r i e v e a l l the c la ims t ha t idSource made about

any e n t i t y in the same group as idTarge t
19 St r ing groupTarget = getParam ( idTarget , "group" ) ;
20 Lis t<ReputationStatementInfo> targetGroupClaims =

getClaimsFromSource ( "CleanWords" , idSource ) ;
21 f loat targetGroupReputation = 0 .0 f ;
22 currentTime = Calendar . g e t In s tance ( ) . getTime ( ) . getTime ( ) ;
23 for ( Reputat ionStatementInfo r s : targetGroupClaims )
24 {
25 //We don ’ t want to cons ider c la ims about the t a r g e t

i t s e l f
26 i f ( ! idTarget . equa l s ( r s . getTarget ( ) ) )
27 {
28 St r ing g = getParam ( r s . getTarget ( ) , "group" ) ;
29 i f ( groupTarget . equa l s ( g ) ) {
30 f loat claimVal = Float . valueOf ( r s . getClaim ( ) .

getValue ( ) ) ;
31 double claimTimeStamp = (double ) r s . getTimeStamp

( ) ;
32 targetGroupReputation += ( claimVal / to ta lC la ims

) ∗ ( claimTimeStamp / currentTime ) ;
33 }
34 }
35 }
36
37 //3) Now, r e t r i e v e a l l the c la ims t ha t any e n t i t y in the

same group as idSource made about idTarge t
38 St r ing groupSource = getParam ( idSource , "group" ) ;
39 Lis t<ReputationStatementInfo> sourceGroupClaims =

getClaimsAboutTarget ( "CleanWords" , idTarget ) ;
40 f loat sourceGroupReputation = 0 .0 f ;
41 currentTime = Calendar . g e t In s tance ( ) . getTime ( ) . getTime ( ) ;
42 for ( Reputat ionStatementInfo r s : sourceGroupClaims )
43 {
44 //We don ’ t want to cons ider c la ims from the source

i t s e l f

178



5.5 Experimenal Results

45 i f ( ! idSource . equa l s ( r s . getSource ( ) ) )
46 {
47 St r ing g = getParam ( r s . getSource ( ) , "group" ) ;
48 i f ( groupSource . equa l s ( g ) ) {
49 f loat claimVal = Float . valueOf ( r s . getClaim ( ) .

getValue ( ) ) ;
50 double claimTimeStamp = (double ) r s . getTimeStamp

( ) ;
51 sourceGroupReputation += ( claimVal / to ta lC la ims

) ∗ ( claimTimeStamp / currentTime ) ;
52 }
53 }
54 }
55
56 return new Float ( sub j e c t i veReputa t i on +

targetGroupReputation + sourceGroupReputation ) ;
57 }

5.5 Experimenal Results

This section explains the experiment that we carry out in order to measure the per-

formance overhead that the framework entails, as well as the amount of work that

developers need to invest during the implementation of the models.

The application used for the experiment is the one explained in Section 5.4. In order

to ignore network latency, both consoles are executed on the same platform, which is a

2010 Macbook Pro Intel Core 2 Duo, with 4GB 1067 MHz DDR3 RAM.

The experiment is as follows. First, we measure the time elapsed between the time

the first console sends a message and the second console shows it, without any trust or

reputation involved. Then, for each trust or reputation model considered in Section 5.4,

we measure this same time. In order to account for the computation engines, the receiver

console shows the text only after it has received an update of the trust or reputation of

the sender console. Each measure is actually an average of 100 individual measures to

provide more statistically meaningful results, which are depicted in Figure 5.7.

As the figure depicts, there is a small overhead when using the framewok, although

this overhead comes in terms of microseconds. The least overhead comes from Marsh’s

179



5. ENABLING TRUST AND REPUTATION AT RUNTIME

Figure 5.7: Execution Time (measured in microseconds)

0	   500	   1000	   1500	   2000	   2500	   3000	   3500	  

No	  Trust	  

Ebay	  

Marsh's	  

Regret	  

PeerTrust	  

model, whereas the greatest comes from REGRET, something expected given its more

complex computation engine.

The amount of work that takes for developers to implement the models is similar

for all the models, as depicted in Table 5.2.

Table 5.2: Amount of Framework-related Activities

eBay Marsh’s PeerTrust REGRET
#inheritance 2 2 2 2
#invocations 3 4 4 6
#overriding 2 3 2 2
#configFiles 1 2 1 1

#compDeployed 3 3 2 2

As explained in Section 5.4, each model requires inheriting from two framework

classes, the class that determines the type of the entity, and the class that implements

the model or the engine. The number of method invocations go hand in hand with

the complexity of the model. Thus, REGRET requires up to 6 method calls whereas

eBay only requires 3. The number of methods that need to be overridden is similar in

all the models, although it is higher in Marh’s model because it needs to implement

the threshold value. All models require at least one configuration file with the self-

adaptation policy, whereas Marsh’s requires another one for setting the initial subjective

factors of the entities. The deployment changes slightly, as in the case of centralized

models (trust models like Marsh’s and centralized reputation models like eBay’s), three

components must be deployed, whereas in distributed reputation models only two are

180



5.6 Discussion

required12.

As a conclusion, the framework entails negligible overhead (in the order of microsec-

onds) and does not require a lot of work to implement well-known existing models.

This means that the benefits of adopting the framework are quite high considering the

work that the implementation requires (see Table 5.2) or even in terms of execution

time, as shown in Figure 5.7. We advocate that these results make the adoption of the

framework appealing.

5.6 Discussion

In this chapter we have developed a trust and reputation framework that allows imple-

menting a wide range of trust and reputation models. The framework is implemented

on top of a self-adaptive platform, which enables the use of trust and reputation infor-

mation in order to make reconfiguration decisions. We have shown that the framework

barely entails overhead and that the small amount of extra work for developers pays off

given the interesting opportunities that the use of the framework brings.

Despite the huge amount of trust and reputation models proposed in the literature,

we have found that by using only some core concepts (embodied in trust and reputation

metamodels), it is possible to represent a wide range of them. This happens because

the differences among models are often due to the application context where the models

are proposed, rather than in their dynamics, which turn out to be similar in most cases.

We have learned that this kind of integration must overcome several challenges.

In our view, one primary challenge is building a robust identity management system

in order to uniquely identify trust and reputation entities, and to allow access at any

moment to these identities. In our current implementation, we build upon the reflection

layer of Kevoree so as to provide such identities. However, it would be desirable to keep

track of entities that disappear and re-appear again in dynamic environments, which is

something we do not tackle at the moment.

Second, more research on declarative reconfiguration policies is required. Current

models@run.time platforms lack a usable mechanism to specify reconfiguration policies.

12In practice, three components should be deployed in order to test the reputation engines of
PeerTrust and REGRET due to their consideration for groups and credibility.

181



5. ENABLING TRUST AND REPUTATION AT RUNTIME

Kevoree offers Kevscript instructions, which become cumbersome for advanced recon-

figurations. We have provided a basic format to represent these policies, but this format

may fall short of expressiveness as the complexity of scenarios increases.

We also find that models@run.time platforms should provide a great deal of usable

low-level services in order to monitor certain aspects of the system, like the consumed

resources by each component, the latency of communications, or the response times,

because this information might be key to building robust trust and reputation models.

Factor producer entities could use these services to monitor different aspects of the

entities and feed the trust or reputation engines.

182



Chapter 6

Conclusions

In this thesis, we have proposed a set of methodologies, guidelines and tools for the

engineering of trust and reputation into software systems. We have empowered sys-

tems engineers and developers with capabilities to support the inclusion of trust in the

different activities of the SDLC.

We advocate that one of the reasons why there has been very little attention to trust

by the security and software engineering communities is that there is a lack of insight

on this concept, especially when applied in the computing domain. In order to remedy

this, we have shed light on trust by gathering concepts that are related to it and by

relating these concepts in a conceptual model.

The conceptual model elicits three sets of concepts. The first set corresponds to

concepts that are common to every trust model, and includes concepts such as context,

trust factors, trust purpose or the roles played by entities. The second and third sets

refer to the two classes of models that we identify, namely decision and evaluation

models. The former refers to those models that control access to resources by means

of credentials and policies. The outcome of the model is typically a binary decision:

access granted or access denied. Evaluation models focus on examining more closely

the trust relationships among entities, determining to which extent the factors influence

these relationships and analyzing the sources of information for a more informed trust

evaluation. The outcome of these models is a trust value that is tagged to the trust

relationships.

In addition to providing insight on trust and trust models, the conceptual model

yields a framework for comparing different classes of trust models under a common basis.

183



6. CONCLUSIONS

We use this framework for comparing a wide spectrum of different classes of trust and

reputation models: Marsh’s model (75), PolicyMaker (18), Jøsang’s belief model (55),

REGRET (114), TrustBuilder (136), eBay reputation model (107), Falcone et al. (33),

Trust−X (15), PeerTrust (137) and Agudo et al. (1).

The concepts gathered in the model serves us as a basis for the rest of the contri-

butions of this thesis, as these concepts are used in the methodologies that we have

proposed and the tools we have built for each phase of the SDLC.

As for the planning phase, we have proposed a methodology for evaluating trust in

cloud providers, which is fundamental to making informed cloud sourcing decisions. The

methodology allows the explicit representation of uncertainty and subjectivity, which

were highlighted as key concepts related to trust, by means of confidence intervals

and an operator for the aggregation of trust intervals that maintains the uncertainty

along operations. Other important concepts identified in the conceptual model, such

as sources of information and trust factors, are intensively used in order to gather

knowledge about cloud providers and to evaluate trust in them. The outcome of the

methodology consists of nine confidence intervals: one in the stakeholders dimensions

(which measures trust in the staff and other stakeholders of the cloud provider); one in

a general dimension (which measures general factors like transparency of the provider);

and seven in the threats dimensions, one for each threat identified by the CSA. In order

to validate the methodology, we have evaluated four popular cloud vendors: Amazon,

Apple, Microsoft and Google. The context of the cloud sourcing is the management

of EHRs, which contain private information about patients created by health care pro-

fessionals. The results of applying the methodology have shown that no cloud vendor

meet our trust expectations, although Microsoft was closer than the rest, followed by

Apple, Amazon and Google.

The next phase of the SDLC, security analysis, comprises two main activities: secu-

rity requirements elicitation and threats analysis. For the first activity, we have proposed

a methodology and notation in order to capture and represent trust and reputation re-

quirements and integrate these requirements with other functional and non-functional

ones. The notation is an extension over problem frames, which focuses on represent-

ing the system in its context. In particular, we have extended UML4PF with many

of the trust and reputation notions highlighted in the conceptual model. As part of

the methodology, we have included support for OCL queries, which allows detecting

184



syntactic and semantic inconsistencies in the models. For example, every trust relation-

ship must have a trustor and a trustee. If the engineer misses one of these roles, an

OCL expression can detect and help fix this. In order to validate the methodology, we

have used the protection profile defined by the Common Criteria for the home gateway

in a smart grid setting. Discussions with security professionals have shown that our

methodology is useful and can help in engineering trust-based security solutions.

As for the threat analysis, we have proposed a methodology and a tool for the

identification of insider threats in socio-technical systems. The methodology includes a

trust model, an asset model and a threat model. The former consists of a propagation

model which, assuming that we have some pre-established trust relationships in the

system, allows deriving the rest of trust relationships among entities. The model in-

cludes support for translating the numeric values into trust labels that are more easily

interpreted by the security expert. The semantics of the trust relationships refer to

the trust of permission over a resource owned by the trustor. Therefore when entity

A trusts another entity B with regards to resource R, it means that A believes that

B will not misuse his permissions in order to violate some of the security properties

held by R. The asset model measures the criticality of resources by assigning them

a sensitivity value, whereas the threat model ties both the trust and asset models to-

gether. Concretely, a threat is deduced to occur if an entity is granted a permission

on an asset that is sufficient to violate the security property associated to the asset,

and if this entity is not trusted by the owner of the asset with that permission. The

severity of the threat is calculated taking the sensitivity level of the asset into account.

The methodology has been validated in the context of an eHealth system that spans

across hospitals and pharmacies, and which includes several roles including patients,

physicians, and pharmacists.

For the secure design phase, we have proposed an extension over UML that describes

trust and reputation models and its integration in the system. This UML extension

builds upon many of the concepts identified in the conceptual model in order to extend

three diagrams. Use case diagrams are intended to represent trust relationships and

basic reputation information at a glimpse. We have also embedded information that

allows making the purpose of trust more explicit at the use case level. Class diagrams

are extended in order to provide more insight on the model, including the way trust and

reputation are updated, the factors that are used for such update, and the way they

185



6. CONCLUSIONS

are to be represented in the system. The extensions over deployment diagrams allow

representing trust at the infrastructure level and to determine where certain trust-

related information (e.g. reputation scores) are to be stored in the system. Even

when we do not provide extensions of behavioural diagrams, we suggest the use of

activity diagrams and their swim lanes representation in order to clarify the interaction

patterns between the system and its trust and reputation models. We have validated this

approach in an eHealth scenario of patient monitoring, in which patients wear devices

capable of measuring their vital signs and of sending them to the hospital servers,

thanks to which physicians can monitor their patients remotely. We have defined the

trust relationships between patients and physicians, between the physicians and the

wearable devices, and how patients can rate physicians to yield reputation scores for

the latter.

