
A course on Leavitt path algebras

Mercedes Siles Molina

Monastir (Tunisia), April 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62906204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  



Contents

Contents 1

1 Finite dimensional Leavitt path algebras 3
1.1 The IBN property and the type of a ring. . . . . . . . . . . . . 3
1.2 Path algebras and Leavitt path algebras . . . . . . . . . . . . 5
1.3 Examples of Leavitt path algebras . . . . . . . . . . . . . . . . 7
1.4 Finite dimensional Leavitt path algebras . . . . . . . . . . . . 8

2 Uniqueness Theorems. Simple Leavitt path algebras 13
2.1 Semiprimeness in path algebras and in Leavitt path algebras . 13
2.2 Uniqueness theorems . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Simple Leavitt path algebras . . . . . . . . . . . . . . . . . . . 18
2.4 Purely infinite Leavitt path algebras . . . . . . . . . . . . . . 25
2.5 The dichotomy principle for simple Leavitt path algebras . . . 29

1



2



Chapter 1

Definitions, examples. Finite
dimensional Leavitt path
algebras

Introduction

Leavitt path algebras are a specific type of path K-algebras associated to
a graph E, modulo some relations. Its appearance, for row-finite graphs,
took place in [2] and [15]. They can be considered, on the one hand, natu-
ral generalizations of Leavitt algebras L(1, n) of type (1, n), introduced and
investigated by Leavitt in [41] in order to give examples of algebras not sat-
isfying the IBN property.

On the other hand, they are the algebraic version of Cuntz-Krieger graph
C∗-algebras, a class of algebras intensively investigated by analysts for more
than two decades. For a complete explanation of the history of Leavitt path
algebras see [20].

In this chapter we will relate Leavitt path algebras to the work by Leavitt
and will give some important and interesting examples. Our main concern
will be to classify the finite dimensional Leavitt path algebras.

1.1 The IBN property and the type of a ring.

Let R be a unital ring. We say that R satisfies the invariant basis number
(IBN) property if any two bases (i.e., linearly independent spanning sets) for
a free left R-module have the same number of elements. In words, the IBN
property says that if m and n are integers with the property that the free
left modules RR

m and RR
n are isomorphic, then m = n.

3



4 Chapter 1. Finite dimensional Leavitt path algebras

Noetherian rings and commutative rings are included among the many
classes of rings having this property. But the IBN property does not hold for
all rings, as the following example shows.

Example 1.1.1 For a field K, let V = K(N), which is a countably infinite
dimensional vector space over K, and let R = EndK(V ). It is not difficult
to see that R ∼= RFMN(K), the countable row-finite matrices over K (use
the standard basis for V , view the elements of V as row-vectors, and apply
transformations on the right hand side). Then RR

m ∼= RR
n for all m,n ∈ N:

The first step is to show RR
1 ∼= RR

2; such an isomorphism is given by the
map which associates X ∈ R with the pair of matrices (X1, X2), where X1

(resp. X2) is built from the odd-numbered (resp. even numbered) columns
of X. But then RR

1 ∼= RR
2 gives RR

1 ⊕ RR
1 ∼= RR

2 ⊕ RR
1 , so RR

2 ∼= RR
3,

and the result follows by continuing in this way.

It is easy to determine, algebraically, whether or not for a ring R we have

RR
1 ∼= RR

n for some n > 1. Note that such an isomorphism exists if and
only if there is a set of 2n elements in R which produce the appropriate
isomorphisms as matrix multiplications by an n-row vector and an n-column
vector with entries in R. Specifically, it is easy to show that RR

1 ∼= RR
n

for some n > 1 if and only if there exist elements x1, ..., xn, y1, ..., yn ∈ R for
which xiyj = δij1R for all i, j, and

∑n
i=1 yixi = 1R.

Suppose that a unital ring R does not have IBN. Let m ∈ N be minimal
with RR

m ∼= RR
n for some n > m and find the minimal such n for m. Then

it is said that R has module type (m,n). (Warning: some authors call the
module type of such a ring (m,n−m).) For example, RFMN(K) has module
type (1,2).

In his paper, Leavitt proved that for each pair of positive integers n > m
and any field K there exists a K-algebra of module type (m,n). To do this,
observe that, as it has been used before, isomorphisms between free modules
can be realized as matrix multiplications by matrices having coefficients in
R. So we need only construct algebras which contain elements which behave
“correctly”. Do this as a quotient of a free associative K-algebra in the
appropriate number of variables satisfying the appropriate relations.

For example, to get an algebra of type (1,3) we need an algebra containing
elements x1, x2, x3, y1, y2, y3 for which xiyj = δij1R for all i, j, and

∑3
i=1 yixi =

1R. Consider the polynomial algebra over a field K in 6 non-commuting
variables. Then factor by the ideal generated by the appropriate relations.
It is not difficult to show that this quotient is not zero if m ≥ 2, but this is
much more difficult to show (directly) if m = 1.
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The quotient algebra described above is denoted LK(m,n), and called the
Leavitt K-algebra of type (m,n).

1.2 Path algebras and Leavitt path algebras

Definitions 1.2.1 A (directed) graph E = (E0, E1, r, s) consists of two
countable sets E0, E1 and maps r, s : E1 → E0. The elements of E0 are
called vertices and the elements of E1 edges.

If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-
finite. If E0 is finite then, by the row-finite hypothesis, E1 must necessarily
be finite as well; in this case we simply say that E is finite. A vertex which
emits no edges is called a sink. A path µ in a graph E is a sequence of edges
µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case,
s(µ) := s(e1) is the source of µ, r(µ) := r(en) is the range of µ, and n is the
length of µ, i.e, l(µ) = n. We denote by µ0 the set of its vertices, that is:
µ0 = {s(e1), r(ei) : i = 1, . . . , n}.

Although much work has been done on arbitrary graphs, we will be con-
cerned only with row-finite graphs.

Example 1.2.2 Consider the following graph:

•u2
e2 // •u3 ejj

•u1

e1
<<zzzzzzzz

f

""DD
DD

DD
DD

•v

Then E0 = {u1, u2, u3, v}, E1 = {e1, e2, ef}, r(e1) = u1, s(e1) = u2, etc.
The vertex v is a sink. Some paths are, for example, v, f , e1e2, e, ee, e2eee,
etc. For µ = e1e2e

3, µ0 = {u1, u2, u3}.

Definition 1.2.3 Now let K be a field and let KE denote the K-vector
space which has as a basis the set of paths. It is possible to define an algebra
structure on KE as follows: for any two paths µ = e1 . . . em, ν = f1 . . . fn,
we define µν as zero if r(µ) 6= s(ν) and as e1 . . . emf1 . . . fn otherwise. This
K-algebra is called the path algebra of E over K.

Example 1.2.4 Consider a field K and the following graph E:



6 Chapter 1. Finite dimensional Leavitt path algebras

•u2
e2 // •u3

•u1

e1
<<zzzzzzzz

f

""DD
DD

DD
DD

•v

Then the path algebra KE has, as a vector space over K, dimension 8,
while the path K-algebra asociated to the graph in example 1.2.2 is infinite
dimensional.

There are several ways of defining Leavitt path algebras.

Definition 1.2.5 Given a graph E we define the extended graph of E as the
new graph Ê = (E0, E1 ∪ (E1)∗, r′, s′), where (E1)∗ = {e∗i : ei ∈ E1} and the
functions r′ and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

Definition 1.2.6 Let K be a field and E be a row-finite graph. The Leavitt
path algebra of E with coefficients in K is defined as the path algebra over
the extended graph Ê, with relations:

(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗.

(CK2) vi =
∑
{ej∈E1:s(ej)=vi} eje

∗
j for every vi ∈ E0 which is not a sink.

This algebra is denoted by LK(E) (or by L(E) if there is no risk of confusion
with the field K).

The conditions (CK1) and (CK2) are called the Cuntz-Krieger relations.
In particular condition (CK2) is the Cuntz-Krieger relation at vi. If vi is a
sink, we do not have a (CK2 ) relation at vi. Note that the condition of
row-finiteness is needed in order to define the equation (CK2).

There exists a natural inclusion of the path algebra KE into the Leavitt
path algebra LK(E) sending vertices to vertices and edges to edges. We will
use this monomorphism without any explicit mention to it.

Another way of introducing Leavitt path algebras is as follows.

Definition 1.2.7 For a field K and a row-finite graph E, the Leavitt path
K-algebra LK(E) is defined as the universal K-algebra generated by a set
{v : v ∈ E0} of pairwise orthogonal idempotents, together with a set of
variables {e, e∗ : e ∈ E1}, which satisfy the following relations:
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(1) s(e)e = er(e) = e for all e ∈ E1.

