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NOTATIONS 

 A simplified notation is used when describing cement compounds or 

chemical formulations. The cement shorthand notation is found below: 

C = CaO  A = Al2O3 S = SiO2  S = SO3 

F = Fe2O3 B = B2O3 C = CO2  H = H2O 

K = K2O  M = MgO  T = TiO2 N = N2O P = P2O5 

 

 This leads to the following abbreviations for anhydrous and hydrates phases: 

Formula Oxides 
Cement 

nomenclature 
Name 

Ca2Mg(Si2O7) 2CaO·MgO·2SiO2 C2MS2 Akermanite 

Ca3SiO5 3CaO·SiO2 C3S Alite 

2Al(OH)3·nH2O Al2O3·(3+n)H2O AH3·nH 

Amorphous 

aluminium 

hidroxide 

CaSO4 CaO·SO3 CS Anhydrite 

CaSO4·0.5H2O CaO·SO3·0.5H2O CSH0.5 Bassanite 

Ca2SiO4 2CaO·SiO2 C2S Belite 

CaCO3 CaO·CO2 CC 
Calcite or 

vaterite 

CaAl2O4 CaO·Al2O3 CA 
Calcium 

aluminate 

Ca2Al(OH)6[Al(OH)4·3H2O] 2CaO·Al2O3·8H2O C2AH8 

Dicalcium 

aluminate 

hydrate 

CaMg(CO3)2 CaO·MgO·2CO2 CMC2 Dolomite 

Ca6Al2(OH)12(SO4)3·26H2O 6CaO·Al2O3·3SO3·32H2O C6AS3H32 Ettringite (AFt) 

Ca4Al2Fe2O10 4CaO·Al2O3·Fe2O3 C4AF Ferrite 
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Formula Oxides 
Cement 

nomenclature 
Name 

Ca3Al2(SiO4)3 3CaO·Al2O3·3SiO2 C3AS3 Garnet 

Ca2Al2SiO7 2CaO·Al2O3·SiO2 C2AS Gehlenite 

2Al(OH)3 Al2O3·3H2O AH3 Gibbsite 

CaSO4·2H2O CaO·SO3·2H2O CSH2 Gypsum 

(Ca4Al2(OH)12)[OH(CO3)0.

5 (H2O)4] 

4CaO·Al2O3·10.5H2O· 

0.5CO2 
C4AH10.5C0.5 

Hemicarbo-

aluminate 

Ca3Al2(OH)12 3CaO·Al2O3·6H2O C3AH6 
Hidrogarnet 

or katoite 

Ca3(Al0.5Fe0.5)2(SiO4) 

(OH)8 

3CaO·0.5Al2O3·0.5Fe2O3 

·SiO2·4H2O 
C3A0.5F0.5SH4 

Iron-

hidrogarnet 

2Fe(OH)3 Fe2O3·3H2O FH3 Iron hydroxide 

Ca12Al14O33 12CaO·7Al2O3 C12A7 Mayenite 

Ca3Mg(SiO4)2 3CaO·MgO·2SiO2 C3MS2 Merwinite 

Ca4Al2(OH)12(SO4)·6H2O 4CaO·Al2O3·SO3·12H2O C4ASH12 
Monosulphate 

(AFm) 

CaTiO3 CaO·TiO2 CT Perovskite 

Ca(OH)2 CaO·H2O CH Portlandite 

Ca2Al(OH)6[AlSiO2(OH)4· 

3H2O] 
2CaO·Al2O3·SiO2·8H2O C2ASH8 Stratlingite 

Ca5(SiO4)2(SO4) 5CaO ·2SiO2·SO3 C5S2S Ternesite 

Ca3Al2O6 3CaO·Al2O3 C3A 
Tricalcium 

aluminate 

 

 Abbreviated names or initials have also been used to refer to some terms: 

• A#x: Article number x. 

• aBCSA: active Belite Calcium Sulpho-Aluminate. 

• ACn: Amorphous and Crystalline non-quantified. 

• ACSA: Alite Calcium Sulpho-Aluminate. 

• BACSA: Belite Alite Calcium Sulpho-Aluminate. 

• BCSA: Belite Calcium Sulpho-Aluminate. 
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• BCSAA: Aluminum-rich Belite Calcium Sulpho-Aluminate. 