Once we have provided enough details about the trust or reputation model, this in-

formation can be fed to the secure implementation phase, for which we have described a

development framework that can be used in order to implement a wide variety of trust

and reputation models. Again, this framework builds upon the notions discussed in

the conceptual model. First, we have enumerated a set of requirements that a trust or

reputation framework should support and then we have described both a high-level and

a low-level architectures that support the requirements. After providing guidelines for

implementing the different components of the architecture, we have validated the frame-

work in a social cloud scenario. In this scenario, cloud providers participate in a market

of web services in which each provider can produce new services or consume services

from others. Trust relationships among providers as well as the providers’ reputation

must be updated according to the actions of the providers, who can rate the services

they consume. Traditionally, developers would feel unarmed when faced with the devel-

opment of such scenario, but our framework supports the smooth implementation and

integration of these trust functionalities.

Once a system is deployed with built-in trust and reputation capabilities, we can

exploit the trust information to drive the evolution of the system at runtime. This

corresponds to the last phase of the SDLC, and we have accomplished this by build-

ing a trust and reputation framework on top of Kevoree, a self-adaptive platform that

implements the models@run.time paradigm. This paradigm represents a synchronized

model of the the running system, in such a way that any change in the model translates

186



in an automatic change of the system. Our trust and reputation framework provides

developers with the mechanisms to implement trust-aware systems, where system com-

ponents can establish trust relationships with others. These components can also hold

reputation values and provide feedback after the interaction with other components in

order to update the trust relationships or the reputation scores. The fact that this trust-

related information is available within the models@run.time paradigm implies that it

can be used for driving self-adaptation decisions. Therefore, if a given trust relationship

between two system components, or the reputation value of a component, falls bellow

a specified threshold, corrective actions can be executed, such as the runtime removal

of the component or its substitution for another one. We provide a simple policy lan-

guage where developers can specify this kind of actions and the conditions under which

they are triggered. In order to validate the framework, we implement several trust and

reputation models on top of a distributed chat application. The implemented models

are eBay (108), Marsh’s (75), PeerTrust (137) and REGRET (114). We prove that the

framework entails negligible overhead for every implemented model, in the order of mi-

croseconds, and that it does not require a lot of work to implement well-known models.

In particular, all it is needed in most cases is inheriting from a couple of classes, and

using or overriding two or three methods.

We identify several research questions that remain open for further study. Some of

them were mentioned in their corresponding chapters, but are summarized here for the

reader’s convenience.

Integrated model-driven methodology for trust engineering Model-driven en-

gineering has brought lots of benefits to the software engineering community, smoothing

the construction process through abstractions that make it easier for developers to rea-

son about the software and minimizing the need to write boiler plate code. Along this

thesis, we have dealt with models at different phases of the life cycle, covering design

time and runtime models of the system. In order to ensure that the running trust

and reputation models adhere to the specification of the initial models, we need to fill

the gaps among phases, defining transformations that preserve the properties and the

semantics of the models. This would simplify greatly the building process and at the

same time it would ensure the correctness of the trust solutions by construction.

187



6. CONCLUSIONS

High-level reasoning in self-adaptation policies Current models@run.time plat-

forms lack a usable mechanism to specify reconfiguration policies. Kevoree, the platform

on top of which we implement the trust and reputation framework, provides Kevscript

instructions, which become cumbersome for advanced reconfigurations.

We have provided a basic format to represent these policies, but this format may

fall short of expressiveness as the complexity of scenarios increases. In particular, these

policies refer to very concrete situations, which is not adequate for more complex and

dynamic environments where conditions cannot be so easily anticipated. In particular,

there is a need for more general policies that allow reasoning about the environment at

higher level of abstractions. For example, instead of a rule that states the following:

“if the reputation of a console component falls below 2, then substitute it for a secure

console component”, there should be a rule that states that: “if a console behaviour

seems suspicious, then secure the consoles with which it is talking”. The framework

should be able to reason what it takes to consider the behaviour of a console strange,

and to identify the mechanisms that it can apply in order to protect the rest of consoles

from the suspicious one. Research on intrusion detection systems, anomaly detection

and artificial intelligence can provide the required know-how for solving these issues.

Integration of trust and reputation requirements and design methodologies

into well-established practices There are well-established methodologies and nota-

tions for eliciting security requirements and for building security artifacts in the context

of the system. These include methodologies like Secure Tropos, the Microsoft Security

Development Life cycle and notations like UMLSec or SecureUML. Instead of providing

yet another methodology or notation, it would be more interesting to investigate how

new practices for including trust and reputation could integrate into existing solutions.

This would remove the burden of having to learn new methodologies and would mini-

mize the friction of trying to reconcile the traditional system design with a trust-aware

system design.

Extensions and integration of the UMLTrep profile The UML profile that we

present in order to specify initial trust and reputation solutions focuses on evaluation

models, and therefore it captures some of the most relevant trust and reputation con-

cepts that are found in such models. However, decision models and propagation models

188



entail other notions that should be captured. In the first case, we should encompass the

concepts of policies, credentials, compliance checker, or trusted third parties. For the

latter, it should be possible to describe how trust is to be transferred among entities,

defining the operators that are to be used along trust chains and in different trust paths.

Given the close relationship between trust and security, it would be optimal if our

profile was integrated with another profile that captured the specification of security

solutions, such as UMLSec. This would provide a better overall picture of the security

and trust of the system, and would allow specifying explicitly the relationship among

trust and security and how they affect each other.

Configuration and visual support for trust and reputation implementation

There is a trend towards configuration-based implementation libraries and frameworks

because it boosts the productivity by reducing the need to write boiler plate code and

by allowing developers to focus on the core functionality of the software. Visual tools

also can be quite effective at improving the developers’ productivity as it minimizes the

need for writing code, which is always subject to compilation and runtime errors.

Although we struggle to provide fast to learn and easy to use trust and reputation

frameworks, they are still code intensive. Therefore, we consider that one of the first

improvements should go in the aforementioned direction. This would be especially

effective if the frameworks were integrated in a higher-order model-driven workflow

that allowed the automatic derivation of implementation entities from design artifacts,

as discussed in the first point.

Some degree of decoupling of expertise from requirements elicitation and de-

sign In general, requirements elicitation, threats and risks analysis frameworks largely

depend on the level of expertise of the engineers. This means that two systems that are

meant to have the same set of requirements and which will operate in the same context

under the same conditions may end up having different levels of security just because

different engineers worked on them.

One logical way to minimize this human dependency is by having more engineers

revising others’ contributions and by forcing the statement of the rationale for the

presence of each requirement and for every design decision. However, it is easy to make

implicit assumptions that do not end up documented and that are eventually lost.

189



6. CONCLUSIONS

Another way is by providing tool-supported structured methodologies that are simple

and intuitive enough. However, we think that some level of expertise is required and

cannot be fully removed.

Reasoning engines for supporting software and security engineers on elicit-

ing trust requirements Some of the concerns raised when we presented our trust

requirements elicitation methodology referred to the difficulty in and time required for

reading and understanding the output of the OCL expressions. One way to mitigate this

problem is by implementing reasoning engines that support the software and security

engineers during the requirements stage. Upon execution of an OCL expression, the

reasoning engine can read and interpret the output, and if any error occurs, mitigation

actions can be recommended to the engineers. In order for the reasoning engine to be

the most effective, it should be designed in such a way that it can be tailored to the

domain of the software that it is to be built. Semantic technologies such as ontologies

can be used for such purpose.

Repositories of public information about cloud vendors There is a difficulty

in finding information about cloud vendors, probably due to marketing interests and to

an initial lack of transparency in the cloud environment. However, in order to evaluate

trust in cloud vendors, it is required gathering as much information as possible about

them, about how they operate, about their staff and stakeholders, about their policies

and, in general, about the general satisfaction of other customers. In the approach that

we propose in this thesis for the evaluation of trust in cloud providers, we assume that

much of the information can be elicited, but in many cases this proves to be difficult,

especially when evaluating the stakeholders dimension. Cloud providers may be also

reluctant to reveal the security incidents suffered by other customers, therefore it would

be necessary to count on a public reputation repository where customers could rate

their experience with the providers. This would raise other challenges, as the need for

ensuring fair ratings and avoiding collusions from competitors.

There are other research questions that, even though not so closely related to our

work, they still may provide relevant inputs as well as general insight on trust engineer-

ing. Robust identity management systems must be in place in dynamic environments

190



to ensure that entities cannot change their identities in order to delete their bad repu-

tation and pervert the trust models. It would be also interesting to evaluate how each

trust relationship at the inner levels (e.g. among two system components) impacts and

contributes to the trust relationships at the highest level (i.e. between the end-users

and the system). It remains an open problem to define metrics that evaluate to which

extent a trust model can improve the security of the system. This is also a tough prob-

lem because measuring security is itself an open problem currently. Finally, it would

be desirable to be capable of measuring to which extent the quality of experience of

end-users improve as a consequence of engineering trust and reputation solutions into

systems. This would provide companies with a well-founded justification for budget al-

location in this task along the SDLC, provided that we could find a positive correlation

between the final users satisfaction and trust engineering practices.

191



6. CONCLUSIONS

192



Appendix A

Resumen en español

En este capítulo se presenta un resumen de las contribuciones de la tesis en español. Las

dos primeras secciones introducen el tema de investigación y esbozan las contribuciones

en el marco de dicho tema. El resto de secciones resume cada una de las principales

contribuciones.

A.1 Marco de la tesis y objetivos

El campo de estudio en el que se enmarca la tesis es el de ingeniería de sistemas se-

guros (SSE en sus siglas en inglés). Esta disciplina combina dos campos de estudio: la

seguridad y la ingeniería del software. El objetivo es cambiar el enfoque tradicional del

tratamiento de la seguridad, el cual se basa en aplicar medidas correctivas cuando se

detectan problemas. Por el contrario, el enfoque de la SSE es proactivo, en el sentido

de que se busca considerar e integrar medidas de seguridad a lo largo de todo el ciclo de

vida de un sistema (SDLC, de sus siglas en inglés), el cual se representa en la figura A.1.

La idea es minimizar la superficie de ataque del sistema y así minimizar el número de

incidentes de seguridad que pueden ocasionarse una vez el sistema esté en uso.

Típicamente, en cada fase se realizan un conjunto de actividades. Durante la primera

fase, planificación, se estudia la viabilidad del sistema y se toman algunas decisiones

preliminares sobre su futuro desarrollo. En la fase de análisis de seguridad, se estudian

posibles amenazas al sistema y se definen los objetivos de seguridad de los distintos

grupos interesados en el mismo1. A continuación se definen artefactos de diseño y la

1A partir de ahora nos referiremos a estos grupos con su denominación inglesa: stakeholders

193



A. RESUMEN EN ESPAÑOL

Figure A.1: Ciclo de vida del desarrollo de sistemas seguros

Ges$ón	  de	  
riesgos	  

Garan.as	  de	  
seguridad	  

Planificación	  

Análisis	  de	  
seguridad	  

Diseño	  seguro	  
Implementación	  

segura	  

Verificación	  en	  
ejecución	  

arquitectura que da soporte a los servicios de seguridad que previenen las amenazas y que

cubren los requisitos identificados en la fase anterior. Durante la fase de implementación,

se utilizan guías y buenas prácticas de programación segura y se utilizan plataformas de

ejecución seguras. La última fase consiste en la monitorización del sistema en tiempo de

ejecución para garantizar que se están cumpliendo los requisitos y políticas de seguridad.

De manera transversal al ciclo y controlando el flujo de las distintas actividades, se

realizan operaciones de gestión de riesgos y de garantías de seguridad. Las primeras

identifican y cuantifican riesgos que pueden poner en peligro el desarrollo del sistema,

mientras que las últimas se encargan de garantizar que los objetivos y requisitos de

seguridad se mantengan a lo largo del ciclo.

En la presente tesis se discute sobre ingeniería de confianza en lugar de ingeniería de

seguridad. Esto significa que en lugar de considerar seguridad en las distintas fases del

ciclo de vida, vamos a considerar aspectos de confianza a través de modelos de confianza

y reputación. El concepto de confianza es más amplio que el de seguridad, y la relación

entre ambos puede resumirse en los siguientes puntos:

• La presencia de seguridad no implica la de confianza. Sin embargo, el hecho de

que los usuarios de un sistema crean que el mismo es seguro, en la mayoría de los

casos aumentará su confianza.

• La presencia de confianza no implica la de seguridad. Los usuarios pueden confiar

194



A.2 Resumen de contribuciones

en el sistema debido a otras propiedades: buena usabilidad, experiencias pasadas

satisfactorias, etc.

• La seguridad es una propiedad objetiva, mientras que la confianza es subjetiva.