(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.

(4) v =
∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ E0 that emits edges.

Universal means that if A is a K-algebra containing a set of pairwise
orthogonal idempotents {av : v ∈ E0} and a set of elements {be, be∗ : e ∈ E1}
satisfying the relations (1)-(4), then there exists an algebra homomorphism
Φ : LK(E) → A satisfying Φ(v) = av for all v ∈ E0, Φ(e) = be and Φ(e∗) =
be∗ for all e ∈ E1.

The uniqueness of the Leavitt path algebra associated to a graph E and
to a field K follows from the universal property.

Again the identities (3) and (4) are called the Cuntz-Krieger relations.

The elements of E1 are called (real) edges, while for e ∈ E1 we call e∗ a
ghost edge. The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗)
denote s(e), and we let s(e∗) denote r(e). If µ = e1 . . . en is a path, then we
denote by µ∗ the element e∗n . . . e

∗
1 of LK(E).

1.3 Examples of Leavitt path algebras

Many well-known examples of K- algebras can be seen as Leavitt path K-
algebras over concrete graphs.

Example 1.3.1 (Leavitt algebras of type (1, n), n > 1). The Leavitt
path K-algebra of the following graph

•v e1hh

e2

ss

e3

��

en

RR

is the Leavitt algebra of type (1, n), for n > 1.

Example 1.3.2 (Matrix algebras). Consider the graph

•u1
e1 // •u2 •un−1

en−1 // •un

Then Mn+1(K) ∼= LK(E), via the map ui 7→ eii, ei 7→ ei+1i, and e∗i 7→ eii+1,
where eij denotes the matrix unit in Mn(K) with all entries equal zero except
that in row i and column j.
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Example 1.3.3 (The Laurent polynomial ring). Consider the graph

•u ehh

Then the map ϕ : LK(E) → K[x, x−1] given on generators (as a K- vector
space) by ϕ(en) = xn and ϕ((e∗)n) = x−n produces an isomorphism between
LK(E) and K[x, x−1].

A path µ is called a cycle if s(µ) = r(µ) and s(µi) 6= s(µj) for every i 6= j.
A graph E without cycles is said to be acyclic.

1.4 Finite dimensional Leavitt path algebras

We finish this chapter by showing that the Leavitt path K- algebra of every
finite and acyclic graph is a direct sum of matrices of finite size over K. In
particular, they are semisimple and artinian. The converse is also true, that
is, every semisimple and artinian Leavitt path algebra is associated to a finite
and acyclic graph.

First we need to state that Leavitt path algebras are Z-graded algebras,
and that every set of paths is linearly independent.

Lemma 1.4.1 Every monomial in LK(E) is of the following form:

(i) kivi with ki ∈ K and vi ∈ E0, or

(ii) kei1 . . . eiσe
∗
j1
. . . e∗jτ where k ∈ K; σ, τ ≥ 0, σ + τ > 0, eis ∈ E1 and

e∗jt ∈ (E1)∗ for 0 ≤ s ≤ σ, 0 ≤ t ≤ τ .

Proof. Follow the proof of [47, Corollary 1.15], a straightforward induction
argument on the length of the monomial kx1 . . . xn with xi ∈ E0∪E1∪(E1)∗.
2

Although not every Leavitt path algebra is unital (this happens, for ex-
ample, when the number of vertices is infinite), they are “nearly unital”,
concretely, they are algebras with local units, i.e., for E a graph, K a field
and LK(E) the associated Leavitt path algebra, there exists a set of idem-
potentes {un}n∈N in LK(E) satisfying the following properties:

(1) un ∈ un+1LK(E)un+1,

(2) for every finite subset X ⊆ LK(E) there exists m ∈ N such that X ⊆
umLK(E)um.
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This statement is proved in the following result.

Lemma 1.4.2 If E0 is finite then L(E) is a unital K-algebra. If E0 is
infinite, then L(E) is an algebra with local units (specifically, the set generated
by finite sums of distinct elements of E0).

Proof. First assume that E0 is finite: We will show that
∑n

i=1 vi is the unit
element of the algebra. First we compute (

∑n
i=1 vi)vj =

∑n
i=1 δijvj = vj.

Now if we take ej ∈ E1 we may use the equations (2) in the definition of
path algebra together with the previous computation to get (

∑n
i=1 vi)ej =

(
∑n

i=1 vi)r(ej)ej = r(ej)ej = ej. In a similar manner we see that (
∑n

i=1 vi)e
∗
j =

e∗j . Since L(E) is generated by E0 ∪ E1 ∪ (E1)∗, then it is clear that
(
∑n

i=1 vi)α = α for every α ∈ L(E), and analogously α(
∑n

i=1 vi) = α for
every α ∈ L(E). Now suppose that E0 is infinite. Consider a finite subset
{ai}ti=1 of L(E) and use 1.4.1 to write ai =

∑ni
s=1 k

i
svjsi +

∑mi
l=1 k

′i
l p

i
l where

kis, k
′i
l ∈ K − {0}, and pil are monomials of type (b). Then with the same

ideas as above it is not difficult to prove that

α =
t∑
i=1

(
ni∑
s=1

vjsi +

mi∑
l=1

r(pil) +

mi∑
l=1

s(pil)

)
is a finite sum of vertices such that αai = aiα = ai for every i. 2

Definitions 1.4.3 An algebra A is said to be Z-graded if there exists a
family {An}n∈Z of subspaces of A such that A = ⊕n∈ZAn and AnAm ⊆ An+m

for every n,m ∈ Z.
Every element in ∪n∈ZAn is called a homogeneous element, and An is

called the homogeneous component of degree n.

Example 1.4.4 The algebra K[x] of polynomials over a field K over an in-
determinate x is a Z-graded algebra, where for each n ∈ Z, the homogeneous
component of degree n is the vector space generated by xn.

Now we see that every Leavitt path algebra is a Z-graded algebra and
describe the grading.

Lemma 1.4.5 L(E) is a Z-graded algebra, with grading induced by

deg(vi) = 0 for all vi ∈ E0; deg(ei) = 1 and deg(e∗i ) = −1 for all ei ∈ E1.

That is, L(E) =
⊕

n∈Z L(E)n, where L(E)0 = KE0 + A0, L(E)n = An for
n 6= 0 where

An =
∑
{kei1 . . . eiσe∗j1 . . . e

∗
jτ : σ+τ > 0, eis ∈ E1, eit ∈ (E1)∗, k ∈ K, σ−τ = n}.
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Proof. The fact that L(E) =
∑

n∈Z L(E)n follows from 1.4.1. The grading

on L(E) follows directly from the fact that A(Ê) is Z-graded, and that the
relations (CK1) and (CK2) are homogeneous in this grading. 2

Note that the natural monomorphism from the path algebra KE into the
Leavitt path algebra LK(E) is graded, hence KE is a Z-graded subalgebra
of LK(E).

The following result appears in [52].

Lemma 1.4.6 Let E be a graph and K a field. Any set of different paths is
K-linearly independent in LK(E).

Proof. Let µ1, . . . , µn be different paths. Write
∑

i kiµi = 0, for ki ∈ K.
Applying that LK(E) is Z-graded we may suppose that all the paths have
the same length. Since µ∗jµi = δijr(µj) then 0 =

∑
i kiµ

∗
jµi = kjr(µj); this

implies kj = 0. 2

The results that follow appear in [6].

Lemma 1.4.7 Let E be a finite and acyclic graph and v ∈ E0 a sink. Then

Iv :=
∑
{kαβ∗ : α, β ∈ E∗, r(α) = v = r(β), k ∈ K}

is an ideal of L(E) (in fact, it is the ideal generated by v), and Iv ∼= Mn(v)(K),
where n(v) denotes the number of paths ending at v.

Proof. Consider αβ∗ ∈ Iv and a nonzero monomial ei1 . . . eine
∗
j1
. . . e∗jm =

γδ∗ ∈ L(E). If γδ∗αβ∗ 6= 0 we have two possibilities: Either α = δp or
δ = αq for some paths p, q ∈ E∗.

In the latter case deg(q) ≥ 1 cannot happen, since v is a sink.
Therefore we are in the first case (possibly with deg(p) = 0), and then

γδ∗αβ∗ = (γp)β∗ ∈ Iv

because r(γp) = r(p) = v. This shows that Iv is a left ideal. Similarly we
can show that Iv is a right ideal as well.