• BCSAF: Iron-rich Belite Calcium Sulpho-Aluminate. 

• CSA: Calcium Sulpho-Aluminate. 

• DIBt: Deutsches Institut für Bautechnik. 

• DTA: Differential Thermal Analysis. 

• EDS: Energy Dispersive X-ray Spectroscopy. 

• ETA: European Technical Approval. 

• FW: Free Water. 

• FWHM: Full-width at the half-maximun. 

• GHGs: Greenhouse gases. 

• ICSD: Inorganic Crystal Structure Database. 

• LoI: Loss of Ignition. 

• LXRPD: Laboratory X-Ray Powder Diffraction. 

• MIP: Mercury Intrusion Porosimetry. 

• MSPD: Materials Science and Powder Diffraction. 

• NMR: Nuclear Magnetic Resonance. 

• OPC: Ordinary Portland Cement. 

• PTFE: Polytetrafluoroethylene. 

• RMCO2: Raw material CO2. 

• RQPA: Rietveld Quantitative Phase Analysis. 

• SCMs: Supplementary Cementitious Materials. 

• SEM: Scanning Electron Microscopy. 

• SRM: Standard Reference Material. 

• SXRPD: Synchrotron X-ray Powder Diffraction. 

• TGA: Thermogravimetric Analysis. 

• w/c: water to cement ratio. 

• XRF: X-Ray Fluorescence. 

• XRPD: X-Ray Powder Diffraction. 
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CHEMICAL REACTIONS 

 

Ca4Al6O12(SO4) + 2CaSO4·xH2O + (38-2x) H2O �                                         

      Ca6Al2(OH)12(SO4)3·26H2O + 4 Al(OH)3      [1.1] 

Ca4Al6O12(SO4) + (16+x) H2O � Ca4Al2(OH)12(SO4)·(H2O)(4+x) + 4 Al(OH)3                            [1.2] 

Ca2SiO4  + (2+x-y) H2O � (CaO)y·SiO2·(H2O)x  + (2-y) Ca(OH)2        [1.3] 

Ca2SiO4  + 2 Al(OH)3 + 5 H2O � Ca2Al(OH)6[AlSiO2(OH)4]·3H2O      [1.4] 

Ca2SiO4  + x Ca4Al2Fe2O10
 
+ 10x H2O �       

                        Ca3(Al1-xFex)2(SiO4)(OH)8  + (4x-1) Ca(OH)2 + (4x-2) Al(OH)3      [1.5] 

Ca2Al(OH)6[AlSiO2(OH)4·3H2O] + Ca(OH)2 � Ca3Al2(SiO4)(OH)8 + 5 H2O     [1.6] 

Ca4Al2Fe2O10  + 10 H2O � Ca3Al2(OH)12 + 2 Fe(OH)3 + Ca(OH)2        [1.7] 

Ca4Al2Fe2O10  + 10 H2O � 4/3 Ca3(Al0.75Fe0.25)2(OH)12 + 4/3 Fe(OH)3       [1.8] 

Ca4Al2Fe2O10  + 3 CaSO4·2H2O + 30 H2O �                                             

            Ca6Al2(OH)12(SO4)3·26H2O + 2 Fe(OH)3 + Ca(OH)2      [1.9] 

Ca6Al2(OH)12(SO4)3·26H2O �                                                                         

                  Ca4Al2(OH)12(SO4)·nH2O + 2[CaSO4·2H2O] + (22-n) H2O  [1.10] 

Ca4Al2Fe2O10  + CaSO4·2H2O + (8+n) H2O �                                                 

     Ca4Al2(OH)12(SO4)·nH2O + 2 Fe(OH)3 + Ca(OH)2  [1.11] 

Ca2SiO4  + x Ca4Al2Fe2O10
 
+ (1-2x)·2 Al(OH)3 + (10x+5) H2O �    

             Ca2(Al1-xFex)(OH)6 [(Al1-xFex)SiO2(OH)4·3H2O]  + 4x Ca(OH)2       [4.1] 
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 The threat of climate change is considered to be one of the major 

environmental challenges for our society, where carbon dioxide (CO2) is one of the 

major GHGs. Anthropogenic sources of CO2 are the combustion of fossil fuels, 

deforestation, unsustainable combustion of biomass, and decomposition of mineral 

sources such as limestone. 