Dos sistemas pueden ser igual de seguros y aún así ser confiados de forma diferente

por un mismo grupo de usuarios.

En el dominio computacional, la confianza se construye a partir de modelos de

confianza y reputación. Así pues, el objetivo fundamental de la presente tesis es el de-

sarrollo de herramientas y metodologías que permitan el uso y la integración de modelos

de confianza y reputación a lo largo del ciclo de vida de un sistema.

A.2 Resumen de contribuciones

Dado que el objetivo es la integración de confianza en las distintas fases del ciclo de

vida, gran parte de las contribuciones de la tesis están alineadas con dichas fases, como

se observa en la figura A.2

Figure A.2: Contribuciones

Planificación	  

Análisis	  de	  
seguridad	  

Diseño	  seguro	  Implementación	  
segura	  

Verificación	  en	  
ejecución	  

Ges<ón	  de	  
riesgos	  

Garan=as	  de	  
seguridad	  

- Análisis de amenazas 
apoyado por confianza 
- Identificación de  
requisitos de confianza 

- Perfil UML para la especificación 
de confianza y reputación 

- Marco de trabajo para el  
desarrollo de modelos de 
confianza y reputación 

- Marco de trabajo para 
confianza en tiempo 
de ejecución 

- Evaluación de proveedores de cloud 

Más concretamente, las contribuciones se listan a continuación:

• Estudio exhaustivo de la literatura existente en la integración de confianza en las

distintas fases del SDLC.

195



A. RESUMEN EN ESPAÑOL

• Análisis sistemático de múltiples definiciones de confianza para remarcar los com-

ponentes que las constituyen.

• Marco de trabajo conceptual que recoge conceptos relacionados con modelos de

confianza y la relación entre dichos conceptos. Esto a su vez proporciona una

base conceptual para comparar un amplio abanico de modelos de confianza y

reputación.

• Metodología para incorporar un razonamiento guiado por la confianza durante la

fase de planificación en el contexto de la evaluación de proveedores de cloud.

• Soporte metodológico y de herramientas para la identificación y análisis de ame-

nazas en sistemas y organizaciones basados en el análisis de relaciones de confianza.

• Metodología y notación para la recogida de requisitos de confianza y reputación

y para su integración con otros requisitos funcionales y no funcionales, incluidos

los de seguridad.

• Notación que permite la especificación de modelos de confianza y reputación en

el sistema.

• Marco de trabajo que permite la implementación de un amplio abanico de modelos

de confianza y reputación.

• Marco de trabajo que permite construir sistemas que evolucionan en tiempo de

ejecución de acuerdo a los valores de confianza y reputación de sus componentes.

Cada contribución se describe con más detalles en las siguientes secciones.

A.3 Marco de trabajo conceptual de confianza

Previo a la integración de confianza y reputación en las distintas fases del SDLC, es

preciso sistematizar el conocimiento de estos conceptos. Para ello, primero analizamos

un conjunto de definiciones de confianza que distintos autores han dado en los últimos

años. A partir de las múltiples definiciones de confianza, construimos un mapa de con-

ceptos utilizando Wordle2 (véase la figura 2.1). El análisis revela que el concepto más
2http://www.wordle.net/

196

http://www.wordle.net/


A.3 Marco de trabajo conceptual de confianza

importante es el de entidad, lo cual es obvio dado que la confianza no tiene sentido

(al menos de forma práctica) si no hay entidades que confían ni en las que se con-

fían. El contexto es otro concepto clave dado que la confianza depende mucho de éste.

Otros conceptos importantes connotan cierta incertidumbre, como subjetivo, creencia,

disposición o expectación, mostrando que la confianza implica incertidumbre sobre el

comportamiento de una entidad. Es important remarcar que aunque el concepto de

riesgo no está presente de forma explícita en las definiciones, una lectura atenta revela

que está de forma implícita en casi todas ellas. Por ejemplo, McKnight (80) afirma

que “. . . consecuencias negativas son posibles”, mientras que Mayer (78) estipula que la

confianza implica disposición de vulnerabilidad.

A modo de resumen, el concepto de confianza está presente cuando hay incertidum-

bre y riesgo en la interacción entre dos o más entidades que necesitan colaborar en un

contexto determinado. Si la entidad que deposita confianza conoce de antemano el re-

sultado de la interacción sin ninguna duda, o si dicho resultado no supone riesgo alguno

para la entidad, la confianza no es precisa. Dado que no hay ninguna definición que

cubra todos los conceptos que creemos más importantes, nuestra definición de confianza

es la siguiente: la confianza es la expectación personal, única y temporal que una entidad

deposita en otra en cuanto al resultado de una interacción entre ellos que afecta a la

primera entidad.

Una vez analizado el concepto de confianza, revisamos un conjunto de artículos de

estudio de distintos modelos de confianza, así como modelos de confianza y reputación

ampliamente conocidos. De esta forma podemos identificar conceptos que son transver-

sales a todos ellos y que nos permiten abstraernos de sus particularidades, lo que nos

lleva a un marco de trabajo conceptual que permite comparar distintos modelos de

confianza y reputación. A continuación exponemos un resumen de los conceptos más

importantes y sus relaciones, el cual queda reflejado en las figuras 2.2, 2.3 y 2.4.

La confianza la calculan los modelos de confianza, los cuales han de tener al menos

dos entidades que han de interactuar. Las entidades juegan un rol, o varios roles. En

los casos más generales, estos roles son trustor (la entidad que deposita la confianza),

y trustee (la entidad sobre la que la confianza es depositada). Otros roles posibles

son testigos, que son entidades que dan su opinión sobre otras entidades en función de

observaciones o experiencias personales. Una vez que tenemos un trustor y un trustee,

decimos que hay una relación de confianza.

197



A. RESUMEN EN ESPAÑOL

Establecer una relación de confianza persigue un propósito, como el acceso, la pro-

visión o la identificación de entidades. Los factores que afectan a la confianza son el

contexto, las propiedades subjetivas del trustor y del trustee, como la honestidad, creen-

cias o los sentimientos, y las propiedades objetivas del trustor y del trustee, como el

comportamiento o la seguridad.

Un modelo de confianza puede asumir determinados comportamientos, como que

las entidades sólo emitirán evaluaciones justas de otras entidades, o que existe una serie

de valores iniciales. Un modelo también puede seguir distintos enfoques de modelado,

como matemáticos, lingüísticos y gráficos.

Podemos distinguir dos clases de modelos de confianza: los modelos de decisión y los

de evaluación. Los modelos de decisión usan políticas, que especifican condiciones bajo

las cuales se concede acceso a un recurso. Las políticas están escritas en un lenguaje

de políticas, el cual puede considerar la resolución de conflictos entre políticas. Las

condiciones de acceso se expresan en función de credenciales, las cuales son afirma-

ciones sobre alguna característica de una entidad (su identidad, si es miembro de un

grupo, etc). Las credenciales pueden tener distintos formatos, como certificados X.509

o XML. El chequeador de conformidad es el componente que une las credenciales y las

políticas al encargarse de verificar qué credenciales satisfacen qué políticas. Algunos

modelos de decisión también permiten la búsqueda de credenciales a través de cadenas

de credenciales, así como la verificación de su validez.

Los modelos de negociación son una especialización de los modelos de decisión que

añaden una estrategia de negociación para permitir que las entidades revelen sus políti-

cas y credenciales poco a poco, hasta llegar a un punto de confianza válida. Algunos

usan tipos de evidencias, que representan información sobre el proceso de negociación

y que permiten la optimización de éste.

El otro tipo de modelos, los modelos de evaluación, suelen seguir un ciclo de vida

de dos etapas. Primero, una fase de inicio es necesaria para asignar valores iniciales

a las entidades del sistema. La tendencia de confianza se refiere a la propensión del

modelo hacia valores más altos o más bajos en esta primera fase. La segunda fase se

corresponde a un proceso de evaluación que asigna valores de confianza de acuerdo a

determinados factores. Este proceso require la monitorización para proporcionar datos

precisos sobre estos factores.

198



A.3 Marco de trabajo conceptual de confianza

Las relaciones de confianza se etiquetan con valores de confianza que indican cuánto

un trustor confía en un trustee. Este valor tiene una dimensión, que indica si es un único

valor o es una tupla de valores. Los valores también tienen una semántica asociada, que

viene determinada por dos dimensiones: objetividad y ámbito. La primera se refiere a si

la medida de confianza proviene de un juicio subjetivo de una entidad o de la evaluación

de la entidad siguiendo un criterio formal. La segunda hace referencia al número de

factores que se tienen en cuenta para la medida de confianza.

En muchos casos, el modelo también incluye el proceso para definir un umbral de

confianza, incorporando la decisión de confianza en el propio modelo. Si el valor es

mayor que el umbral, se asume que el trustor confía en el trustee y que la interacción

puede proseguir.

En los modelos de evaluación, el proceso de cálculo de confianza, y todos los concep-

tos asociados a éste son los más importantes, porque en cierta medida se convierten en

una firma del modelo que la hacen diferente del resto. El proceso de evaluación utiliza

métricas de confianza, las cuales a su vez usan factores como el riesgo o la experiencia

pasada y los combinan para dar lugar a un valor final. Las métricas de confianza usan

motores de computación, que determinan la forma en que los factores se combinan, y

que van desde sumas y medias, hasta motores de lógica difusa o bayesiana.

Las fuentes de información que proporcionan valores para los factores incluyen la

experiencia directa con la entidad, factores sociológicos y psicológicos y opiniones de

terceras partes. Los modelos de reputación utilizan información pública de confianza

de otras entidades para dar lugar a un valor de reputación. Estos modelos pueden ser

centralizados, en los que una entidad se encarga de recoger y distribuir información

de reputación, o distribuidos, en los que cada entidad es responsable de mantener un

registro de valores de confianza en otras entidades, y mandar esta información al resto

de entidades. Los modelos de evaluación suelen tener en cuenta la credibilidad de la

información y su frescura, esto es, cómo de reciente es dicha información.

Los modelos de propagación son una subclase de los modelos de evaluación y asumen

que existen un conjunto de relaciones de confianza. Su objetivo es calcular nuevas

relaciones de confianza entre entidades que no han tendio una experiencia directa. Para

ello, algunos modelos asumen que la confianza es transitiva y explotan esta propiedad.

Los nuevos valores de confianza se calculan mediante dos operadores: un concatenador

199



A. RESUMEN EN ESPAÑOL

y un agregador. El primero calcula la confianza a través de una cadena, mientras que

el segundo agrega los valores de todas las cadenas que llegan hasta la entidad objetivo.

Los modelos de reputación tienen su propia terminología, y basamos dicha termi-

nología en los sistemas de reputación web. El concepto central es el de declaración de

reputación, que es una tupla con un origen, una afirmación y un objetivo. Un origen es

una entidad en el sistema que puede emitir afirmaciones sobre otra entidad del mismo, a

la que se denomina objetivo. Los modelos de reputación utilizan motores de reputación

que toman como entrada declaraciones de reputación sobre un objetivo y que producen

un valor de reputación para dicho objetivo.

Finalmente, todos los conceptos discutidos hasta el momento los podemos utilizar

para catalogar y comparar distintos modelos de confianza y reputación, como puede

verse en las tablas de la sección 2.2.4.

A.4 Evaluación de confianza de proveedores de cloud

Una consideración muy importante que hay que hacer cuando se diseñan sistemas ICT

hoy en día es si el sistema, o una parte de él, debe moverse al Cloud, actividad que se

conoce como subcontratación cloud (del inglés, cloud sourcing). Esta actividad conlleva

una pérdida de control del sistema y, por consiguiente, aumentan las preocupaciones

sobre la seguridad así como las amenazas a las que está expuesto. En este contexto,

la primera decisión importante es qué proveedor de cloud utilizar. Para tal propósito,

proponemos una metodología que pueda ayudar a los responsables a cuantificar su

confianza en distintos proveedores y elegir aquél que mejor cumpla sus expectativas.

Nuestra metodología se construye sobre el conocimiento de trabajos previos y busca

abordar las necesidades que actualmente no están cubiertas. En particular, aunque la

confianza ya se ha incorporado en la evaluación de clouds, en la mayoría de los casos, el

propósito de esta evaluación es la selección de servicios y no la de proveedores. Por otro

lado, la mayoría de las contribuciones se centran en métricas en lugar de una metodología

concreta. Por último, la incertidumbre y la subjetividad, que son intrínsecas al concepto

de confianza, no suelen tenerse en cuenta.

El primer paso consiste en obtener información sobre el proveedor. Luego, se reco-

gen y se cuantifican factores de confianza sobre los stakeholders del proveedor y sobre el

200



A.4 Evaluación de confianza de proveedores de cloud

proveedor como un todo. En paralelo, especificamos umbrales de confianza que depen-

den de los requisitos del escenario. Estos umbrales son los valores mínimos de confianza

que se esperan obtener para un escenario concreto. En el siguiente paso, los factores se

agregan en tres dimensiones diferentes: una dimensión de stakeholders, una dimensión

de amenazas y una dimensión general. Dicha agregación se realiza mediante un operador

de suma que definimos. Finalmente, la información se representa gráficamente.