Let n = n(v) (which is clearly finite because the graph is acyclic, finite
and row-finite), and rename {α ∈ E∗ : r(α) = v} as {p1, . . . , pn} so that

Iv :=
∑
{kpip∗j : i, j = 1, . . . , n; k ∈ K}.

Take j 6= t. If (pip
∗
j)(ptp

∗
l ) 6= 0, then as above, pt = pjq with deg(q) > 0

(since j 6= t), which contradicts that v is a sink.
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Thus, (pip
∗
j)(ptp

∗
l ) = 0 for j 6= t. It is clear that

(pip
∗
j)(pjp

∗
l ) = pivp

∗
l = pip

∗
l .

We have shown that {pip∗j : i, j = 1, . . . , n} is a set of matrix units for Iv,
and the result now follows. 2

Proposition 1.4.8 Let E be a finite and acyclic graph. Let {v1, . . . , vt} be
the sinks. Then

L(E) ∼=
t⊕
i=1

Mn(vi)(K).

Proof. We will show that L(E) ∼=
⊕t

i=1 Ivi , where Ivi are the sets defined
in Lemma 1.4.7.

Consider 0 6= αβ∗ with α, β ∈ E∗. If r(α) = vi for some i, then αβ∗ ∈ Ivi .
If r(α) 6= vi for every i, then r(α) is not a sink, and the relation (4) in the
definition of LK(E) applies to yield:

αβ∗ = α

 ∑
e∈E1

s(e)=r(α)

ee∗

 β∗ =
∑
e∈E1

s(e)=r(α)

αe(βe)∗.

Now since the graph is finite and there are no cycles, for every summand
in the expression above, either the summand is already in some Ivi , or we
can repeat the process (expanding as many times as necessary) until reaching
sinks. In this way αβ∗ can be written as a sum of terms of the form αγ(βγ)∗

with r(αγ) = vi for some i. Thus L(E) =
∑t

i=1 Ivi .
Consider now i 6= j, αβ∗ ∈ Ivi and γδ∗ ∈ Ivj . Since vi and vj are sinks,

we know as in Lemma 1.4.7 that there are no paths of the form βγ′ or γβ′,
and hence (αβ∗)(γδ∗) = 0. This shows that IviIvj = 0, which together with

the facts that L(E) is unital and L(E) =
∑t

i=1 Ivi , implies that the sum is
direct. Finally, Lemma 1.4.7 gives the result. 2

We now get as corollaries to Proposition 1.4.8 the two results mentioned.

Theorem 1.4.9 The Leavitt path algebra LK(E) is a finite dimensional K-
algebra if and only if E is a finite and acyclic graph.

Proof. If E is finite and acyclic, then Proposition 1.4.8 immediately yields
that LK(E) is finite dimensional.

Suppose on the other hand that E is not finite; in other words, the set
E0 of vertices is infinite. But then {v | v ∈ E0} is a linearly independent set



12 Chapter 1. Finite dimensional Leavitt path algebras

in LK(E). Furthermore, if E is not acyclic, then there is a vertex v and a
closed path µ based at v. But then {µn | n ≥ 1} is a linearly independent
set in LK(E). 2

Combining Proposition 1.4.8 with Theorem 1.4.9 immediately yields

Corollary 1.4.10 The only finite dimensional K-algebras which arise as
LK(E) for a graph E are of the form A =

⊕t
i=1 Mni(K).



Chapter 2

Uniqueness Theorems. Simple
Leavitt path algebras

Introduction

We start this chapter by studying semiprimeness of path algebras and of
Leavitt path algebras, property that differs in each context. Our following
goal will be to describe graded ideals in Leavitt path algebras.

2.1 Semiprimeness in path algebras and in

Leavitt path algebras

We first study the semiprimeness of the path algebra associated to a graph E.
Recall that an algebra A is said to be semiprime if it has no nonzero ideals
of zero square, equivalently, if aAa = 0 for a ∈ A implies a = 0 (an algebra
A that satisfies this last condition is called in the literature nondegenerate).

Proposition 2.1.1 ([52, Proposition 2.1]). For a graph E and a field K the
path algebra KE is semiprime if and only if for every path µ there exists a
path µ′ such that s(µ′) = r(µ) and r(µ′) = s(µ).

Proof. Suppose first thatKE is semiprime. Given a path µ, since µ(KE)µ 6=
0, there exists a path ν ∈ KE such that µνµ 6= 0. This means that
s(ν) = r(µ) and r(ν) = s(µ).

Now, let us prove the converse. Note that by [44, Proposition II.1.4
(1)], a Z-graded algebra is semiprime if and only if it is graded semiprime.
Hence, and taking into account that being graded semiprime and graded
nondegenerate are equivalent, it suffices to show that if x is any nonzero

13
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homogeneous element of KE, then x(KE)x 6= 0. Write x =
∑n

i=1 kiαi, with
0 6= ki ∈ K and α1, . . . , αn different paths of the same degree (i.e. of the
same length). Denote the source and range of α1 by u1 and v1, respectively.
Then, by (3), α1

∗x = k1α1
∗α1 = k1v1. By the hypothesis, there exists a path

α1
′ such that s(α1

′) = v1 and r(α1
′) = u1. Observe that α1

′x 6= 0; otherwise
0 = (α1

′)∗α1
′x = u1x, a contradiction since a set of different paths is always

linearly independent over K (Lemma 1.4.6) and α1 = u1α1 6= 0. Therefore
0 6= k1α1

′x = k1v1α1
′x = α1

∗xα1
′x ∈ α1

∗x(KE)x. 2

Lemma 2.1.2 ([18, Lemma 1.5]). Let E be an arbitrary graph. Let v be a
vertex in E0 such that there exists a cycle without exits c based at v. Then:

vLK(E)v =

{
n∑

i=−m

kic
i | ki ∈ K; m,n ∈ N

}
∼= K[x, x−1],

where ∼= denotes a graded isomorphism of K-algebras, and considering (by
abuse of notation) c0 = w and c−t = (c∗)t, for any t ≥ 1.

Proof. First, it is easy to see that if c = e1 . . . en is a cycle without exits
based at v and u ∈ T (v), then s(f) = s(g) = u, for f, g ∈ E1, implies f = g.
Moreover, if r(h) = r(j) = w ∈ T (v), with h, j ∈ E1, and s(h), s(j) ∈ T (v)
then h = j. We have also that if µ ∈ E∗ and s(µ) = u ∈ T (v) then there
exists k ∈ N, 1 ≤ k ≤ n verifying µ = ekµ

′ and s(ek) = u.
Let x ∈ vLK(E)v be given by x =

∑p
i=1 kiαiβ

∗
i +δv, with s(αi) = r(β∗i ) =

s(βi) = v and αi, βi ∈ E∗. Consider A = {α ∈ E∗: s(α) = v}; we prove
now that if α ∈ A, deg(α) = mn + q, m, q ∈ N with 0 ≤ q < n, then
α = cme1 . . . eq. We proceed by induction on deg(α). If deg(α) = 1 and
s(α) = s(e1) then α = e1. Suppose now that the result holds for any β ∈ A
with deg(β) ≤ sn + t and consider any α ∈ A, with deg(α) = sn + t + 1.
We can write α = α′f with α′ ∈ A, f ∈ E1 and deg(α′) = sn + t, so by the
induction hypothesis α′ = cse1 . . . et. Since s(f) = r(et) = s(et+1) implies
f = et+1, then α = α′f = cse1 . . . et+1.

We shall show that the elements αiβ
∗
i are in the desired form, i.e., cd

with d ∈ Z. Indeed, if deg(αi) = deg(βi) and αiβ
∗
i 6= 0, we have αiβ

∗
i =

cpe1 . . . eke
∗
k . . . e

∗
1c
−p = v by (4). On the other hand deg(αi) > deg(βi)

and αiβ
∗
i 6= 0 imply αiβ

∗
i = cd+qe1 . . . eke

∗
k . . . e

∗
1c
−q = cd, d ∈ N∗. In a

similar way, from deg(αi) < deg(βi) and αiβ
∗
i 6= 0 it follows that αiβ

∗
i =

cqe1 . . . eke
∗
k . . . e

∗
1c
−q−d = c−d, d ∈ N∗. Define ϕ:K[x, x−1] → LK(E) by

ϕ(1) = v, ϕ(x) = c and ϕ(x−1) = c∗. It is a straightforward routine to check
that ϕ is a graded monomorphism with image vLK(E)v, so that vLK(E)v is
graded isomorphic to K[x, x−1] as a graded K-algebra. 2
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For a not necessarily associative K-algebra A, and fixed x, y ∈ A, the left
and right multiplication operators Lx, Ry:A→ A are defined by Lx(y) := xy
and Ry(x) := xy. Denoting by EndK(A) the K-algebra of K-linear maps
f :A→ A, the multiplication algebra of A (denotedM(A)) is the subalgebra
of EndK(A) generated by the unit and all left and right multiplication oper-
ators La, Ra : A→ A. There is a natural action of M(A) on A such that A
is anM(A)-module whose submodules are just the ideals of A. This is given
by M(A)×A −→ A, where f · a := f(a) for any (f, a) ∈M(A)×A. Given
x, y ∈ A we shall say that x is linked to y if there is some f ∈ M(A) such
that y = f(x). This fact will be denoted by x ` y.