 Cement manufacturing is considered as one of the main sources of carbon 

dioxide emissions among industrial activities. Every ton of OPC produces about one 

ton of carbon dioxide. Consequently, OPC production accounts for 5-7% of the global 

CO2 emissions resulting from human activity, and for 4% of total global warming, 

making the cement industry an important sector for CO2-emission mitigation 

strategies. CO2 is emitted from the calcination process of limestone, from 

combustion of fuels in the kiln, as well as from power generation. 

 Due to these environmental problems the industry of building materials is 

under increasing pressure to reduce the energy used in the production of Portland 

cement clinker and mainly the associated with GHGs emissions. Therefore, the design 

of new formulations of cements, such as belite or/and ye'elimite based cements, has 

many advantages and promises to be a viable solution. One of the most interesting 

alternatives is the BCSA cement. 

 BCSA cement was first put into industrial production in China under the name 

“Third Cement Series” in the 1970s, and are considered environmentally friendly 

cements for several reasons, including the low amount of limestone required to 

achieve the desired composition. The substitution of alite (main phase in OPC) by 

belite reduces the limestone demand and temperature of cement manufacturing, 

thereby reducing CO2 emissions and energy consumption while maintaining satisfying 

long-term properties. However, that substitution compromises the early-age 

strength development because C2S reacts slower than C3S. This renders the high-C2S 

cement unusable in nearly any field related to structural applications. However, this 

is partially compensated by the presence of a fast reacting calcium sulphoaluminate 

phase (ye'elimite) in these BCSA cements. Thus, BCSA cements arise from clinkers 

containing belite (C2S) as main phase (40-50 wt%) and intermediate contents (20-30 

wt%) of calcium sulphoaluminate, also called Klein’s salt, ye'elimite or tetracalcium 

trialuminate sulphate (C4A3S). These cements, also known as sulphobelite, are an 

emerging type of ye'elimite-containing cements due to their environmental benefits. 

The most common formulation of BCSA clinkers consists on β-C2S, orthorrombic-

C4A3S and C4AF. Due to the presence of the latter, these cements are usually called 

iron-rich BCSA (BCSAF). BCSAF cements might also contain minor phases such as 

calcium aluminates (C12A7 and CA), gehlenite (C2AS), and calcium sulphosilicate 

(C5S2S). The clinkering temperature is around 1250-1300°C, ∼200°C lower than that 
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for OPC production. The lower synthesis temperature not only reduces the energy 

consumption and CO2 emissions from cement manufacturing but also the resulting 

clinker is more friable (due to high porosity), which reduces the energy needed for 

grinding (indirect emissions). These cements also show rapid hardening, excellent 

durability, and, depending on the amount of gypsum added, self-stressing and 

volume stability. The properties and applications of this type of cements are strongly 

influenced by many factors: i) chemical and mineralogical composition of the clinker, 

ii) sulphate source (amount and type), iii) water to cement ratio (w/c); iv) the 

presence of other binders such as SCMs or even OPC. 

 Carbon dioxide emissions in the cement industry can be classified in two 

main categories: those coming from raw materials and those from the operation 

processes. Raw materials and products obtained during the clinkering process are 

well known. On the one hand, the production of one ton of OPC clinker composed of 

65 wt% of C3S, 15 wt% of C2S, 10 wt% of C3A and 10 wt% of C4AF released 0.54 tons 

of carbon dioxide. However one ton of BCSAF clinker composed by 50 wt% of C2S, 30 

wt% of C4A3S, and 20 wt% of C4AF releases 0.39 tons of CO2. It implies a reduction of 

0.15 tons of CO2 for BCSAF due to raw material decomposition. On the other hand, 

the reduction in CO2 emissions coming from operation processes are directly related 

to the type of processing equipment and the specific chosen fuel. Cement production 

is a high energy demanding process, so it is important to consider emissions from 

fuel consumption to achieve high clinkering temperatures in the kiln and thus 

quantify CO2 emissions. Several studies estimate an emission of ∼0.30 t of CO2 per 

ton of clinker produced assuming that good quality of bituminous coal is used and 

taking into account energy efficiency of modern kilns. The reduction in CO2 emissions 

coming from the burning of the fuel can be achieved by the reduction of clinkering 

temperature. This is the case of BCSAF clinker production where the operating 

temperature can be reduced in ∼200°C with a concomitant reduction of up to 0.04 t 

of CO2 per ton of BCSAF clinker produced. Moreover, emissions derived from 

electricity consumption are about 0.09 t of CO2 per ton of OPC. The lower firing 

temperatures needed for BCSAF clinkering made it easier to be ground. Therefore, 

reduction on the electricity consumption yields a depletion of up to 0.02 t of CO2 

emissions. Considering all emissions together, the production of one ton of OPC 

clinker releases a maximum of 0.97 tons of CO2; thus, the production of one ton of 