Para cada dimensión, se utilizan unas plantillas en las que hay que evaluar distintos

factores. Por ejemplo, en la dimensión de stakeholders, se puede comprobar cuántos

años de experiencia lleva acumulados cada stakeholder, mientras que para la dimensión

general, que se refiere al proveedor en su conjunto, se puede evaluar la transparencia de

éste comprobando su página web y sus informes de incidentes, siempre y cuando esto

sea posible. En la dimensión de amenazas, consideramos las amenazas enumeradas por

el CSA (véase Tabla 3.3).

A la hora de cuantificar estos factores, utilizamos dos valores: el valor del factor, y

un valor de credibilidad. Este último hace referencia a cómo de seguros estamos de que

el valor del factor es preciso. De esta forma, estamos haciendo explícita la incertidumbre

que se genera como consecuencia de tener información parcial y subjetiva. En particular,

para ambos valores usamos números enteros entre 0 y 3, a partir de los cuáles formamos

un intervalo de confianza TI = [
vc

3
,
vc

3
+ (3 − c)] en donde v es el valor del factor y c

el valor de credibilidad.

Para reducir el número de intervalos y así poder procesar mejor la información,

definimos un operador de suma de intervalos de confianza (ver Definición 3), según el

cual el intervalo resultante de una suma está a medio camino entre los dos sumandos.

Asimismo, el intervalo [0, 3] representa la identidad del operador, lo cual es lógico dado

que este intervalo representa la máxima incertidumbre y no añade nuevo conocimiento.

La metodología la hemos aplicado para la evaluación de los siguientes proveedores:

Google, Amazon, Apple y Microsoft. El contexto de aplicación es el de un sistema de

eHealth, en particular de EHRs, los cuales queremos mover al proveedor. Los resultados

después de nuestro análisis muestran que no hay ningún proveedor que cumpla nuestras

expectativas, aunque Microsoft sale mejor parado que sus competidores, especialmente

en la dimensión de amenazas y en la dimensión general.

201



A. RESUMEN EN ESPAÑOL

A.5 Uso de confianza durante la fase de análisis de seguri-
dad

En la fase de análisis de seguridad se realizan fundamentalmente dos actividades: identi-

ficación de amenazas y análisis de requisitos. En cuanto a la primera, muchas amenazas,

y especialmente aquéllas que resultan en los incidentes más graves, surgen a raíz de su-

posiciones falsas o implícitas sobre las relaciones de confianza en la organización donde

el sistema se despliega. Por tanto, en esta tesis se propone una metodología que explíci-

tamente muestra y analiza estas relaciones de confianza, a partir de las cuales es posible

detectar posibles amenazas a distintas propiedades de seguridad de los recursos del sis-

tema, como confidencialidad, integridad y disponibilidad (Confidentiality, Integrity, and

Availability (CIA) de sus siglas en inglés).

Respecto a la captura de requisitos, mientras que la comunidad investigadora se

ha centrado en desarrollar herramientas y notaciones para identificar los requisitos de

seguridad tradicionales, poco se ha avanzado en la captura de requisitos de confianza

y reputación. Para ello, proponemos una metodología y una extensión del enfoque de

marcos de problemas (problem frames), el cual permite dar una representación de alto

nivel del sistema en su contexto.

Las siguientes secciones profundizan más en cada una de estas contribuciones.

A.5.1 Identificación de amenazas internas guiada por relaciones de
confianza

La metodología que proponemos permite a los ingenieros de seguridad identificar ame-

nazas internas3. El enfoque consiste en primero modelar a los stakeholders del sis-

tema, sus objetivos, los activos, las propiedades de seguridad (CIA) que los stakeholders

quieren que se cumplan para sus activos, los permisos que los stakeholders tienen sobre

sus activos, y las relaciones de confianza y los permisos entre ellos. Una relación de

confianza de permisos repesenta la creencia que el otorgante tiene en que el receptor no

dará mal uso a los permisos concedidos. El nivel de confianza asignado a un agente en

relación a un permiso concedido es muy importante de cara a evaluar el riesgo de que

dicho agente sea una amenaza interna: cuanto más baja sea la confianza, más probable
3Llamamos amenazas internas, del inglés insider, a las amenazas potenciales causadas por un

trabajador de la organización que tiene información privilegiada sobre la misma.

202



A.5 Uso de confianza durante la fase de análisis de seguridad

es que el agente abuse de los permisos de acuerdo a la percepción del otorgante de los

permisos.

Para apoyar la detección automática de amenazas internas, extendemos el lenguaje

de modelado de requisitos SI* con un modelo de activos y un modelo de confianza.

El modelo de activos asocia cada activo con un valor de sensibilidad que representa el

valor del activo para el dueño. El modelo de confianza extiende el modelo de confianza

binario de SI* (confiar, no confiar) y permite asociar diferentes niveles de confianza

con un permiso concedido a un agente. En función de los niveles de sensibilidad y

confianza, definimos un conjunto de reglas que permiten identificar automáticamente

amenazas internas a un activo y priorizarlos basándonos en el riesgo asociado a cada

amenaza. El riesgo asociado a una amenaza interna viene dado por la probabilidad de

que la amenaza ocurra y por el coste de que se abuse del permiso.

En el modelo de confianza que proponemos, los niveles de confianza se pueden

representar de dos formas: como números en el intervalo [0, 1] y como etiquetas (por

ejemplo, Bien, Neutral y Mal). Asumimos que algunos valores de confianza ya se

han asignado a relaciones de confianza de permisos entre agentes en el modelo SI*.

Estos valores son utilizados por el ingeniero de requisitos para calcular nuevos valores

de confianza entre pares de agentes para los que no existe relación de confianza. En

concreto, el nivel de confianza que el agente A deposita en otro agente B en relación a los

permisos que le concede, se calcula a través de relaciones de confianza de permisos que

otros agentes tienen con A y B. Así pues, de acuerdo a lo explicado en la sección A.3,

lo que proponemos es la integración de un modelo de propagación en SI*, y por lo

tanto, definimos un operador de concatenación y un operador de agregación. Una vez

obtenemos un valor final para cada relación de confianza de permisos, usamos reglas

de transformación para traducir estos valores desde el intervalo [0, 1] a una etiqueta en

una escala de confianza.

El modelo de amenaza que definimos considera que un agente A es una amenaza

interna para un recurso S cuando se cumplen las siguientes condiciones:

• A A se le concede un permiso PT sobre el recurso S que es suficiente para violar

alguna de sus propiedades de seguridad.

• El agente que es dueño del recurso S no confía en A con el permiso PT .

203



A. RESUMEN EN ESPAÑOL

La gravedad de la amenaza depende de los niveles de sensibilidad de los activos y

de los niveles de confianza de las relaciones de confianza de permisos.

Todo el proceso se apoya sobre una herramienta de SI* que está desarrollada como

una extensión de Eclipse y que consta del motor de inferencia DLV. El interfaz de la

herramienta permite dibujar un modelo SI* que es traducido automáticamente en una

especifación ASP. La herramienta permite introducir las reglas para la identificación

de amenazas internas.

A.5.2 Recogida de requisitos de confianza y reputación

Los marcos de problemas son un enfoque y notación para describir problemas de desar-

rollo del software. En los marcos de problemas, una máquina representa el software a

desarrollar, mientras que un dominio es parte del mundo donde la máquina se instalará.

Hay distintos tipos de dominios que representan a personas, datos y leyes físicas. La

tarea de un ingeniero es construir la máquina descrita a través del enfoque del marco de

problemas que mejore el comportamiento del entorno en el que se integra, de acuerdo a

unos requisitos. Los marcos de problemas ayudan al ingeniero a entender qué problemas

hay que resolver, qué dominios deben considerarse y qué conocimiento debe describirse

para analizar el problema en profundidad.

El desarrollo de software con marcos de problemas se desarrolla de la siguiente

manera. Primero, el entorno en el que la máquina operará se representa mediante

un diagrama de contexto, que consiste en dominios e interfaces, pero que no incluye

requisitos. Los diagramas de conocimiento de dominio se centran en un dominio en

particular del diagrama de contexto e identifican más conocimiento sobre el dominio

en términos de hechos y suposiciones. A continuación, el problema se descompone en

subproblemas, cada uno de los cuales se representa con un diagrama de problema que

contiene dominios, fenómenos, interfaces y sus relaciones con al menos un requisito.

UML4PF4 es un perfil UML que extiende los diagramas de clase con estereotipos

que representan los conceptos de los marcos de problemas. Nuestro trabajo consiste

en extender UML4PF con nociones de confianza y reputación (véase la Figura 3.6), así

como proponer una metodología que permita identificar cómo los requisitos de confi-

anza y reputación encajan en el sistema y cómo se relacionan con sus requisitos (véase la

4http://www.uml4pf.org.

204

http://www.uml4pf.org.


A.6 Especificación de modelos de confianza y reputación

figura 3.7). Una ventaja de usar UML es que permite a los ingenieros de requisitos con-

sultar los modelos mediante OCL, lo cual puede resultar útil para detectar información

errónea o simplemente falta de información.

La metodología consiste en una serie de actividades secuenciales. En primer lugar,

el ingeniero del software y el experto del domino describen el contexto del desarrollo del

software mediante un diagrama de contexto, el cual describe la máquina en su entorno

usando dominios e interfaces entre ellos. Un conjunto de requisitos funcionales textuales

se refiere a los dominios, y el ingeniero de seguridad identifica activos y requisitos de

seguridad para ellos. A continuación, el experto del dominio y el experto en confianza

tienen que trabajar juntos. El primero identifica diagramas de dominio sin contar con

confianza, mientras que el segundo proporciona un diagrama de confianza inicial, en el

cual se esbozan los aspectos de más alto nivel de confianza y reputación. Estos aspectos

incluyen las entidades de confianza, sus relaciones de confianza, las afirmaciones y los

factores de confianza. En el siguiente paso, los ingenieros del software y de confianza

refinan la información en el diagrama de confianza. Los diagramas finales contienen

información detallada sobre las relaciones de confianza y los aspectos de reputación,

como los roles que juegan las distintas entidades, más información sobre las afirmaciones,

los valores de confianza y los factores objetivos y subjetivos. Además, en esta fase se

analiza cómo los motores de confianza y reputación se integran en el sistema y su

relación con los requisitos. Finalmente, el modelo se consulta mediante OCL para

buscar problemas o inconsistencias, como por ejemplo la falta de la entidad con el rol

trustee5 en una relación de confianza.

La notación y la metodología la hemos aplicado para el perfil de protección que

el Common Criteria6 define para la puerta de enlace del medidor inteligente en un

escenario de smart grid.

A.6 Especificación de modelos de confianza y reputación

De cara a que los ingenieros de requisitos comprendan mejor los requisitos de confianza

y reputación y que los diseñadores puedan especificar soluciones basadas en ellos, defini-

mos un perfil UML, el cual complementa la contribución anterior al extender diagramas

5El rol de las entidades que son confiadas por otras entidades.
6https://www.commoncriteriaportal.org

205

https://www.commoncriteriaportal.org


A. RESUMEN EN ESPAÑOL

de casos de uso, diagramas de clase, y diagramas de despliegue con conceptos de confi-

anza y reputación. Asimismo, mediante diagramas de actividad, es posible representar

cómo se comunica el sistema con los modelos de confianza y reputación definidos.

El objetivo de la extensión realizada sobre los diagramas de casos de uso es señalar

de un vistazo las relaciones de confianza que existen entre las distintas entidades del

sistema, así como las entidades que pueden emitir afirmaciones sobre otras, incluyendo

de esta forma información de reputación. También se definen explícitamente el contexto

de la confianza y qué casos de uso se ven afectados por la misma. Esto último permite

reflexionar sobre las decisiones en las que influyen la confianza y la reputación.

Las extensiones sobre los diagramas de clase permiten profundizar en distintos as-

pectos de confianza y reputación, especialmente en cuanto a los motores de confianza

y de reputación y los factores que dichos motores utilizan. Los factores pueden ser

objetivos o subjetivos, se puede especificar la dimensión de un valor de confianza o rep-

utación (es decir, el número de componentes de los que consta), y si el valor proviene

de un proceso de monitorización o es directamente asignado por alguna entidad.

Los diagramas de despliegue se extienden para poder representar información de

confianza y reputación a nivel de infraestructura. Por un lado, las plataformas y las

redes pueden establecer relaciones de confianza entre ellas e incluso pueden tener un

valor de reputación, lo cual es especialmente útil en entornos abiertos y distribuidos,

donde un nodo de procesamiento (por ejemplo, un móvil o un servidor) puede elegir entre

distintos nodos para pasarle cierta información. En los diagramas de despliegue también

es importante especificar qué componente del sistema se encargará de almacenar los

valores de reputación en modelos centralizados.