The result that follows states that any nonzero element in a Leavitt path
algebra is linked to either a vertex or to a nonzero polynomial in a cycle with
no exits. So it gives a full account of the action of M(LK(E)) on LK(E).
This result is very powerful as the main ingredient to show that the socle of
a Leavitt path algebra of a row-finite graph is the ideal generated by the line
points. Other interesting results are also obtained as a consequence of it.

Proposition 2.1.3 ([17, Proposition 3.1]). Let E be an arbitrary graph.
Then, for every nonzero element x ∈ LK(E), there exist µ1, . . . , µr, ν1, . . . , νs
∈ E0 ∪ E1 ∪ (E1)∗ such that:

1. µ1 . . . µrxν1 . . . νs is a nonzero element in Kv, for some v ∈ E0, or

2. there exist a vertex w ∈ E0 and a cycle without exits c based at w such
that µ1 . . . µrxν1 . . . νs is a nonzero element in wLK(E)w.

Both cases are not mutually exclusive.

Proof. Show first that for a nonzero element x ∈ L(E), there exists a path
µ ∈ L(E) such that xµ is nonzero and in only real edges.

Consider a vertex v ∈ E0 such that xv 6= 0. Write xv =
∑m

i=1 βie
∗
i + β,

with ei ∈ E1, ei 6= ej for i 6= j and βi, β ∈ L(E), β in only real edges and
such that this is a minimal representation of xv in ghost edges.

If xvei = 0 for every i ∈ {1, . . . ,m}, then 0 = xvei = βi + βei, hence
βi = −βei, and xv =

∑m
i=1−βeie∗i +β = β(

∑m
i=1−eie∗i +v) 6= 0. This implies

that
∑m

i=1−eie∗i +v 6= 0 and since s(ei) = v for every i, this means that there
exists f ∈ E1, f 6= ei for every i, with s(f) = v. In this case, xvf = βf 6= 0
(because β is in only real edges), with βf in only real edges, which would
conclude our discussion.

If xvei 6= 0 for some i, say for i = 1, then 0 6= xve1 = β1 + βe1, with
β1 + βe1 having strictly less degree in ghost edges than x.

Repeating this argument, in a finite number of steps we prove our first
statement.
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Now, assume x = xv for some v ∈ E0 and x in only real edges. Let
0 6= x =

∑r
i=1 kiαi be a linear combination of different paths αi with ki 6= 0

for any i. We prove by induction on r that after multiplication on the left
and/or the right we get a vertex or a polynomial in a cycle with no exit. For
r = 1 if α1 has degree 0 then it is a vertex and we have finished. Otherwise we
have x = k1α1 = k1f1 · · · fn so that k−1

1 f ∗n · · · f ∗1x = v where v = r(fn) ∈ E0.
Suppose now that the property is true for any nonzero element which is

a sum of less than r paths in the conditions above. Let 0 6= x =
∑r

i=1 kiαi
such that deg(αi) ≤ deg(αi+1) for any i. If for some i we have deg(αi) =
deg(αi+1) then, since αi 6= αi+1, there is some path µ such that αi = µfν
and αi+1 = µf ′ν ′ where f, f ′ ∈ E1 are different and ν, ν ′ are paths. Thus
0 6= f ∗µ∗x and we can apply the induction hypothesis to this element. So we
can go on supposing that deg(αi) < deg(αi+1) for each i.

We have 0 6= α∗1x = k1v +
∑

i kiβi, where v = r(α1) and βi = α∗1αi. If
some βi is null then apply the induction hypothesis to α∗1x and we are done.
Otherwise if some βi does not start (or finish) in v we apply the induction
hypothesis to vα∗1x 6= 0 (or α∗1xv 6= 0). Thus we have

0 6= z := α∗1x = k1v +
r∑
i=1

kiβi,

where 0 < deg(β1) < · · · < deg(βr) and all the paths βi start and finish in v.
Now, if there is a path τ such that τ ∗βi = 0 for some βi but not for all

of them, then we apply our inductive hypothesis to 0 6= τ ∗zτ . Otherwise for
any path τ such that τ ∗βj = 0 for some βj, we have τ ∗βi = 0 for all βi. Thus
βi+1 = βiri for some path ri and z can be written as

z = k1v + k2γ1 + k3γ1γ2 + · · ·+ krγ1 · · · γr−1,

where each path γi starts and finishes in v. If the paths γi are not identical we
have γ1 6= γi for some i, then 0 6= γ∗i zγi = k1v proving our thesis. If the paths
are identical then z is a polynomial in the cycle c = γ1 with independent term
k1v, that is, an element in vL(E)v.

If the cycle has an exit, it can be proved that there is a path η such that
η∗c = 0, in the following way: Suppose that there is a vertex w ∈ T (v), and
two edges e, f , with e 6= f , s(e) = s(f) = w, and such that c = aweb = aeb,
for a and b paths in L(E). Then η = af gives η∗c = f ∗a∗aeb = f ∗eb = 0.
Therefore, η∗zη is a nonzero scalar multiple of a vertex.

Moreover, if c is a cycle without exits, by Lemma 2.1.2,

vL(E)v =

{
n∑

i=−m

lic
i, with li ∈ K and m,n ∈ N

}
,
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where we understand c−m = (c∗)m for m ∈ N and c0 = v.
Finally, consider the graph E consisting of one vertex and one loop based

at the vertex to see that both cases can happen at the same time. This
completes the proof. 2

Corollary 2.1.4 For any nonzero x ∈  L we have x ` v for some v ∈ E0 or
x ` p(c, c∗) where c is a cycle with no exits and p a nonzero polynomial in c
and c∗.

Proof. Use Lemma 2.1.2 together with Proposition 2.1.3. 2

Proposition 2.1.5 Let E be an arbitrary graph. Then LK(E) is semiprime.

Proof. Take a nonzero ideal I such that I2 = 0. If I contains a vertex
we are done. On the contrary there is a nonzero element p(c, c∗) ∈ I by
Corollary 2.1.4. If we consider the (nonzero) coefficient of maximum degree
in c and write p(c, c∗)2 = 0 we immediately see that this scalar must be zero,
a contradiction. 2

2.2 Uniqueness theorems

An edge e is an exit for a path µ = e1 . . . en if there exists i such that
s(e) = s(ei) and e 6= ei. A graph is said to satisfy Condition (L) if every
cycle in the graph has an exit.

For any K-algebra A the M(A)-submodules of A are just the ideals of
A and the cyclic M(A)-submodules of A are the ideals generated by one
element (principal ideals in the sequel), so Corollary 2.1.4 states that the
nonzero principal ideals of any Leavitt path algebra contain either vertices
or nonzero elements of the form p(c, c∗). Therefore, for graphs in which every
cycle has an exit, each nonzero ideal contains a vertex.

Definition 2.2.1 Let A =
∑

n∈ZAn be a Z-graded algebra. An ideal I of A
is said to be a graded ideal if I ∩ An ⊆ I.

Definition 2.2.2 We say that a graph E satisfies Condition (L) if every
cycle has an exit.

The following result is a consequence of Proposition 2.1.3.

Corollary 2.2.3 Let E be an arbitrary graph.

(i) Every Z-graded nonzero ideal of LK(E) contains a vertex.
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(ii) Suppose that E satisfies Condition (L). Then every nonzero ideal of
LK(E) contains a vertex.

Proof. The second assertion has been proved above. So assume that I is a
graded ideal of  L which contains no vertices. Let 0 6= x ∈ I and use Corollary
2.1.4 to find elements y, z ∈ LK(E) such that yxz =

∑n
i=−m kic

i 6= 0. But
I being a graded ideal implies that every summand is in I. In particular,
for t ∈ {−m, . . . , n} such that ktc

t 6= 0 we have 0 6= (kt)
−1c−tktc

t = w ∈ I,
which is absurd. 2

Theorem 2.2.4 Let E be an arbitrary graph, and let LK(E) be the associ-
ated Leavitt path algebra.