BCSAF clinker leads to a reduction of ∼22% CO2 emissions compared to OPC. That 

reduction depends on the composition. 

 In the last few years, BCSAF cements have emerged with the initial aim to 

substitute OPC. An industrial trial, ∼2500 tons of BCSAF, was carried out in 2011 by 

Lafarge under the AETHER
TM

 project (http://www.aether-cement.eu/). Clinkering was 

performed in a Portland industrial kiln but using lower operating temperatures 

(1225-1300°C), reducing CO2 emissions by 25-30% in comparison with CEM (I) type 
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OPC cement. The temperature in the clinkering zone resulted to be a key parameter, 

as too high temperatures may give kiln blockage, loss of grindability and C4A3S 

decomposition with high SO2 emissions, and too low temperatures gave under burnt 

binder with high free lime and C12A7 contents. The optimum clinkering temperature 

resulted much lower in NOx emissions than those for OPC, due to the lower burning 

temperature, and SO2 emissions resulted at the same level than for OPC production. 

 As mentioned before, the main technological disadvantage of these cements 

is related to the low mechanical strengths developed at very-early ages due to the 

slow hydration of belite. However, this problem may be overcome by the activation 

of belite and the presence of high amounts of ye'elimite. The production of active 

BCSAF cements involves the stabilisation of highly reactive C2S polymorphs, i.e. β-

modified form and α-forms, as they react faster with water. Active-BCSAF cements 

have been patented by Lafarge and they contain Klein’s salt and α-forms of belite as 

main phases. The latter was stabilised due to addition of minor elements, such as 

B2O3 and Na2O. Active-BCSAF with 2.0 wt% of B2O3, added as borax, developed 

comparable compressive strengths to those of OPC.  

 For these reasons, BCSAF cements are considered, nowadays, as one of the 

most promising alternatives to OPC. This is supported by both the environmental 

benefits (lower CO2 emissions) and industrial interest. However, before to be 

implanted in Europe, all the steps evolved in the process need to be under control, 

including clinkering (activation/composition and temperature), hydration (rheological 

behaviour and phase assemblage), and final performances (mechanical strength and 

dimensional stability). This PhD Thesis is focused on the study and optimisation of 

those parameters to improve the final performances of BCSAF mortars. 

 One of the main objectives of this Thesis has been to perform the "medium 

scale" synthesis (∼2 kg) of two BCSAF clinkers in our laboratory with the expected 

phase composition of 50 wt% of C2S, 30 wt% of C4A3S and 20 wt% of C4AF. One of the 

clinkers was “activated” through the addition of borax, 2 wt% expressed as B2O3, to 

the raw material mixture. The aim of the activation has been obtaining clinkers with 

different belite (β-C2S or α'H-C2S) and ye'elimite (orthorhombic or pseudo-cubic) 

polymorphs to understand the effect of the polymorphism on the paste hydration 

mechanism and mechanical performances of the corresponding mortars. These 

clinkers were named as BCSAF_B0 (non-active) and BCSAF_B2 (active), for boron-free 

and boron-containing clinkers, respectively. The optimised two–step clinkering 

process consisted on: heating at 900°C during 30 min and further heating to 1350°C 

during 30 min. The clinker was rapidly quenched by forced air flow. The two obtained 

BCSAF clinkers were characterised through LXRPD, including the analysis of selective 

dissolutions, and SEM-EDS. 
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 The quantitative phase analysis of BCSAF clinkers and cement pastes is an 

essential part of this Thesis needed to better understand their hydration behaviour 

and thus how their performances can be modified for any given application. X-ray 

diffraction coupled with Rietveld analysis is a suitable methodology to obtain 

quantitative phase analysis of these materials in the laboratory. The application of 

RQPA to characterise clinkers/cements/pastes is not an easy task due to the 

presence of appreciable amounts of amorphous/sub-cooled and/or non-crystalline 

phases. However, the quantification of the amorphous phases is a very important 

issue to understand hydration mechanisms. The final phase assemblage obtained by 

LXRPD and Rietveld method for the two laboratory-scaled-up prepared clinkers 

confirmed that BCSAF_B0 clinker contains β-C2S and both orthorhombic and pseudo-

cubic ye'elimite as main phases, meanwhile α'H-C2S and pseudo-cubic ye'elimite are 

stabilised in BCSAF_B2. 