Como se ha mencionado anteriormente, los diagramas de actividad permiten especi-

ficar cómo interactúa el sistema con los modelos de confianza y reputación. Esto hace

posible que los diseñadores se centren en los patrones de interacción y por tanto tengan

que tomar decisiones sobre estos mecanismos de comunicación. En particular, consider-

amos que una representación basada en carriles7 permite definir bien la responsabilidad

de cada parte del sistema.

Todo lo anterior lo aplicamos a un escenario de eHealth en el que el objetivo es poder

recoger datos de los pacientes independientemente de su localización. De esta forma, los

pacientes pueden recibir opiniones de inmediato ante una situación crítica y pueden ser
7Del inglés swim lanes.

206



A.7 Marco de trabajo para la implementación de modelos de confianza y
reputación

atendidos por los médicos en cualquier momento y lugar. Para ello, los pacientes llevan

puesto algún dispositivo que mide sus constantes vitales y que envía esta información a

los servidores de los hospitales. En este escenario, es importante definir las relaciones

de confianza entre pacientes y médicos, entre los médicos y los dispositivos de medición,

y es posible evaluar la reputación de los médicos en función del trato a los pacientes.

Estos valores de confianza y reputación permiten iniciar procesos para el cambio de

médico o el cambio de dispositivo, entre otros.

A.7 Marco de trabajo para la implementación de modelos
de confianza y reputación

A pesar de que se han propuesto numerosos modelos de confianza y reputación, se

han destinado pocos esfuerzos a ofrecer herramientas que faciliten a los desarrolladores

la implementación de estos modelos. En particular, los modelos propuestos suelen

presentarse bajo unas suposiciones y contextos muy concretos, por lo que no es fácil

adaptarlos a entornos más generales.

Para solucionar este problema, proponemos un marco de trabajo que funciona como

un servidor que media entre una aplicación cliente y un sistema de bases de datos, de

forma que la aplicación solicita información de confianza y reputación de estas bases de

datos, y permite actualizarlas con nuevos valores.

El marco de trabajo cumple los siguientes requisitos:

• Gestión de entidades: las entidades mantienen valores de confianza con otras en-

tidades. El marco de trabajo debe asignar identificadores únicos a estas entidades

y debe poder recuperar información de confianza y reputación de una entidad.

• Gestión de relaciones de confianza: las relaciones de confianza cambian a lo largo

del tiempo. Nuevas relaciones de confianza pueden aparecer, mientras que otras

pueden eliminarse, y los valores de confianza que se asocian a las relaciones van

cambiando.

• Definición de motores de computación: los motores de computación se encargan

de calcular valores de confianza y reputación de acuerdo al modelo. Es importante

que los desarrolladores puedan definir sus propias métricas.

207



A. RESUMEN EN ESPAÑOL

• Definición de eventos: los eventos que ocurren en la aplicación activan la comuni-

cación con el marco de trabajo, por lo que es preciso que el desarrollador pueda

definir eventos y la forma en la que el marco de trabajo se comporta cuando los

recibe.

• Gestión de afirmaciones: el tipo y el valor de una afirmación determina el valor

de reputación. Debe ser posible configurar afirmaciones que satisfagan las necesi-

dades específicas de la aplicación.

• Gestión de factores: las métricas se componen de factores, por lo que de cara a

definir métricas nuevas es preciso que los desarrolladores puedan definir nuevos

factores.

• Tiempo e incertidumbre: estos factores juegan un papel muy importante a la hora

de calcular la confianza y la reputación, por lo que el marco de trabajo debería

ofrecer mecanismos a los desarrolladores para incluirlos como parte del proceso de

computación.

• Separación de confianza y reputación: el marco de trabajo debe permitir a los de-

sarrolladores tratar la confianza y la reputación como conceptos diferentes, aunque

dada su fuerte relación, debe permitir también que la una se valga de la otra.

A partir de los requisitos y tomando como base los conceptos desarrollados en la

sección A.3, definimos una arquitectura de alto nivel y otra de bajo nivel, las cuales

pueden verse en las figuras 4.2 y 4.3, respectivamente. La primera se organiza en capas

lógicas, donde cada capa usa servicios proporcionados por la capa inferior. Las capas

definidas son una capa de modelo, que captura la información básica de los modelos que

el desarrollador puede implementar, una capa relacional, que se centra en el modelado

de las entidades y relaciones de confianza, una capa de computación, que captura las

métricas, y una capa de definición por el usuario, a partir de la cual se pueden definir

nuevas métricas y factores para éstas.

La arquitectura de bajo nivel comprende los componentes y las estructuras de datos

que dan lugar a una implementación inmediata del marco de trabajo. Incluyen conceptos

de más bajo nivel, como eventos, afirmaciones de reputación y de confianza, así como

elementos arquitecturales de comunicación como colas, que permiten ofrecer un sistema

208



A.7 Marco de trabajo para la implementación de modelos de confianza y
reputación

asíncrono. De esta forma, cuando la aplicación cliente envía un evento, el marco de

trabajo lo encola y permite que la aplicación cliente continúe, avisándolo cuando el

resultado esté disponible.

Por último, ofrecemos guías de implementación del marco de trabajo. En concreto,

proponemos su implementación mediante JavaEE8. Esta decisión ofrece dos ventajas:

por un lado, facilita el desarrollo al ser Java un lenguaje ampliamente utilizado y cono-

cido por desarrolladores, y en segundo lugar portabilidad, ya que el marco de trabajo

puede ejecutarse sobre cualquier plataforma y sistema operativo.

El escenario utilizado para la validación del marco de trabajo es el de un desarrol-

lador que tiene que implementar un sitio web social para proveedores de cloud. Éstos

pueden registrarse en el sitio, y una vez registrados, pueden publicar servicios web en el

sitio así como una descripción completa del mismo, por ejemplo mediante WSDL. Los

proveedores pueden buscar un servicio web de acuerdo a sus necesidades, y usar el servi-

cio para componer servicios más complejos. Cuando un proveedor consume un servicio

de otro proveedor, el último puede cobrar al primero en función del tipo o complejidad

del servicio. Así, el sitio actúa como un mercado de software entre proveedores.

De cara a ofrecer confianza en el sitio web y minimizar riesgos para los proveedores,

se puede identificar una serie de requisitos de confianza y reputación. Para empezar,

hay que señalar que hay dos tipos de entidades en este escenario: proveedores de cloud

y servicios web. Ambos pueden tener valores de reputación derivados de opiniones

de otros proveedores. Por ejemplo, si un proveedor usa un servicio y percibe que el

servicio no se ejecuta como debería, podría valorar negativamente el servicio, lo que a

su vez afectaría negativamente a la reputación del proveedor. Además de reputación,

los proveedores pueden establecer relaciones de confianza entre ellos. Como ejemplos

más concretos de posibles requisitos de confianza que el marco de trabajo permite

implementar, consideramos los siguientes:

• Los proveedores pueden evaluar servicios web con una, dos o tres estrellas. Cuando

un proveedor evalúa un servicio web, afecta a la reputación del servicio web y a

la relación de confianza entre el evaluador y el creador del servicio web.

8http://docs.oracle.com/javaee/7/index.html

209

http://docs.oracle.com/javaee/7/index.html


A. RESUMEN EN ESPAÑOL

• Los proveedores pueden evaluarse entre sí usando una afirmación de tipo Me gusta

y No me gusta. Cuando los proveedores evalúan otros proveedores, sólo afecta a

su relación de confianza, pero no a la reputación.

• Leer completamente el perfil de un proveedor incrementa la creencia del lector en

la aptitud de dicho proveedor.

• Los valores de reputación en el contexto WebServiceForOffice deben normalizarse

al intervalo [0, 1] antes de enviarse a la base de datos de confianza, y deben de-

normalizarse al intervalo original del modelo antes de enviarse a la aplicación.

A.8 Marco de trabajo para la implementación de sistemas
autoadaptativos en función de valores de confianza y
reputación

Las contribuciones anteriores tratan con el modelado y la implementación de sistemas

que utilizan modelos de confianza y reputación, en tiempo de diseño. Sin embargo, dos

cambios importantes están llegando al mundo de las ICT que precisan de una perspectiva

que vaya más allá del diseño. Por un lado, la visión de orientación a servicios permite las

mejoras de la funcionalidad al instante, por lo que las aplicaciones son más dinámicas

y requieren estrategias de adaptación rápidas que cumplan con nuevos requisitos y que

se adapten a entornos cambiantes. Por otro lado, las fronteras entre el mundo virtual

y el físico están desapareciendo con la llegada del Internet de los Objetos, donde los

sensores y actuadores se integran en objetos de la vida diaria y se conectan mediante

redes capaces de producir una gran cantidad da datos. Todo esto hace más borrosa la

frontera entre el tiempo de diseño y el de ejecución ya que se vuelve muy difícil para

los desarrolladores predecir todas las posibles circunstancias que rodean a un sistema

durante su ejecución.

Los modelos en tiempo de ejecución9 constituyen un enfoque de construcción de

software dirigido por modelos que permite la adaptación en tiempo de ejecución de

sistemas distribuidos y heterogéneos. Permite trabajar con abstracciones para tratar

con cambios imprevistos. Sin embargo, los marcos de trabajo que siguen este paradigma

9Models@run.time

210



A.8 Marco de trabajo para la implementación de sistemas autoadaptativos
en función de valores de confianza y reputación

ofrecen un soporte muy limitado para aspectos de seguridad, lo que entorpece su uso

en escenarios reales.

Para superar este obstáculo, proponemos un marco de trabajo que permite construir

sistemas que toman decisiones de reconfiguración en tiempo de ejecución basándose en

relaciones de confianza y valores de reputación. Dicho marco de trabajo se integra

en Kevoree10, un modelo de componentes distribuido que implementa el paradigma de

modelos en tiempo de ejecución, permitiendo así a los componentes del sistema incluir

confianza en sus tomas de decisiones.

Kevoree ofrece su propio marco de trabajo que permite a los desarrolladores imple-

mentar sistemas autoadaptativos en Java. Para ello, Kevoree ofrece anotaciones que

los desarrolladores pueden utilizar para crear nuevos componentes de Kevoree y nuevos

parámetros para estos componentes. Los parámetros son atributos que pueden cam-

biarse fácilmente en tiempo de ejecución. El despliegue de sistemas Kevoree se puede

realizar de dos maneras: a través de un editor visual, donde el desarrollador puede de-

splegar los nodos (es decir, el hardware) y los componentes que se ejecutan en éstos; y

a través de Kevscript, un lenguaje de scripting que permite reflexionar sobre el sistema,

tal como añadir o eliminar nodos y componentes, y cambiar el valor de parámetros. Este

lenguaje de scripting también se utiliza para cambiar el sistema durante su ejecución.

El proceso que seguimos para el desarrollo de nuestro marco de trabajo de confi-

anza y reputación es el siguiente. En primer lugar, definimos dos metamodelos, uno

de confianza y otro de reputación, en EMF11. Estos metamodelos constituyen el es-

queleto básico de los conceptos necesarios para expresar confianza y reputación en los

componentes. A partir de estos metamodelos, se genera una API interna, invisible a los

desarrolladores, a través de la cual gestionamos la información de los modelos de confi-

anza y reputación. Para los desarrolladores, definimos dos APIs más fáciles de utilizar,

una para el desarrollo de modelos de confianza y otra para el de modelos de reputación.

Típicas tareas que los desarrolladores tienen que realizar para la implementación de

modelos es la herencia de distintas clases y la implementación de métodos abstractos.

De cara a controlar la evolución del sistema en función de la confianza y la rep-

utación, ofrecemos un lenguaje de políticas básico que permite establecer las condiciones

10http://kevoree.org
11http://www.eclipse.org/modeling/emf/

211

http://kevoree.org


A. RESUMEN EN ESPAÑOL

bajo las que el sistema ha de reconfigurarse. En el caso de querer usar la reputación,

los políticas siguen el siguiente esquema:

TipoComponente Condición Acción Argumentos

el cual implica que si la condición para el tipo de componente TipoComponente se

cumple, la acción con argumentos debe ejecutarse.

Por otro lado, para la confianza, se utiliza el siguiente esquema de políticas:

TipoComponente1 TipoComponente2 Condición|Umbral Acción Argumentos

el cual significa que si la confianza que TipoComponente1 deposita en TipoComponente2

cumple la condición o no llega al umbral, la acción con argumentos debe ejecutarse.

Muchos modelos de confianza definen el umbral por encima del cual la confianza se

garantiza, y por tanto, en lugar de utilizar una condición establecida por el desarrollador,

la condición viene dada por el propio umbral del modelo.

En cuanto a las acciones, ofrecemos dos: eliminar y sustituir, lo que permite eliminar

el componente que cumple la condición (o el umbral) o sustituirlo por otro que venga

especificado en los argumentos de la política.