(1) Graded Uniqueness Theorem.

If A is a Z-graded ring and π : LK(E)→ A is a graded ring homomor-
phism with π(v) 6= 0 for every vertex v ∈ E0, then π is injective.

(2) Cuntz-Krieger Uniqueness Theorem.

Suppose that E satisfies Condition (L). If π : LK(E) → A is a ring
homomorphism with π(v) 6= 0, for every vertex v ∈ E0, then π is
injective.

Proof. In both cases, the kernel of the ring homomorphism π is an algebra
ideal (a graded ideal in the first one). By Corollary 2.2.3, Ker(π) must be
zero because otherwise it would contain a vertex (apply (i) in the corollary
to (1) and (ii) to the other case), which is not possible by the hypotheses.
2

2.3 Simple Leavitt path algebras

In this section we use Proposition 2.1.3 to proof a characterization of simple
Leavitt path algebras (see [2, Theorem 3.11] and [18, Corollary 3.8]).

Recall that an algebra A is said to be simple if A2 6= 0 and it has no
nonzero proper ideals. If the algebra is graded by a group G, write A =∑

σ∈GAσ, it is called graded simple if A2 6= 0 and it has no nonzero proper
graded ideals (an ideal I of A is graded if whenever y =

∑
σ(yσ), every

yσ ∈ I). In general, and in the particular case of Leavitt path algebras,
simplicity and graded-simplicity are not equivalent, as we shall see.

For n ≥ 2 we write En to denote the set of paths of length n, and
E∗ =

⋃
n≥0E

n the set of all paths. We define a relation ≥ on E0 by setting
v ≥ w if there is a path µ ∈ E∗ with s(µ) = v and r(µ) = w. A subset H
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of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H. A hereditary
set is saturated if every vertex which feeds into H and only into H is again
in H, that is, if s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H. Denote by H
(or by HE when it is necessary to emphasize the dependence on E) the set
of hereditary saturated subsets of E0. For a graph E, the empty set and E0

are hereditary and saturated subsets of E0.
The set T (v) = {w ∈ E0 | v ≥ w} is the tree of v, and it is the smallest

hereditary subset of E0 containing v. We extend this definition for an arbi-
trary set X ⊆ E0 by T (X) =

⋃
x∈X T (x). The hereditary saturated closure

of a set X is defined as the smallest hereditary and saturated subset of E0

containing X. It is shown in [15] that the hereditary saturated closure of a
set X is X =

⋃∞
n=0 Λn(X), where

Λ0(X) = T (X), and

Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X),
for n ≥ 1.

One way of constructing graded ideals in a Leavitt path algebra is the
following:

Lemma 2.3.1 Let H be a hereditary subset of E0, for a graph E. Then

I(H) =
{∑

kαβ∗, with k ∈ K,α, β paths such that r(α) = r(β) ∈ H
}
.

In fact, I(H) is a graded ideal.

Proof. Denote by J the following set:

J =
{∑

kαβ∗ | k ∈ K,α, β are paths and r(α) = r(β) ∈ H
}
.

The containment J ⊆ I(H) is clear. For the converse, consider µ, ν, α, β
paths in L(E), and u ∈ H such that µν∗uαβ∗ 6= 0. By [53, Lemma 3.1],
µν∗uαβ∗ is µα′β∗ if α = να′ or µν ′∗β∗ if ν = αν ′. Note that α = να′,
u = s(α) and H hereditary imply r(α′) ∈ H, hence µα′β∗ ∈ J . In the second
case, ν = αν ′, u = s(α) and H hereditary imply s(ν ′∗) = r(ν ′) ∈ H, hence
µr(ν ′)ν ′∗β∗ ∈ J , therefore I(H) ⊆ J .

The last statement follows immediately by the form the elements of I(H)
have.

2

Moreover, it was proved in [2, Lemma 3.9]
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Lemma 2.3.2 For every ideal I of a Leavitt path algebra LK(E), I ∩ E0 is
a hereditary and saturated subset of E0.

In fact, all graded ideals of a Leavitt path algebra come from hereditary
and saturated subsets of vertices.

Remark 2.3.3 An ideal J of L(E) is graded if and only if it is generated
by idempotents; in fact, J = I(H), where H = J ∩E0 ∈ HE. (See the proofs
of [15, Proposition 4.2 and Theorem 4.3].)

Now, the question that arises is if every graded ideal of a Leavitt path
algebra is again a Leavitt path algebra (note that this question has sense
only for graded ideals as every Leavitt path algebra is graded). Other natural
question is if the quotient of a Leavitt path algebra by an ideal is a Leavitt
path algebra too.

In both cases, as we shall see, the answer is yes.
For a graph E and a hereditary subset H of E0, we denote by E/H the

quotient graph

(E0 \H, {e ∈ E1 | r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1),

and by EH the restriction graph

(H, {e ∈ E1 | s(e) ∈ H}, r|(EH)1 , s|(EH)1).

Observe that while L(EH) can be seen as a subalgebra of L(E), the same
cannot be said about L(E/H).

Lemma 2.3.4 ([19, Lemma 2.3]) Let E be a graph and consider a proper
H ∈ HE. Define Ψ : L(E)→ L(E/H) by setting Ψ(v) = χ(E/H)0(v)v, Ψ(e) =
χ(E/H)1(e)e and Ψ(e∗) = χ((E/H)1)∗(e

∗)e∗ for every vertex v and every edge
e, where χ(E/H)0 : E0 → K and χ(E/H)1 : E1 → K denote the characteristic
functions. Then:

1. The map Ψ extends to a K-algebra epimorphism of Z-graded algebras
with Ker(Ψ) = I(H) and therefore L(E)/I(H) ∼= L(E/H).

2. If X is hereditary in E, then Ψ(X) ∩ (E/H)0 is hereditary in E/H.

3. For X ⊇ H, X ∈ HE if and only if Ψ(X) ∩ (E/H)0 ∈ H(E/H).

4. For every X ⊇ H, Ψ(X) ∩ (E/H)0 = Ψ(X) ∩ (E/H)0.
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Proof. (1) It was shown in [2, Proof of Theorem 3.11] that Ψ extends to
a K-algebra morphism. By definition, Ψ is Z-graded and onto. Moreover,
I(H) ⊆ Ker(Ψ).

Since Ψ is a graded morphism, Ker(Ψ) ∈ Lgr(L(E)). By [15, Theorem
4.3], there exists X ∈ HE such that Ker(Ψ) = I(X). By Lemma ??, H =
I(H)∩E0 ⊆ I(X)∩E0 = X. Hence, I(H) 6= Ker(Ψ) if and only if there exists
v ∈ X \H. But then Ψ(v) = v 6= 0 and v ∈ Ker(Ψ), which is impossible.

(2) It is clear by the definition of Ψ.
(3) Since Ψ is a graded epimorphism, there is a bijection between graded

ideals of L(E/H) and graded ideals of L(E) containing I(H). Thus, the
result holds by [15, Theorem 4.3].

(4) It is immediate by part (3). 2

Lemma 2.3.5 Let E be a graph. For every hereditary and saturated subset
H of E, the ideal I(H) is isomorphic to L(HE).

Corollary 2.3.6 Every graded ideal of a Leavitt path algebra is again a Leav-
itt path algebra.

One interesting property for Leavitt path algebras is that cycles without
exists behaves in a similar way to sinks, so, roughly speaking, for a graph
having no cycles with exits, and such that every vertex connects to the cycle
(the so called Cn-comet), the corresponding Leavitt path algebra is a direct
sum of matrices over something appropriate.

The notion of Cn-comet was introduced in [7] to describe the locally finite
Leavitt path algebras. The role of the cycle Cn within a Cn-comet is similar to
that played by sinks in more general graphs. If a graph E is a Cn-comet, then
its associated Leavitt path algebra is isomorphic to Mn(K[x, x−1]). Since Cn-
comets have a finite number of vertices, it is natural to generalize this concept
to the case of an infinite (numerable) set of vertices.

Definition 2.3.7 We say that a graph E is a comet if it has exactly one
cycle c, T (v) ∩ c0 6= ∅ for every vertex v ∈ E0, and every infinite path ends
in the cycle c.

Remark 2.3.8 The following is not an example of a Cn-comet:

•v1 e1 //

""EEEEEEEE •v2 e2 //

��

•v3 e3 //

||yyyyyyyy
•v4

vvllllllllllllllll

•

c

ZZ
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and the reason is that the infinite path γ = e1e2e3 . . . does not end either in
a sink or in a cycle.