 The quantification of the ACn content was also performed. For that, the 

following two approaches have been used: i) external standard procedure (G-factor 

method) with reflection geometry; ii) internal standard procedure (spiking method 

with ZnO) with transmission geometry, using CuKα1,2 radiations. Several conclusions 

drawn from a comparative study using the two approaches were: on the one hand, 

the G-factor method allows the quantifications of both crystalline phases and ACn 

contents in these materials, where the latter reaches ∼25 wt% in BCSAF clinkers. On 

the other hand, the amount of ACn calculated showed the same trend independently 

on the used methodology. 

 Moreover, the microstructural characterisation of both clinkers revealed that 

the average particle size of ye'elimite (with angular shaped particles) and belite (with 

typical rounded shape) particles present in BCSAF_B0 were smaller than those found 

in BCSAF_B2. In addition, ye'elimite particles in the active clinker contain small 

amounts of Si, Fe and Na. 

 Other important objective of this Thesis has been to understand the 

influence of calcium sulphate (type and amount) on the hydration of active and non-

active BCSAF cements. BCSAF clinkers were mixed with different types and amounts 

of calcium sulphate sources (gypsum (G), anhydrite (A) and bassanite (B)). Cements 

prepared with gypsum are labelled hereafter as GgBx, where g stands for 5, 10 or 15 

wt% of gypsum, and x for 0 or 2 (for non-active or active clinkers, respectively). 

Cements prepared with different sulphate sources are labelled hereafter as G10Bx, 

A10Bx and B10Bx, for 10 wt% of gypsum, anhydrite or bassanite, respectively. 

Bassanite, CSH0.5, and anhydrite, CS, were previously synthesized by heating 

commercial gypsum. All the cement pastes were prepared, at a w/c = 0.55, by mixing 

both BCSAF clinkers (BCSAF_B0 and BCSAF_B2) with the corresponding sulphate 

source. Two studies were carried out to better understand the hydration behaviour. 
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On the one hand, an in-situ SXRPD study for the first hours of hydration was carried 

out in the SXRPD station of MSPD beamline at ALBA synchrotron (Barcelona, Spain). 

On the other hand, ex-situ studies at later ages of hydration were performed to 

determine the influence of the amount and type of calcium sulphate added to BCSAF 

cements on hydration behaviour through LXRPD (CuKα1 radiation). In addition, a 

comparative study of MoKα1 and synchrotron radiations for selected hydrated 

samples was also performed. 

 The in-situ study, in GgBx cements, showed important differences in the 

hydration process, such as different dissolution kinetic of gypsum and ye'elimite. For 

instance in G10B0, gypsum is completely dissolved after 5 h of hydration and 

ye'elimite dissolves at a higher pace than in active BCSAF. However, in G10B2, 

gypsum is dissolved after 11 h and ye'elimite is still present after 51 h of hydration. In 

addition, the crystallisation rate of AFt is also different in both cements. At 1 h of 

hydration G10B0 contains 14.2(2) wt% of AFt while at the same hydration time, only 

1.9(1) wt% was quantified for G10B2. The fast sulphate consumption by crystalline 

ettringite precipitation in G10B0 paste is responsible of its higher pH value, 12.4 + 

0.1, when compared to 10.3 + 0.1 for G10B2. The second most important difference 

between both hydration behaviours takes place after 1 day of hydration. On the one 

hand, in G10B0, the dissolution of β-C2S and C4AF starts after 24 h of hydration, with 

the consequent crystallisation of layered AFm type phases, such as stratlingite. On 

the other hand, for G10B2, α'H-C2S percentage remains constant up to 51 h of 

hydration and C4AF dissolves very slowly after 14 h. The difference in reactivity of 

both belite polymorphs is in disagreement with the general accepted idea in the 

cement field: α-forms of belite present faster hydration kinetics than β-forms. But 

under our studied experimental conditions, β-C2S reacts faster than α'H-C2S to yield 

stratlingite, and this behaviour may well be justified with the formation of high 

amounts of ettringite at early hours which implies a concomitant large quantity of 

amorphous aluminium hydroxide. The availability of amorphous AH3 promotes the 

precipitation of stratlingite, C2ASH8, from belite reaction. Then, the hydration 

behaviour of C2S is more dependent on the chemical environment than on its 

polymorphism. 