Para validar el marco de trabajo, utilizamos una aplicación de chat distribuido,

donde el funcionamiento es similar para todos los modelos: una consola recibe un men-

saje de otra consola e inspecciona sus contenidos. Dependiendo de estos contenidos (por

ejemplo, si detecta una palabra malsonante), proporciona un estímulo para el modelo de

confianza o reputación, el cual puede venir dado en forma de afirmaciones o cambios en

factores. Demostramos que es posible implementar distintos tipo de modelos de forma

fácil y que la sobrecarga que conlleva su uso en términos de esfuerzo y rendimiento es

mínima, como muestran la figura 5.7 y la tabla 5.2.

212



References

[1] Isaac Agudo, Carmen Fernandez-Gago, and Javier Lopez. A Model for Trust

Metrics Analysis. In Proceedings of the 5th International Conference on Trust,

Privacy and Security in Digital Business (TrustBus’08), volume 5185 of LNCS,

pages 28–37. Springer, 2008. 40, 42, 184

[2] Isaac Agudo, Carmen Fernandez-Gago, and Javier Lopez. A Scale Based Trust

Model for Multi-Context Environments. Computers and Mathematics with Appli-

cations, 60:209–216, July 2010. 71, 74

[3] Shakeel Ahmad, Bashir Ahmad ad Sheikh Muhammad Saqib, and Rashid Muham-

mad Khattak. Trust Model: Cloud’s Provider and Cloud’s User. International

Journal of Advanced Science and Technology, 44:69–80, July 2012. 50

[4] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Dis-

tributed Systems. Wiley Publishing, 2nd edition, 2008. 2

[5] Donovan Artz and Yolanda Gil. A survey of trust in computer science and the

Semantic Web. Web Semantics: Science, Services and Agents on the World Wide

Web, 5:58–71, 2007. 5, 20, 22, 35

[6] Yudis Asnar, Tong Li, Fabio Massacci, and Federica Paci. Computer Aided Threat

Identification. In Proceedings of the 2011 IEEE 13th Conference on Commerce

and Enterprise Computing, CEC ’11, pages 145–152, Washington DC, USA, 2011.

IEEE Computer Society. 26, 79

[7] Yudistira Asnar, Paolo Giorgini, and John Mylopoulos. Goal-driven risk as-

sessment in requirements engineering. Requirements Engineering, 16(2):101–116,

2011. 66, 67, 68

213



REFERENCES

[8] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic

Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transac-

tions on Dependable and Secure Computing, 1(1):11–33, January 2004. 8

[9] Azeem Sarwar and Muhammad Khan. A Review of Trust Aspects in Cloud

Computing Security. International Journal of Cloud Computing and Services

Science (IJ-CLOSER), 2(2):116–122, 2013. 50

[10] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible Trust Management,

Applied to Electronic Health Records. IEEE Computer Security Foundations

Workshop, 0:139, 2004. 23

[11] Kristian Beckers, Isabelle Côté, Stephan Faßbender, Maritta Heisel, and Stefan

Hofbauer. A pattern-based method for establishing a cloud-specific information

security management system. Requirements Engineering, 18(4):343–395, 2013. 53

[12] Kristian Beckers, Stephan Faßbender, and Maritta Heisel. A Meta-Model Ap-

proach to the Fundamentals for a Pattern Language for Context Elicitation. In

Proceedings of the 18th European Conference on Pattern Languages of Programs

(Europlop). ACM, 2013. Accepted for Publication. 52, 53

[13] Kristian Beckers, Maritta Heisel, Francisco Moyano, and Carmen Fernandez-

Gago. Engineering Trust- and Reputation-based Security Controls for Future

Internet Systems. Technical report, University of Duisburg-Essen, 2014. 88

[14] Kristian Beckers, Jan-Christoph Küster, Stephan Faßbender, and Holger Schmidt.

Pattern-Based Support for Context Establishment and Asset Identification of the

ISO 27000 in the Field of Cloud Computing. In Proceedings of the International

Conference on Availability, Reliability and Security (ARES), pages 327–333. IEEE

Computer Society, 2011. 53

[15] Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. Trust−X: A Peer-to-

Peer Framework for Trust Establishment. IEEE Transactions on Knowledge and

Data Engenieering, 16(7):827–842, 2004. 24, 42, 184

[16] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time. Com-

puter, 42(10):22–27, 2009. 144

214



REFERENCES

[17] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust Man-

agement for Public-Key Infrastructures (Position Paper). In Proceedings of the 6th

International Workshop on Security Protocols, pages 59–63, London, UK, 1999.

Springer-Verlag. 22

[18] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust Management.

In Proceedings of the IEEE Symposium on Security and Privacy, pages 164–173.

IEEE Computer Society Press, 1996. 3, 6, 22, 26, 35, 42, 184

[19] P.A. Bonatti, J.L. De Coi, Olmedilla D., and L. Sauro. A Rule-Based Trust

Negotiation System. IEEE Transactions on Knowledge and Data Engineering,

22(11):1507–1520, 2010. 23

[20] S. Boon and J. Holmes. The dynamics of interpersonal trust: Resolving uncer-

tainty in the face of risk. Cooperation and prosocial behaviour, pages 190–211,

1991. 33

[21] BSI. Protection Profile for the Gateway of a Smart Metering System (Gate-

way PP). Version 01.01.01(final draft), Bundesamt für Sicherheit in der In-

formationstechnik (BSI) - Federal Office for Information Security Germany,

2011. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/

PP-SmartMeter.pdf?__blob=publicationFile. 91

[22] Marian Bubak, Marek Kasztelnik, Maciej Malawski, Jan Meizner, Piotr

Nowakowski, and Susheel Varma. Evaluation of Cloud Providers for VPH Ap-

plications. In Proceedings of the 13th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid’13), pages 200–201. IEEE, May

2013. 49

[23] Vinny Cahill, Elizabeth Gray, Jean-Marc Seigneur, Christian D. Jensen, Yong

Chen, Brian Shand, Nathan Dimmock, Andy Twigg, Jean Bacon, Colin English,

Waleed Wagealla, Sotirios Terzis, Paddy Nixon, Giovanna di Marzo Serugendo,

Ciaran Bryce, Marco Carbone, Karl Krukow, and Mogens Nielsen. Using Trust

for Secure Collaboration in Uncertain Environments. IEEE Pervasive Computing,

2(3):52–61, July 2003. 28

215

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile


REFERENCES

[24] Christiano Castelfranchi and Rino Falcone. Trust Theory: A Socio-Cognitive and

Computational Model. Wiley Publishing, 1st edition, 2010. 24

[25] Sudip Chakraborty and Indrajit Ray. TrustBAC: integrating trust relationships

into the RBAC model for access control in open systems. In Proceedings of the

eleventh ACM symposium on Access control models and technologies, SACMAT

’06, pages 49–58. ACM, 2006. 27

[26] Sudip Chakraborty and Krishnendu Roy. An SLA-based Framework for Estimat-

ing Trustworthiness of a Cloud. In Proceedings of the IEEE 11th International

Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom’12), pages 937–942. IEEE, Jun 2012. 50

[27] Bruce Christianson and William S. Harbison. Why Isn’t Trust Transitive? In

Proceedings of the International Workshop on Security Protocols, pages 171–176.

Springer-Verlag, 1997. 40

[28] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and Martin

Strauss. REFEREE: Trust Management for Web Applications. Computer Net-

works and ISDN Systems, 29:953–964, September 1997. 23, 26

[29] William Conner, Arun Iyengar, Thomas Mikalsen, Isabelle Rouvellou, and Klara

Nahrstedt. A trust management framework for service-oriented environments. In

Proceedings of the 18th international conference on World wide web, WWW ’09,

pages 891–900, New York, USA, 2009. ACM. 30

[30] Isabelle Côté, Denis Hatebur, Maritta Heisel, and Holger Schmidt. UML4PF

- A Tool for Problem-Oriented Requirements Analysis. In Proceedings of the

International Conference on Requirements Engineering (RE’11), pages 349–350.

IEEE Computer Society, 2011. 85

[31] C. Crapanzano, F. Milazzo, A. De Paola, and G.L. Re. Reputation Management

for Distributed Service-Oriented Architectures. In Proceedings of the 4th IEEE

International Conference on Self-Adaptive and Self-Organizing Systems Workshop

(SASOW’10), pages 160–165, 2010. 30

216



REFERENCES

[32] Golnaz Elahi, Eric Yu, and Nicola Zannone. A vulnerability-centric requirements

engineering framework: analyzing security attacks, countermeasures, and require-

ments based on vulnerabilities. Requirements Engineering, 15(1):41–62, November

2009. 27

[33] Rino Falcone, Giovanni Pezzulo, and Cristiano Castelfranchi. A Fuzzy Approach

to a Belief-based Trust Computation. In Proceedings of the 2002 International

Conference on Trust, Reputation, and Security: Theories and Practice, volume

2631 of LNCS, pages 73–86. Springer-Verlag, 2003. 42, 184

[34] Randy Farmer and Bryce Glass. Building Web Reputation Systems. Yahoo! Press,

USA, 1st edition, 2010. 9, 41, 140

[35] E. Fernández-Medina, J. Jurjens, J. Trujillo, and S. Jajodia. Editorial: Model-

Driven Development for secure information systems. Information and Software

Technology, 51(5):809–814, 2009. 2

[36] François Fouquet, Olivier Barais, Noël Plouzeau, Jean-Marc Jézéquel, Brice

Morin, and Franck Fleurey. A Dynamic Component Model for Cyber Physi-

cal Systems. In Proceedings of the 15th International ACM SIGSOFT Symposium

on Component Based Software Engineering, pages 135–144, Bertinoro, Italy, July

2012. 144

[37] Diego Gambetta. Can We Trust Trust? In Trust: Making and Breaking Cooper-

ative Relations, pages 213–237. Basil Blackwell, 1988. 32, 33

[38] Jerry Gao, Pushkala Pattabhiraman, Xiaoying Bai, and W. T. Tsai. SaaS perfor-

mance and scalability evaluation in clouds. In Proceedings of the IEEE 6th Interna-

tional Symposium on Service-Oriented System Engineering (SOSE’11), volume 0,

pages 61–71, Los Alamitos, CA, USA, Dec 2011. IEEE Computer Society. 49, 50

[39] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. SMICloud: A

Framework for Comparing and Ranking Cloud Services. In Proceedings of the

4th IEEE International Conference on Utility and Cloud Computing, UCC ’11,

pages 210–218, Washington DC, USA, 2011. IEEE Computer Society. 51

217



REFERENCES

[40] John C. Georgas, André van der Hoek, and Richard N. Taylor. Architectural Run-

time Configuration Management in Support of Dependable Self-adaptive Software.

SIGSOFT Software Engineering Notes, 30(4):1–6, May 2005. 31

[41] Carlo Ghezzi. The Fading Boundary between Development Time and Run

Time. In Proceedings of the Ninth IEEE European Conference on Web Services

(ECOWS’11), page 11, Sep 2011. 143

[42] Anup K. Ghosh, Chuck Howell, and James A. Whittaker. Building Software

Securely from the Ground Up. IEEE Software, 19(1):14–16, 2002. 2

[43] Tyrone Grandison and Morris Sloman. A survey of trust in internet applications.

IEEE Communications Surveys & Tutorials, 3(4):2–16, 2000. 5, 18, 33, 36

[44] Tyrone Grandison and Morris Sloman. Trust Management Tools for Internet

Applications. In Proceedings of the 1st International Conference on Trust Man-

agement, iTrust’03, pages 91–107, Berlin, Heidelberg, 2003. Springer-Verlag. 23,

26

[45] Nathan Griffiths. A Fuzzy Approach to Reasoning with Trust, Distrust and Insuf-

ficient Trust. In Proceedings of the 10th International Conference on Cooperative

Information Agents, CIA’06, pages 360–374, Berlin, Heidelberg, 2006. Springer-

Verlag. 49

[46] Sheikh Mahbub Habib, Vijay Varadharajan, and Max Mühlhäuser. A framework

for evaluating trust of service providers in cloud marketplaces. In Proceedings of

the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages 1963–

1965. ACM, 2013. 51

[47] Haouas Hanen and Johann Bourcier. Dependability-Driven Runtime Management

of Service Oriented Architectures. In 4th International Workshop on Principles of

Engineering Service-Oriented Systems (PESOS’12), pages 15–21, Zurich, Switzer-

land, June 2012. 30

[48] Chern Har Yew. Architecture Supporting Computational Trust Formation. PhD

thesis, University of Western Ontario, London, Ontario, 2011. 28, 33

218



REFERENCES

[49] Denis Hatebur and Maritta Heisel. A UML Profile for Requirements Analysis of

Dependable Software. In Erwin Schoitsch, editor, Proceedings of the International

Conference on Computer Safety, Reliability and Security (SAFECOMP’10), vol-

ume 6351 of LNCS, pages 317–331. Springer Berlin Heidelberg, 2010. 85

[50] Ferry Hendrikx, Kris Bubendorfer, and Ryan Chard. Reputation systems: A

survey and taxonomy. Journal of Parallel and Distributed Computing, 75(0):184

– 197, 2015. 20

[51] P. Herrmann and H. Krumm. Trust-adapted enforcement of security policies in

distributed component-structured applications. In Proceedings of the 6th IEEE

Symposium on Computers and Communications, pages 2–8, 2001. 31

[52] Peter Herrmann. Trust Management: First International Conference on Trust

Management (iTrust’03), volume 2692 of LNCS, chapter Trust-Based Protection

of Software Component Users and Designers, pages 75–90. Springer Berlin Hei-

delberg, May 2013. 31

[53] T.D. Huynh. A Personalized Framework for Trust Assessment. ACM Sympo-

sioum on Applied Computing - Trust, Reputation, Evidence and other Collabora-

tion Know-how Track, 2:1302–1307, Dec 2008. 28

[54] Michael Jackson. Problem Frames: Analyzing and Structuring Software Devel-

opment Problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2001. 84

[55] Audun Jøsang. A logic for uncertain probabilities. International Journal of Un-

certainty, Fuzziness and Knowledge-Based Systems, 9(3):279–311, June 2001. 40,

42, 184

[56] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation

systems for online service provision. Decision Support Systems, 43(2):618–644,

March 2007. 20, 36, 39, 40, 63

[57] Audun Jøsang and Stéphane Lo Presti. Analysing the Relationship between Risk

and Trust. In Christian Jensen, Stefan Poslad, and Theo Dimitrakos, editors,

Trust Management, volume 2995 of LNCS, pages 135–145. Springer Berlin Hei-

delberg, 2004. 7, 8

219



REFERENCES

[58] Jan Jürjens. UMLsec: Extending UML for Secure Systems Development. In Pro-

ceedings of the 5th International Conference on The Unified Modeling Language,

UML ’02, pages 412–425. Springer-Verlag, 2002. 25

[59] Rolf Kiefhaber, Florian Siefert, Gerrit Anders, Theo Ungerer, and Wolfgang Reif.