Proposition 2.3.9 Let E be a graph which is a comet. Then the Leavitt path
algebra L(E) is isomorphic to Mn(K[x, x−1]), where n ∈ N if E is finite, or
n =∞ otherwise.

Proof. We can adapt [7, Theorem 3.3] to our situation. Concretely, let c be
the cycle in E, v a vertex at which the cycle c is based and consider {pi} the
(perhaps infinite) family of all paths in E which end in v but do not contain
the cycle c. Let n ∈ N ∪ {∞} be the number of all such paths. Denote by
N the set {1, . . . , n} when n is finite and N = N when n = ∞. Consider
the family B := {pickp∗j}i,j∈N,k∈N of monomials in L(E) where we understand
c0 = v and cn = (c∗)−n for negative n.

As in [7, Theorem 3.3], we can show that B is a linearly independent
set. We will prove that B generates L(E) as a K-vector space. First, note
that since E is a comet, then T (v) is a finite set for every v ∈ c0. Not only
is this true for any vertex on the cycle c but also for any vertex in E as
follows: Suppose on the contrary that there exists w ∈ E with |T (w)| =∞.
In particular, w does not lie on the cycle. As E is row-finite, we are able to
find and edge e1 in E with s(e1) = w and v1 := r(e1) such that |T (v1)| =∞.
Again v1 does not lie on the cycle. Repeating this process, we find an infinite
path such that none of its vertices lie on c, which contradicts the fact that
every infinite path in E ends in the cycle c.

Take an arbitrary element
∑

i kiαiβ
∗
i of L(E), where αi, βi are paths in

E and ki ∈ K. Consider the set {r(αi)}. Some of these vertices could lie on
the cycle c, in which case we leave the corresponding monomial as is. For
those monomials αkβ

∗
k whose {r(αk)} is not on c, we proceed as in [6, Proof

of Proposition 3.5] by using relation (4) to expand it as

αkβ
∗
k =

∑
{e∈E1:s(e)=r(αk)}

αkee
∗β∗k =

∑
{e∈E1:s(e)=r(αk)}

(αke)(βke)
∗.

As we have just proved that the tree of any vertex is finite, so will be this
process of expanding these monomials until reaching vertices of c.

Consider now a monomial αkβ
∗
k with r(αk) ∈ c0. Let t be the subpath

of c with s(t) = r(αk) and r(t) = v. Since c does not have exits then
αkβ

∗
k = αktt

∗β∗k = (αkt)(βkt)
∗ = αβ∗, where α and β are paths in E that end

in v. Finally, since E is a comet, we can always factor some powers of c out
of α and β so that there exist integers m,n such that α = pic

m and β = pjc
n

for some paths pi, pj which do not contain the path c. Hence, we obtain that
αkβ

∗
k = pic

m−np∗j ∈ B. This proves that B is a K-generator of L(E).
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Now, by defining φ : L(E) → Mn(K[x, x−1]) on the basis by setting
φ(pic

kp∗j) = xkeij for eij the (i, j)-matrix unit, then again one easily checks
that φ is a K-algebra isomorphism. 2

For a graph E, denote by Pc(E) the set of vertices in the cycles without
exits of E.

Proposition 2.3.10 Let E be a graph. Then:

(i) I(Pc(E)) =
⊕

j∈Υ I(Pcj(E)), where Υ is a countable set and {cj}j∈Υ

is the set of all different cycles without exits of E (and by abuse of
notation we identify two cycles that have the same vertices).

(ii) Pc(E) is hereditary and if H denotes the saturated closure of Pc(E), we
have that

I(Pc(E)) = I(H) ∼= L(HE) ∼=
⊕
i∈Υ1

Mni(K[x, x−1])⊕
⊕
j∈Υ2

Mmj(K[x, x−1]),

where Υ1 and Υ2 are countable sets, ni ∈ N and mj =∞.

Proof. We will use Lemma 2.3.1 implicitly. This can be done because Pc(E)
is, clearly, a hereditary set.

(i). To shorten the notation, write: J = I(Pc(E)) and Jj = I(Pcj(E)).
Consider monomials γδ∗ with r(δ) ∈ (cj)

0 and στ ∗ ∈ J . Since the
cycles cj have no exits, they are disjoint and then, similar arguments to that
of the previous paragraph show that γδ∗στ ∗, στ ∗γδ∗ ∈ Jcj . Moreover, these
arguments also yield that if στ ∗ ∈ Jck with j 6= k, then γδ∗στ ∗ = στ ∗γδ∗ = 0.
Thus, {Jcj} is indeed a family of orthogonal ideals of J .

To show that J =
∑

j Jj apply Lemma 2.3.1 to H = ∪jc0
j , which is a

hereditary set since the considered cycles have no exits.

(ii). I(Pc(E)) = I(H) follows by [19, Lemma 2.1] and I(H) ∼= L(HE) by
[16, Lemma 1.2] The same results applied to cj instead of c imply I(Pcj(E)) =
I(Hj) ∼= L(HjE), for Hj the saturated closure of Pcj . By the definition of Hj,
and since cj has no exits, every vertex in Hj connects to cj. The same can
be said about HjE, where cj can be seen as its only cycle. Now suppose that
γ is an infinite path in HjE. Again, by the way this graph is constructed,
there must exist a finite path p and an infinite path β such that γ = pβ,
with β being completely contained in EHj . Suppose that β does not end in
the cycle cj. This, together with the fact that cj does not have exits, yield
that β0 ∩ c0

j = ∅. On the other hand, because β0 ⊆ Hj we can consider m to
be the minimum n such that Λn(c0

j)∩ β0 6= ∅. Now, β0 ∩ c0
j = ∅ implies that

m > 0 so that there exists w ∈ {v ∈ (EHj)
0 | ∅ 6= r(s−1(v)) ⊆ Λm−1(c0

j)}∩β0.
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As β is infinite, there is an edge e in β such that s(e) = w and r(e) ∈ β0.
This contradicts the minimality of m. Therefore β ends in the cycle c, and
consequently γ. Hence, HjE is a comet. Apply Proposition 2.3.9 and (i) to
obtain the result. 2

Theorem 2.3.11 Let E be an arbitrary graph. Then LK(E) is simple if
and only if E satisfies Condition (L) and the only hereditary and saturated
subsets of E0 are the trivial ones.

Proof. Suppose first that LK(E) is simple. If there exists some cycle without
exits in E, the simplicity of LK(E) and Proposition 2.3.10 imply that the
Leavitt path algebra coincides with the ideal generated by this cycle, which
is isomorphic to a matrix ring over the Laurent polynomial ring. But this
rings are not simple, so this cannot happen, that is, every cycle in E must
have an exit.

Now, if H were a hereditary and saturated subset of E0, then the ideal
it generates would be a proper nonzero ideal of LK(E), contradicting the
hypothesis of simplicity.

For the converse take into account that Condition (L) implies that any
nonzero element in LK(E) is linked to a vertex (see Proposition 2.2.3). Thus,
there is a vertex in any nonzero ideal I of LK(E). But on the other hand
∅ 6= I∩E0 is hereditary and saturated ([4, Lemma 2.3]), therefore it coincides
with E0 and so I = LK(E). 2

Recall that a matricial algebra is a finite direct product of full matrix
algebras over K, while a locally matricial algebra is a direct limit of matricial
algebras. At this point we have shown that finite and acyclic graphs produce
matricial algebras. Our following target will be to show that acyclic Leavitt
path algebras are locally matricial. The following results can be found in [3].

Lemma 2.3.12 Let E be a finite acyclic graph. Then L(E) is finite dimen-
sional.