 The influence of the amount of added gypsum in BCSAF cements at late ages 

of hydration (> 24 h) was also tested in GgBx cements. One of the main conclusions 

obtained in this part of the study was the astonishing behaviour of β-belite in non-

active clinkers since it reacts at a higher pace than α′H-belite in BCSAF_B2, as 

mentioned before. Moreover, ye'elimite reacts at a different pace for BCSAF_B0 and 

BCSAF_B2. Orthorhombic ye'elimite, in non-active cements, is completely hydrated 

after 3 days of hydration in GgB0, while pseudo-cubic ye'elimite in GgB2 reacts at 

slightly slower pace for the same gypsum content and age of hydration. This effect 

was also previously observed in the hydration study at early hours. 
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 Other conclusion has been that ye'elimite reaction kinetics showed a small 

dependence on the amount of added gypsum, as there was a slight increase in 

hydration rate by increasing the gypsum content. This behaviour seems to be slightly 

more marked for the pseudo-cubic ye'elimite. Moreover, the final reaction degree of 

both polymorphs of dicalcium silicate is affected by the increment of gypsum. On the 

one hand, β-C2S reactivity (given by the degree of reaction, α) was enhanced by 

increasing the gypsum content (α rises from 65% to 75% by the addition from 5 to 15 

wt% of gypsum). On the other hand, α′H-C2S reaction degree decreased from 62% to 

42% for addition of 5 to 15 wt% of gypsum, respectively. Finally, the hydration of the 

ferrite phase was strongly retarded by increasing the gypsum content in both GgB0 

and GgB2 cements. 

 In all cases the main crystalline hydrated compounds were ettringite, 

stratlingite and katoite. The amount of crystallised ettringite in GgB2 cements 

resulted higher than that in GgB0 cements, irrespective of gypsum content. 

Moreover, the crystallisation process of stratlingite is strongly affected by the 

amount of added gypsum; in fact, the amount of stratlingite decreases by increasing 

the gypsum content. 

 It is not only important to quantify the amorphous content, but also to try to 

characterise and estimate its elemental composition and correlate it with the cement 

hydration behaviour and mechanical properties. It is not possible to determine the 

chemical composition of ACn directly by LXRPD, but an attempt to find it out 

(sulphate, silicate, aluminate and iron-bearing groups) has been performed thought 

RQPA and Rietveld methodology combined with G-factor. For this purpose, the 

evolution of different ions-containing groups was studied with time. Since the 

amount of sulphates crystallised in GxB2 was higher than that in GxB0 pastes, it 

means that a bigger amount of sulphate groups were dissolved, but not crystallised in 

the last one; then, they were mainly incorporated into ACn phase(s) and/or in pore 

solution of the GxB0 cement pastes. The amount of crystallised silicate is higher in 

GxB0 than in GxB2, where higher amounts of stratlingite were found. Thus, a higher 

amount of hydrated silicate remains in the amorphous phase(s) for GxB2 cement 

paste. The amount of crystallised aluminium-bearing phases was higher in GgB0 than 

in GgB2 cement pastes, matching in some cases the maximum, whereas more than 

30 wt% of the aluminate content remained in the ACn phase(s) for GgB2 pastes, 

and/or to a minor extent in pore solution. 