The Trust-Enabling Middleware: Introduction and Application. Technical report,

Institut für Informatik Universität Augsburg, March 2011. 31

[60] L. Klejnowski, Y. Bernard, J. Hähner, and C. Müller-Schloer. An Architecture for

Trust-Adaptive Agents. In Proceedings of the 4th IEEE International Conference

on Self-Adaptive and Self-Organizing Systems (SASO’10), pages 178–183. IEEE,

2010. 30

[61] R.K.L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Qianhui

Liang, and Bu Sung Lee. TrustCloud: A Framework for Accountability and Trust

in Cloud Computing. In Proceedings of the 2011 IEEE World Congress on Services

(SERVICES’11), pages 584–588, July 2011. 50

[62] Adam J. Lee, Marianne Winslett, and Kenneth J. Perano. TrustBuilder2: A Re-

configurable Framework for Trust Negotiation. In Elena Ferrari, Ninghui Li, Elisa

Bertino, and Yücel Karabulut, editors, Proceedings of the 3rd IFIP WG 11.11

International Conference on Trust Management, volume 300 of IFIP Conference

Proceedings, pages 176–195. Springer, 2009. 24, 28

[63] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-

mona Perri, and Francesco Scarcello. The DLV System for Knowledge Represen-

tation and Reasoning. ACM Transactions on Computational Logic, 7(3):499–562,

July 2006. 69

[64] Eddie Li, Liam O’Brien, He Jason Zhang, and Rainbow Cai. A Practical Method-

ology for Cloud Services Evaluation. In Proceedings of the 3rd IEEE International

Workshop on the Future of Software Engineering for and in Cloud, pages 44 – 51,

Santa Clara Marriott, USA, June 2013. 51

[65] Tong Li, Lin Liu, and Barrett R. Bryant. Service Security Analysis Based on i*:

An Approach from the Attacker Viewpoint. In Proceedings of Security, Trust, and

Privacy for Software Applications (STPSA’10), pages 127–133, Seoul, 2010. 27

220



REFERENCES

[66] Zheng Li, Liam OBrien, Rainbow Cai, and He Zhang. Towards a Taxonomy of

Performance Evaluation of Commercial Cloud Services. Proceedings of the IEEE

5th International Conference on Cloud Computing, 0:344–351, 2012. 51

[67] Lin Liu, Eric Yu, and John Mylopoulos. Security and privacy requirements anal-

ysis within a social setting. Proceedings of the 11th IEEE International Require-

ments Engineering Conference, 3:151–161, 2003. 27

[68] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML: A UML-

Based Modeling Language for Model-Driven Security. In Proceedings of the 5th

International Conference on The Unified Modeling Language, UML ’02, pages

426–441. Springer-Verlag, 2002. 25

[69] L. Luca, D. Pierpaolo, B. Riccardo, B. Stephen, and B. Andrew. Enabling Adap-

tation in Trust Computations. In ComputationWorld ’09: Future Computing, Ser-

vice Computation, Cognitive, Adaptive, Content, Patterns, pages 701–706. IEEE,

2009. 31

[70] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-Driven Risk Analysis

- The CORAS Approach. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

26, 66

[71] M.S. Lund, B. Solhaug, and Ketil Stolen. Evolution in Relation to Risk and Trust

Management. IEEE Computer, 43(5):49–55, May 2010. 7, 8

[72] Supriya M., Venkataramana L.J., K. Sangeeta, and G.K. Patra. Estimating Trust

Value for Cloud Service Providers using Fuzzy Logic. International Journal of

Computer Applications, 48(19):28–34, Jun 2012. Published by Foundation of

Computer Science, New York, USA. 51

[73] Mary Madden. Public Perceptions of Privacy and Security in the Post-Snowden

Era. Technical report, Pew Research Center, November 2014. 7

[74] Paul Manuel. A trust model of cloud computing based on Quality of Service.

Annals of Operations Research, pages 1–12, 2013. 50

[75] Stephen Marsh. Formalising Trust as a Computational Concept. PhD thesis,

University of Stirling, April 1994. 3, 6, 24, 35, 39, 42, 168, 184, 187

221



REFERENCES

[76] William Martorelli, Chris Andrews, and Sean-Paul Mauro. Cloud Computing’s

Impact on Outsourcing Contracts, January 2012. 48

[77] Fabio Massacci, John Mylopoulos, and Nicola Zannone. Security Requirements

Engineering : The SI* Modeling Language and the Secure Tropos Methodology.

In Zbigniew Ras and Li-Shiang Tsay, editors, Advances in Intelligent Information

Systems, volume 265 of Studies in Computational Intelligence, pages 147–174.

Springer Berlin - Heidelberg, 2010. 26, 66, 67

[78] Roger C. Mayer, James H. Davis, and F. David Schoorman. An Integrative Model

of Organizational Trust. Academy of Management Review, 20(3):709–734, 1995.

8, 33, 34, 197

[79] John McDermott and Chris Fox. Using Abuse Case Models for Security Require-

ments Analysis. In Proceedings of the 15th Annual Computer Security Applications

Conference, ACSAC ’99, page 55. IEEE Computer Society, 1999. 25

[80] D. Harrison McKnight and Norman L. Chervany. The Meanings of Trust. Techni-

cal report, University of Minnesota, Management Information Systems Research

Center, 1996. 33, 34, 197

[81] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Working

Paper of the National Institute of Standards and Technology (NIST), 2009. 48

[82] Keith W. Miller, Jeffrey Voas, and Phil Laplante. In Trust We Trust. Computer,

43:85–87, 2010. 32

[83] Haralambos Mouratidis and Paolo Giorgini. Secure Tropos: a Security-Oriented

Extension of the Tropos Methodology. International Journal of Software Engi-

neering and Knowledge Engineering, 17(2):285–309, 2007. 26

[84] Haralambos Mouratidis, Michalis Pavlidis, and Shareeful Islam. Modelling Se-

curity Using Trust Based Concepts. International Journal of Secure Software

Engeneering, 3(2):36–53, April 2012. 27

[85] L. Mui, M. Mohtashemi, and A. Halberstadt. A Computational Model of Trust

and Reputation. In Proceedings of the 35th Hawaii International Conference on

System Science (HICSS), pages 280–287, 2002. 33

222



REFERENCES

[86] Neovise Research Report. Use of Public, Private and Hybrid Cloud Computing,

2013. 48

[87] NESSoS Consortium. Deliverable 11: Initial version of two case studies, evaluat-

ing methodologies. http://www.nessos-project.eu/media/deliverables/y2/

NESSoS-D11.3.pdf, October 2012. 105

[88] Ninghui Li and John C. Mitchell and William H. Winsborough. Design of a Role-

Based Trust Management Framework. In Proceedings of the IEEE Symposium on

Security and Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

23

[89] Zeinab Noorian and Mihaela Ulieru. The State of the Art in Trust and Reputa-

tion Systems: A Framework for Comparison. Journal of theoretical and applied

electronic commerce research, 5(2):97 – 117, August 2010. 20

[90] David Nuñez, Carmen Fernandez-Gago, Siani Pearson, and Massimo Felici. A

Metamodel for Measuring Accountability Attributes in the Cloud. In Proceed-

ings of the IEEE International Conference on Cloud Computing Technology and

Science (CloudCom’13), Bristol, UK, 2013. IEEE. 49, 50

[91] D. Olmedilla, O.F. Rana, B. Matthews, and W. Nejdl. Security and Trust Issues

in Semantic Grids. In Proceedings of the Dagsthul Seminar, Semantic Grid: The

Convergence of Technologies, volume 5271, 2005. 33

[92] Ontario. Standards of Sound Business and Financial Practices. Enterprise Risk

Management: Application Guide. Technical report, Deposit Insurance Corpora-

tion of Ontario, 2011. 63

[93] K. Orkphol and Li Jianli. Multi-negotiation targets in Automated Trust Nego-

tiation over TrustBuilder2 framework. In Proceedings of the 8th International

Conference on Computing Technology and Information Management, ICCM’12,

pages 101–105. IEEE, 2012. 24

[94] Wayne Pauley. Cloud Provider Transparency: An Empirical Evaluation. IEEE

Security & Privacy, 8(6):32–39, 2010. 49, 50

223

http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D11.3.pdf
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D11.3.pdf


REFERENCES

[95] Michalis Pavlidis. Designing for trust. In Proceedings of the CAiSE Doctoral

Consortium 2011, volume 731 of CEUR-WS, Jun 2011. 8, 65

[96] Michalis Pavlidis, Haralambos Mouratidis, Christos Kalloniatis, Shareeful Islam,

and Stefanos Gritzalis. Trustworthy Selection of Cloud Providers Based on Se-

curity and Privacy Requirements: Justifying Trust Assumptions. In Proceedings

of the 10th International Conference on Trust, Privacy, and Security in Digital

Business (TrustBus’13), volume 8058 of LCNS, pages 185–198. Springer Berlin

Heidelberg, 2013. 50

[97] S. Phoomvuthisarn, Yan Liu, and Jun Han. An Architectural Approach to Com-

posing Reputation-Based Trustworthy Services. In Proceedings of the 21st Aus-

tralian Software Engineering Conference (ASWEC’10), pages 117–126, 2010. 31

[98] Isaac Pinyol and Jordi Sabater-Mir. Computational trust and reputation models

for open multi-agent systems: a review. Artificial Intelligence Review, 40(1):1–25,

2013. 19, 40

[99] Ponemon Institute Research Report. Security of Cloud Computing Users Study.

Technical report, Ponemon Institute, sponsored by CA Technologies, March 2013.

48

[100] Harald Psaier, Lukasz Juszczyk, Florian Skopik, Daniel Schall, and Schahram

Dustdar. Runtime Behavior Monitoring and Self-Adaptation in Service-Oriented

Systems. In Proceedings of the IEEE 7th International Conference on Self-

Adaptive and Self-Organizing Systems (SASO’13), volume 0, pages 164–173, Los

Alamitos, CA, USA, 2013. IEEE Computer Society. 31

[101] PwC. Managing cyber risks in an interconnected world. Technical report, PwC,

Sep 2014. 6

[102] Lie Qu, Yan Wang, and Mehmet A. Orgun. Cloud Service Selection Based on

the Aggregation of User Feedback and Quantitative Performance Assessment. In

Proceedings of the IEEE International Conference on Services Computing, SCC

’13, pages 152–159, Washington DC, USA, 2013. IEEE Computer Society. 51

224



REFERENCES

[103] Massimiliano Rak and Giuseppe Aversano. Benchmarks in the Cloud: The

mOSAIC Benchmarking Framework. In Proceedings of the 14th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC’12), pages 415–422, Los Alamitos, CA, USA, September 2012. IEEE

Computer Society. 50

[104] SarvaPali D. Ramchurn, Dong Huynh, and Nicholas R. Jennings. Trust in multi-

agent systems. The Knowledge Engineering Review, 19(01):1–25, April 2005. 18,

29, 33, 104

[105] Ahmad Rashidi and Naser Movahhedinia. A Model for User Trust in Cloud

Computing. International Journal on Cloud Computing: Services and Architec-

ture(IJCCSA), 2(2), 2012. 50

[106] Lars Rasmusson and Sverker Jansson. Simulated social control for secure internet

commerce. In Proceedings of the 1996 workshop on new security paradigms, NSPW

’96, pages 18–25, New York, USA, 1996. ACM. 29

[107] Paul Resnick and Richard Zeckhauser. Trust Among Strangers in Internet Trans-

actions: Empirical Analysis of eBay’s Reputation System. In Michael R. Baye,

editor, The Economics of the Internet and E-Commerce, volume 11 of Advances

in Applied Microeconomics, pages 127–157. Elsevier Science, 2002. 35, 42, 184

[108] Paul Resnick, Richard Zeckhauser, John Swanson, and Kate Lockwood. The

value of reputation on ebay: A controlled experiment. Experimental Economics,

9(2):79–101, Jun 2006. 165, 187

[109] Paul Robertson and Robert Laddaga. Adaptive Security and Trust. In Proceedings

of the 6th IEEE International Conference on Self-Adaptive and Self-Organizing

Systems (SASO’12), pages 55–60. IEEE Computer Society, 2012. 29

[110] Paul Robertson, Robert Laddaga, and Mark H. Burstein. Trust and Adaptation in

STRATUS. In Proceedings of the 12th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications (IEEE TrustCom’13),

pages 1711–1716. IEEE, 2013. 29

225



REFERENCES

[111] Nico Rödder, Rico Knapper, and Jochen Martin. Risk in modern IT service land-

scapes: Towards a dynamic model. In Proceedings of the 5th IEEE International

Conference on Service-Oriented Computing and Applications (SOCA’12), pages

1–4. IEEE, 2012. 51

[112] S. Ruohomaa, L. Kutvonen, and E. Koutrouli. Reputation Management Survey.