Proof. Since the graph is row-finite, the given condition on E is equivalent
to the condition that E∗ is finite. The result now follows from the previous
observation that L(E) is spanned as a K-vector space by {pq∗ : p, q are paths
in E}. 2

This lemma is just what we need to the following

Proposition 2.3.13 Let E be a graph. Then E is acyclic if and only if
LK(E) is a union of a chain of finite dimensional subalgebras. Concretely,
it is a locally matricial K-algebra.
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Proof. Assume first that E is acyclic. If E is finite, then Lemma 3 gives
the result. So now suppose E is infinite, and rename the vertices of E0

as a sequence {vi}∞i=1. We now define a sequence {Fi}∞i=1 of subgraphs of
E. Let Fi = (F 0

i , F
1
i , r, s) where F 0

i := {v1, . . . , vi} ∪ r(s−1({v1, . . . , vi}),
F 1
i := s−1({v1, . . . , vi}), and r, s are induced from E. In particular, Fi ⊆ Fi+1

for all i. For any i > 0, L(Fi) is a subalgebra of L(E) as follows. First note
that we can construct φ : L(Fi)→ L(E) a K-algebra homomorphism because
the Cuntz-Krieger relations in L(Fi) are consistent with those in L(E), in
the following way: Consider v a sink in Fi (which need not be a sink in E),
then we do not have CK2 at v in L(Fi). If v is not a sink in Fi, then there
exists e ∈ F 1

i := s−1({v1, . . . , vi}) such that s(e) = v. But s(e) ∈ {v1, . . . , vi}
and therefore v = vj for some j, and then F 1

i := s−1({v1, . . . , vi}) ensures
that all the edges coming to v are in Fi, so CK2 at v is the same in L(Fi)
as in L(E). The other relations offer no difficulty. Now, with a similar
construction and argument to that used in [2, Proof of Theorem 3.11] we
find ψ : L(E)→ L(Fi) a K-algebra homomorphism such that ψφ = Id|L(Fi),
so that φ is a monomorphism, which we view as the inclusion map. By
construction, each vertex in E0 is in Fi for some i; furthermore, the edge e
has e ∈ F 1

j , where s(e) = vj. Thus we conclude that L(E) = ∪∞i=1L(Fi).
(We note here that the embedding of graphs j : Fi ↪→ E is a complete graph
homomorphism in the sense of [15], so that the conclusion L(E) = ∪∞i=1L(Fi)
can also be achieved by invoking [15, Lemma 2.1].)

Since E is acyclic, so is each Fi. Moreover, each Fi is finite since, by the
row-finiteness of E, in each step we add only finitely many vertices. Thus,
by Lemma 2.3.12, L(Fi) is finite dimensional, so that L(E) is indeed a union
of a chain of finite dimensional subalgebras.

For the converse, let p ∈ E∗ be a cycle in E. Then {pm}∞m=1 is a linearly
independent infinite set, so that p is not contained in any finite dimensional
subalgebra of L(E). 2

A different proof derives from Corollary 1.4.8 and Lemma 4.3.3.

2.4 Purely infinite Leavitt path algebras

The concept of purely infinite simple C∗-algebra was introduced by Cuntz
in 1981 [28] and implied a significant advance in the development of the
theory of C∗-algebras. It was in 2002 that Ara, Goodearl and Pardo gave the
definition of purely infinite (unital) simple ring (see [14]). Both definitions
agree when considering C∗-algebras. An idempotent e in a ring R is called

infinite if eR is isomorphic as a right R-module to a proper direct summand
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of itself. The ring R is called purely infinite in case every nonzero right ideal
of R contains an infinite idempotent.

The following characterization of purely infinite simple rings can be found
in [3].

Proposition 2.4.1 For a ring R with local units, the following are equivalent
conditions:

(i) R is purely infinite simple.

(ii) R is simple, and for each nonzero finitely generated projective right A-
module P , every nonzero submodule C of P contains a direct summand T of
P for which T is directly infinite. (In particular, the property ‘purely infinite
simple’ is a Morita invariant of the ring.)

(iii) wRw is purely infinite simple for every nonzero idempotent w ∈ R.

(iv) R is simple, and there exists a nonzero idempotent w in R for which
wRw is purely infinite simple.

(v) R is not a division ring, and A has the property that for every pair of
nonzero elements α, β in R there exist elements a, b in R such that aαb = β.

As in the case of simplicity for Leavitt path algebras, being purely infinite
and simple can be characterized in terms of the graph.

Most of the results of this section belong to the paper [3], although some
proofs differ from the original ones.

Lemma 2.4.2 Suppose A is a union of finite dimensional subalgebras. Then
A is not purely infinite. In fact, A contains no infinite idempotents.

Proof. It suffices to show the second statement. So just suppose e = e2 ∈ A
is infinite. Then eA contains a proper direct summand isomorphic to eA,
which in turn, by definition and a standard argument, is equivalent to the
existence of elements g, h, x, y ∈ A such that g2 = g, h2 = h, gh = hg = 0, e =
g + h, h 6= 0, x ∈ eAg, y ∈ gAe with xy = e and yx = g. But by hypothesis
the five elements e, g, h, x, y are contained in a finite dimensional subalgebra
B of A, which would yield that B contains an infinite idempotent, and thus
contains a non-artinian right ideal, which is impossible. 2

A closed simple path based at vi0 is a path µ = µ1 . . . µn, with µj ∈ E1,
n ≥ 1 such that s(µj) 6= vi0 for every j > 1 and s(µ) = r(µ) = vi0 . Denote
by CSP (vi0) the set of all such paths. We note that a cycle is a closed simple
path based at any of its vertices, but not every closed simple path based at
vi0 is a cycle. We define the following subsets of E0:
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V0 = {v ∈ E0 : CSP (v) = ∅}

V1 = {v ∈ E0 : |CSP (v)| = 1}

V2 = E0 − (V0 ∪ V1)

Proposition 2.4.3 Let E be a graph. Suppose that w ∈ E0 has the property
that, for every v ∈ E0, w ≥ v implies v ∈ V0. Then the corner algebra
wL(E)w is not purely infinite.

Proof. Consider the graph H = (H0, H1, r, s) defined by H0 := {v : w ≥ v},
H1 := s−1(H0), and r, s induced by E. The only nontrivial part of showing
that H is a well defined graph is verifying that r(s−1(H0)) ⊆ H0. Take
z ∈ H0 and e ∈ E1 such that s(e) = z. But we have w ≥ z and thus
w ≥ r(e) as well, that is, r(e) ∈ H0.

Using that H is acyclic, along with the same argument as given in Propo-
sition 2.3.13, we have that L(H) is a subalgebra of L(E). Thus Proposition
2.3.13 applies, which yields that L(H) is the union of finite dimensional sub-
algebras, and therefore contains no infinite idempotents by Lemma 2.4.2. As
wL(H)w is a subalgebra of L(H), it too contains no infinite idempotents,
and thus is not purely infinite.

We claim that wL(H)w = wL(E)w. To see this, given α =
∑
piq
∗
i ∈

L(E), then wαw =
∑
pijq

∗
ij

with s(pij) = w = s(qij) and therefore pij , qij ∈
L(H). Thus wL(E)w is not purely infinite as desired. 2

Lemma 2.4.4 Let E be a graph. If L(E) is simple, then V1 = ∅.

Proof. For any subset X ⊆ E0 we define the following subsets. H(X) is the
set of all vertices that can be obtained by one application of the hereditary
condition at any of the vertices of X; that is, H(X) := r(s−1(X)). Similarly,
S(X) is the set of all vertices obtained by applying the saturated condition
among elements of X, that is, S(X) := {v ∈ E0 : ∅ 6= {r(e) : s(e) = v} ⊆
X}. We now define G0 := X, and for n ≥ 0 we define inductively Gn+1 :=
H(Gn) ∪ S(Gn) ∪Gn. It is not difficult to show that the smallest hereditary
and saturated subset of E0 containing X is the set G(X) :=

⋃
n≥0Gn.

Suppose now that v ∈ V1, so that CSP (v) = {p}. In this case p is clearly
a cycle. By Theorem 2.3.11 we can find an edge e which is an exit for p.
Let A be the set of all vertices in the cycle. Since p is the only cycle based
at v, and e is an exit for p, we conclude that r(e) 6∈ A. Consider then the
set X = {r(e)}, and construct G(X) as described above. Then G(X) is
nonempty and, by construction, hereditary and saturated.
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Now Theorem 2.3.11 implies that G(X) = E0, so we can find n =
min{m : A ∩ Gm 6= ∅}. Take w ∈ A ∩ Gn. We are going to show
that w ≥ r(e). First, since r(e) 6∈ A, then n > 0 and therefore w ∈
H(Gn−1) ∪ S(Gn−1) ∪ Gn−1. Here, w ∈ Gn−1 cannot happen by the min-
imality of n. If w ∈ S(Gn−1) then ∅ 6= {r(e) : s(e) = w} ⊆ Gn−1. Since w
is in the cycle p, there exists f ∈ E1 such that r(f) ∈ A and s(f) = w. In
that case r(f) ∈ A∪Gn−1 again contradicts the minimality of n. So the only
possibility is w ∈ H(Gn−1), which means that there exists ei1 ∈ E1 such that
r(ei1) = w and s(ei1) ∈ Gn−1.

We now repeat the process with the vertex w′ = s(ei1). If w′ ∈ Gn−2

then we would have w ∈ Gn−1, again contradicting the minimality of n. If
w′ ∈ S(Gn−2) then, as above, {r(e) : s(e) = w′} ⊆ Gn−2, so in particular
would give w = r(ei1) ∈ Gn−2, which is absurd. So therefore w′ ∈ H(Gn−2)
and we can find ei2 ∈ E1 such that r(ei2) = w′ and s(ei2) ∈ Gn−2.

After n steps we will have found a path q = ein . . . ei1 with r(q) = w and
s(q) = r(e). In particular we have w ≥ s(e), and therefore there exists a cycle
based at w containing the edge e. Since e is not in p we get |CSP (w)| ≥ 2.
Since w is a vertex contained in the cycle p, we then get |CSP (v)| ≥ 2,
contrary to the definition of the set V1. 2

Theorem 2.4.5 Let E be a graph. Then L(E) is purely infinite simple if
and only if E has the following properties.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.

(ii) Every cycle in E has an exit.

(iii) Every vertex connects to a cycle.

Proof. First, assume (i), (ii) and (iii) hold. By Theorem 2.3.11 we have
that L(E) is simple. By Proposition 2.4.1 it suffices to show that L(E) is not
a division ring, and that for every pair of elements α, β in L(E) there exist
elements a, b in L(E) such that aαb = β. Conditions (ii) and (iii) easily imply
that |E1| > 1, so that L(E) has zero divisors, and thus is not a division ring.
We now apply Proposition 2.1.3 to find a, b ∈ L(E) such that aαb = w ∈ E0.
By condition (iii), w connects to a vertex v 6∈ V0. Either w = v or there
exists a path p such that r(p) = v and s(p) = w. By choosing a′ = b′ = v in
the former case, and a′ = p∗, b′ = p in the latter, we have produced elements
a′, b′ ∈ L(E) such that a′wb′ = v.

An application of Lemma 2.4.4 yields that v ∈ V2, so there exist p, q ∈
CSP (v) with p 6= q. For any m > 0 let cm denote the closed path pm−1q.
Using [2, Lemma 2.2], it is not difficult to show that c∗mcn = δmnv for every
m,n > 0.
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Now consider any vertex vl ∈ E0. Since L(E) is simple, there exist
{ai, bi ∈ L(E) | 1 ≤ i ≤ t} such that vl =

∑t
i=1 aivbi. But by defining

al =
∑t

i=1 aic
∗
i and bl =

∑t
j=1 cjbj, we get

alvbl =

(
t∑
i=1

aic
∗
i

)
v

(
t∑

j=1

cjbj

)
=

t∑
i=1

aic
∗
i vcibi = vl.

Now let s be a left local unit for β (i.e., sβ = β), and write s =
∑

vl∈S vl for

some finite subset of vertices S. By letting ã =
∑

vl∈S alc
∗
l and b̃ =

∑
vl∈S clbl,

we get

ãvb̃ =
∑
vl∈S

alc
∗
l vclbl =

∑
vl∈S

vl = s.

Finally, letting a = ãa′a and b = bb′b̃β, we have that aαb = β as desired.
For the converse, suppose that L(E) is purely infinite simple. By Theorem

2.3.11 we have (i) and (ii). If (iii) does not hold, then there exists a vertex
w ∈ E0 such that w ≤ v implies v ∈ V0. Applying Proposition 2.4.3 we get
that wL(E)w is not purely infinite. But then Proposition 2.4.1 implies that
L(E) is not purely infinite, contrary to hypothesis. 2

2.5 The dichotomy principle for simple Leav-

itt path algebras

We are now in a position to show that every simple Leavitt path algebra is
locally matricial or purely infinite.

We denote by E∞ the set of infinite paths γ = (γn)∞n=1 of the graph E
and by E≤∞ the set E∞ together with the set of finite paths in E whose end
vertex is a sink. We say that a vertex v in a graph E is cofinal if for every
γ ∈ E≤∞ there is a vertex w in the path γ such that v ≥ w. We say that a
graph E is cofinal if so are all the vertices of E.

Lemma 2.5.1 ([19, Lemma 2.7]). A graph E is cofinal if and only if H =
{∅, E0}.

Proof. Suppose E to be cofinal. Let H ∈ H with ∅ 6= H 6= E0. Fix
v ∈ E0 \ H and build a path γ ∈ E≤∞ such that γ0 ∩ H = ∅: If v is a
sink, take γ = v. If not, then s−1(v) 6= ∅ and r(s−1(v)) * H; otherwise, H
saturated implies v ∈ H, which is impossible. Hence, there exists e1 ∈ s−1(v)
such that r(e1) /∈ H. Let γ1 = e1 and repeat this process with r(e1) 6∈ H.
By recurrence either we reach a sink or we have an infinite path γ whose
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vertices are not in H, as desired. Now consider w ∈ H. By the hypothesis,
there exists z ∈ γ such that w ≥ z, and by hereditariness of H we get z ∈ H,
contradicting the definition of γ.

Conversely, suppose that H = {∅, E0}. Take v ∈ E0 and γ ∈ E≤∞,
with v 6∈ γ0 (the case v ∈ γ0 is obvious). By hypothesis the hereditary
saturated subset generated by v is E0, i.e., E0 =

⋃
n≥0 Λn(v). Consider m,

the minimum n such that Λn(v)∩ γ0 6= ∅, and let w ∈ Λm(v)∩ γ0. If m > 0,
then by minimality of m it must be s−1(w) 6= ∅ and r(s−1(w)) ⊆ Λm−1(v).
The first condition implies that w is not a sink and since γ = (γn) ∈ E≤∞,
there exists i ≥ 1 such that s(γi) = w and r(γi) = w′ ∈ γ0, the latter
meaning that w′ ∈ r(s−1(w)) ⊆ Λm−1(v), contradicting the minimality of m.
Therefore m = 0 and then w ∈ Λ0(v) = T (v), as we needed. 2

Theorem 2.5.2 Every simple Leavitt path algebra is locally matricial or
purely infinite.

Proof. Let E be a graph and K a field, and suppose that LK(E) is a simple
algebra. If E has no cycles, then LK(E) is a locally matricial agebra, by
Proposition 2.3.13.

Now, suposse that E has cycles. As it is simple, by Theorem 2.3.11 and
Lemma 2.5.1, every vertex connects to a cycle, hence, by Theorem 2.4.5, the
Leavitt path algebra LK(E) is purely infinite and simple. 2
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[44] C. Nǎstǎsescu, F. van Oystaeyen, Graded ring theory, North-
Holland, Amsterdam (1982).

[45] W. L. Paschke, The crossed product of a C∗-algebra by an endo-
morphism, Proc. Amer. Math. Soc. 80 (1980), no. 1, 113–118.

[46] N.C. Phillips, A classification theorem for nuclear purely infinite
simple C*-algebras, Doc. Math. 5 (2000), 49-114.

[47] I. Raeburn, Graph algebras. CBMS Regional Conference Series
in Mathematics, 103, American Mathematical Society, Providence,
2005. ISBN 0-8218-3660-9

[48] M.A. Rieffel, Dimension and stable rank in the K-theory of C∗-
algebras, Proc. London Math. Soc. 46 (1983), 301–333.

[49] M. Rørdam, Classification of certain infinite simple C∗-algebras,
J. Funct. Anal. 131 (1995), no. 2, 415–458.

[50] M. Rørdam, F. Larsen, N.J. Laustsen, “An Introduction to
K-Theory for C∗-Algebras”, Cambridge University Press, LMS Stu-
dent Texts 49, 2000.

[51] J. Rosenberg, Algebraic K-Theory and Its Applications, Springer-
Verlag, GTM 147, 1994.

[52] M. Siles Molina, Algebras of quotients of path algebras, J. Al-
gebra 319 (12) (2008), 329–348.



Bibliography 35

[53] M. Tomforde, Uniqueness theorems and ideal structure for Leav-
itt path algebras, J. Algebra 318 (2007), 270-299.

[54] L.N. Vaserstein, Stable rank of rings and dimensionality of topo-
logical spaces, Funct. Anal. Appl. 5 (1971), 102–110.

[55] N. E. Wegge-Olsen, K-theory and C∗-algebras, Oxford Univer-
sity Press, Oxford, 1993.

[56] S. Zhang, A property of purely infinite C*-algebras, Proc. Amer.
Math. Soc. 109 (1990), 717–720.

[57] S. Zhang, Certain C∗-algebras with real rank zero and their corona
and multiplier algebras I, Pacific J. Math. 155 (1992), 169–197.