In Proceedings of the 2nd International Conference on Availability, Reliability and

Security (ARES’07), pages 103–111, 2007. 19

[113] Sini Ruohomaa and Lea Kutvonen. Trust Management Survey. In Proceedings

of the 3rd international conference on Trust Management, iTrust’05, pages 77–92.

Springer-Verlag, 2005. 4, 19, 33

[114] Jordi Sabater and Carles Sierra. REGRET: reputation in gregarious societies. In

Proceedings of the 5th international conference on Autonomous agents, AGENTS

’01, pages 194–195. ACM, 2001. 42, 176, 184, 187

[115] Jordi Sabater and Carles Sierra. Review on Computational Trust and Reputation

Models. Artificial Intelligence Review, 24:33–60, September 2005. 18

[116] Bruce Schneier. Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal,

Dec 1999. 25

[117] Hassan Shakeri, Abbas G.Bafghi, and Hadi S.Yazdi. Computing Trust Resultant

using Intervals. In IEEE, editor, Proceedings of the 8th International ISC Con-

ference on Information Security and Cryptology (ISCISC’11), pages 15–20, 2011.

54

[118] G. Silowash, D. Cappelli, A.P. Moore, R.F. Trzeciak, T.J. Shimeall, and L. Flynn.

Common Sense Guide to Mitigating Insider Threats. Technical Report CMU/SEI-

2012-TR-012, Software Engineering Institute, Carnegie Mellon, December 2012.

65

[119] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements with

misuse cases. Requirements Engeneering, 10(1):34–44, January 2005. 25

[120] Software Engineering Institute. 2011 CyberSecurity Watch Survey. Technical

report, Software Engineering Institute, Carnegie Mellon, 2014. 65

226



REFERENCES

[121] Jundian Song, Shaohua Zhang, Yanxue Gong, and Bingrong Dai. A QoS Evalua-

tion Model for Test-Bed in the Cloud Computing Environment. In Proceedings of

the IEEE Ninth International Conference on e-Business Engineering (ICEBE’12),

pages 292–295, September 2012. 50

[122] Girish Suryanarayana, Mamadou H. Diallo, Justin R. Erenkrantz, and Richard N.

Taylor. Architectural Support for Trust Models in Decentralized Applications. In

Proceedings of the 28th international conference on Software Engineering, pages

52–61, New York, USA, 2006. ACM Press. 28

[123] Girish Suryanarayana, Mamadou H. Diallo, and Richard N. Taylor. A Generic

Framework for Modeling Decentralized Reputation-based Trust Models. Technical

Report UCI-ISR-07-4, Institute for Software Research, University of California,

Irvine, Aug 2007. 27

[124] M. Swaak, M. Jong, and P. Vries. Effects of information usefulness, visual at-

tractiveness, and usability on web visitors’ trust and behavioral intentions. In

Proceedings of the IEEE International Professional Communication Conference

(IPCC’09:), pages 1–5. IEEE, July 2009. 6

[125] Mohammad Gias Uddin and Mohammad Zulkernine. UMLtrust: towards devel-

oping trust-aware software. In Proceedings of the ACM Symposium on Applied

Computing, SAC ’08, pages 831–836. ACM, 2008. 25

[126] Zia ur Rehman, Omar K. Hussain, Sazia Parvin, and Farookh K. Hussain. A

Framework for User Feedback Based Cloud Service Monitoring. In Proceedings

of the International Conference on Complex, Intelligent and Software Intensive

Systems, pages 257–262, Los Alamitos, CA, USA, 2012. IEEE Computer Society.

51

[127] Joana Urbano, Ana P. Rocha, and Eugénio Oliveira. Agreement Technologies, vol-

ume 8 of Law, Governance and Technology, chapter A Socio-Cognitive Perspective

of Trust, pages 419–429. Springer, 2013. 8

[128] A. Van Lamsweerde. Elaborating security requirements by construction of inten-

tional anti-models. Proceedings of the 26th International Conference on Software

Engineering, pages 148–157, 2004. 27

227



REFERENCES

[129] Axel van Lamsweerde and Emmanuel Letier. Handling Obstacles in Goal-

Oriented Requirements Engineering. IEEE Transactions on Software Engineering,

26(10):978–1005, October 2000. 26

[130] Verizon. 2015 Data Breach Investigations Report. Technical report, Verizon, 2015.

2

[131] R. Villarroel, E. Fernández-Medina, and M. Piattini. Secure information systems

development - a survey and comparison. Computers & Security, 24(4):308–321,

2005. 2

[132] Mark Vinkovits, René Reiners, and Andreas Zimmermann. TrustMUSE: A model-

Driven Approach for Trust Management. In Trust Management VIII: 8th IFI

WG 11.11 International Conference on Trust Management, volume 430 of IFIP

Advances in Information and Communication Technology, pages 13–27. Springer

Berlin Heidelberg, 2014. 29

[133] Quang-Anh Nguyen Vu, Salima Hassas, Frederic Armetta, Benoit Gaudou, and

Richard Canal. Combining Trust and Self-Organization for Robust Maintaining

of Information Coherence in Disturbed MAS. In Proceedings of the Fifth IEEE In-

ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO’11),

pages 178–187. IEEE, 2011. 29

[134] Yao Wang and Julita Vassileva. A Review on Trust and Reputation for Web Ser-

vice Selection. In Proceedings of the 27th International Conference on Distributed

Computing Systems Workshops (ICDCSW’07), pages 25–25. IEEE, 2007. 21

[135] Phillip J. Windley, Kevin Tew, and Devlin Daley. A Framework for Building Rep-

utation Systems. http://www.windley.com/essays/2006/dim2006/framework_

for_building_reputation_systems, 2006. 28

[136] Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacobson,

Ryan Jarvis, Bryan Smith, and Lina Yu. Negotiating Trust on the Web. IEEE

Internet Computing, 6(6):30–37, 2002. 23, 42, 184

[137] Li Xiong and Ling Liu. PeerTrust: Supporting Reputation-Based Trust for Peer-

to-Peer Electronic Communities. IEEE Transactions on Knowledge and Data

Engineering, 16(7):843–857, July 2004. 42, 172, 184, 187

228

http://www.windley.com/essays/2006/dim2006/framework_for_building_reputation_systems
http://www.windley.com/essays/2006/dim2006/framework_for_building_reputation_systems


REFERENCES

[138] Zheng Yan and Silke Holtmanns. Trust Modeling and Management: from Social

Trust to Digital Trust. Computer Security, Privacy and Politics: Current Issues,

Challenges and Solutions, January 2008. 6, 20, 22, 36, 49

[139] Zheng Yan and C. Prehofer. Autonomic Trust Management for a Component-

Based Software System. IEEE Transactions on Dependable and Secure Comput-

ing, 8(6):810–823, 2011. 30

[140] Zheng Yan, Peng Zhang, and Teemupekka Virtanen. Trust evaluation based secu-

rity solution in ad hoc networks. In Proceedings of the Seventh Nordic Workshop

on Secure IT Systems, (NordSec’03), 2003. 21, 35

[141] Nicola Zannone. A Requirements Engineering Methodology for Trust, Security,

and Privacy. PhD thesis, University of Trento, Italy, 2007. 80

[142] Ping Zhang, A Durresi, and L Barolli. Survey of Trust Management on Various

Networks. In Proceedings of the International Conference on Complex, Intelligent

and Software Intensive Systems (CISIS’11), pages 219–226, 2011. 21, 33

229


	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Research Scope
	1.1.1 Secure System Engineering
	1.1.2 Trust Management
	1.1.3 Trust, Security, Risk and Trustworthiness

	1.2 Goals and Organization
	1.2.1 Thesis Contributions
	1.2.2 Thesis Outline

	1.3 Publications and Funding

	2 Understanding Trust: A Systematic Analysis
	2.1 Literature Review
	2.1.1 Trust Taxonomies
	2.1.2 Trust in the Computing Domain
	2.1.3 Trust in the Software Development Life Cycle

	2.2 Trust Conceptual Model
	2.2.1 Trust Definitions
	2.2.2 Trust Models: Definition and Classification
	2.2.3 Trust Models Concepts
	2.2.4 Comparison Framework: A Case Study


	3 Incorporating Trust Engineering in Early Phases of the SDLC
	3.1 Trust-supported Cloud Sourcing Decision in the Planning Phase
	3.1.1 Trust Evaluation in the Cloud
	3.1.2 Trust-Aware Methodology
	3.1.3 Application Example: eHealth
	3.1.4 Discussion

	3.2 Trust-supported Threats Analysis
	3.2.1 The SI* Framework
	3.2.2 Asset Model
	3.2.3 Trust Model
	3.2.4 Threat Model
	3.2.5 Application Example: eHealth
	3.2.6 Discussion

	3.3 Eliciting and Representing Trust and Reputation Requirements
	3.3.1 Problem Frames
	3.3.2 Trust Extensions to UML4PF
	3.3.3 Formal Checking of Trust
	3.3.4 Application Example: Smart Grid
	3.3.5 Discussion

	3.4 Designing Trust and Reputation Solutions
	3.4.1 Use Case Diagram
	3.4.2 Class Diagram
	3.4.3 Deployment Diagram
	3.4.4 Application Example: eHealth
	3.4.5 Discussion


	4 Enabling Trust and Reputation during Implementation
	4.1 Framework Requirements
	4.2 High-Level Architecture
	4.2.1 Model Layer
	4.2.2 Relational Layer
	4.2.3 Computation Layer
	4.2.4 User-Defined Layer

	4.3 Low-Level Architecture
	4.3.1 Components Decomposition
	4.3.2 Data Structures
	4.3.3 Incorporating Trustor's Subjective Factors

	4.4 Implementation Guidelines
	4.4.1 Context
	4.4.2 Database Tables
	4.4.3 Messaging Infrastructure
	4.4.4 Engines
	4.4.5 Deployment

	4.5 Application Example: Social Cloud
	4.5.1 Scenario Description
	4.5.2 Trust Requirements
	4.5.3 Implementation

	4.6 Discussion

	5 Enabling Trust and Reputation at Runtime
	5.1 Kevoree: A Models@run.time Development Platform
	5.1.1 Kevoree Development Framework
	5.1.2 Deployment in Kevoree

	5.2 Integrating Trust and Reputation in Models@Run.time
	5.2.1 Trust and Reputation Metamodels
	5.2.2 Trust Framework
	5.2.3 Reputation Framework

	5.3 Trust-based Self-Adaptation
	5.3.1 Policy-based Reconfiguration
	5.3.2 Implementation

	5.4 Application Example: A Trust-Aware Distributed Chat
	5.4.1 eBay Model
	5.4.2 Marsh's Trust Model
	5.4.3 PeerTrust
	5.4.4 REGRET

	5.5 Experimenal Results
	5.6 Discussion

	6 Conclusions
	A Resumen en español
	A.1 Marco de la tesis y objetivos
	A.2 Resumen de contribuciones
	A.3 Marco de trabajo conceptual de confianza
	A.4 Evaluación de confianza de proveedores de cloud
	A.5 Uso de confianza durante la fase de análisis de seguridad
	A.5.1 Identificación de amenazas internas guiada por relaciones de confianza
	A.5.2 Recogida de requisitos de confianza y reputación

	A.6 Especificación de modelos de confianza y reputación
	A.7 Marco de trabajo para la implementación de modelos de confianza y reputación
	A.8 Marco de trabajo para la implementación de sistemas autoadaptativos en función de valores de confianza y reputación

	References