 A hydration study of BCSAF cements with different calcium sulphate source 

[gypsum (G), bassanite (B) and anhydrite (A)] was also performed. First, an in-situ 

SXRPD study was carried out to determine the role of the type of calcium sulphate 

source (with 10 wt%) in the first hours of hydration. The reaction degree of both 

ye'elimite and ettringite in G10B2, A10B2 and B10B2 at early ages was determined. 
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The direct RQPA results were normalised taking into account the theoretical data of 

the sample at 0.0 h of hydration. Comparing the theoretical results with the direct 

RQPA data, we can conclude that, for G10B2 sample, the AFt crystallisation process is 

parallel to ye'elimite dissolution, and the gypsum dissolution is very fast. In addition, 

G10B2 presented an induction period close to 6 h, when the dissolution and 

crystallisation of phases become significant. For A10B2, the RQPA results showed 

that the dissolution kinetic of anhydrite is much slower than that for gypsum or 

bassanite, as expected. For A10B2 paste, the precipitation of ettringite is limited by 

CS dissolution, which starts to be significant up to 7 h. Using these results we can also 

state that the predicted reactivity of ye'elimite with water to form AFm as main 

hydrated phase has not taken place within the first 6 h of hydration. Our results state 

that ye'elimite dissolution yields ettringite in spite of the fact that anhydrite is not 

dissolved until 6 h. B10B2 paste was also analysed. Due to experimental 

requirements (sample loading in the capillaries, alignment and so on), it was not 

possible to measure the first ∼40 min of hydration. Since the dissolution of bassanite 

and precipitation of gypsum are very fast processes, bassanite was almost absent and 

gypsum had crystallised just after 1 h of hydration. Subsequent hydration reactions 

are similar to those already described for the gypsum-regulated cement, G10B2. The 

very fast dissolution of bassanite with precipitation of gypsum, as well as the low 

dissolution rate of anhydrite was quantified, confirming the accurateness of the 

methodology used. 

 Since bassanite in contact with water suffers from a fast grain decay 

(intergranular attack) which produces an increasing of the surface area of the 

sulphate carrier, and as a consequence, a high water demand (and high viscosity). In 

addition, a primary gypsum precipitation occurs, which will also affect the rheological 

behaviour of the paste. Thus, both parameters the high water demand and the 

gypsum precipitation increase the viscosity of bassanite-pastes. Since our objective is 

to study the effect of the calcium sulphate source (including compressive strengths of 

the corresponding mortars) similar rheological behaviour, and in particular, similar 

viscosity values at very early hydration ages are desired. In this case a small amount 

of a commercial polycarboxylate-based superplasticizer (SP) (0.05 wt% of active 

matter referred to total solids content), was added to water to prepare bassanite-

containing pastes. It exhibited a considerable diminishing in viscosity and a similar 

rheological behaviour to those prepared with gypsum or anhydrite. The main 

conclusions obtained of this hydration study at late ages are below. 

 In all cases, the sulphate source was consumed before 3 days of hydration to 

form ettringite as the main crystalline hydrated phase. AFm and stratlingite were also 

found in all the studied pastes but in variable amounts. Independently of the 

sulphate source, ettringite seems to be more stable in active cements (X10B2), which 

contained α'H-C2S and pseudo-cubic ye'elimite, as it is almost constant with time of 
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hydration. On the other hand, AFt contents decrease with time for X10B0 to give 

AFm phases. Consequently at later ages the amount of AFt is much larger in X10B2 

and this is very likely the responsible of the improved mechanical properties of this 

family when compared to the poorer data for X10B0. Focusing on the belite 

reactivity, β-C2S (present in X10B0) dissolves faster than α'H-C2S (present in X10B2) 

within the first 28 days, independently of the sulphate source, as described before. 

Moreover, crystalline stratlingite is quantified in X10B0 just after 3 days of hydration, 

but it is not detected until 28 days in X10B2 pastes. DTA and TG analysis for G10Bx, 

A10Bx and B10Bx pastes at different curing ages were also carried out. As an 

example, G10B2 has a higher degree of reaction at 365 hydration days with a higher 

overall weight loss (∼32 wt%) than the corresponding value for G10B0 (∼26 wt%). 

Therefore, X10B2 families showed lower amounts of FW at curing ages over 28 days, 

indicating higher degree of reaction. At latter ages, the analysis of the data indicates 

that the phase assemblage is slightly sensitive to the initial sulphate source. AFt, 

stratlingite, katoite and AFm contents between 120 and 365 days are very similar for 

G10B2 and A10B2. When comparing the results for G10B0 and A10B0, some (minor) 

differences are detected, for instance larger amounts of AFm in G10B0 than in A10B0 

were found. 

 A SEM-EDS study was performed in the X10B2 pastes to better characterise 

the chemical composition of each phase, especially for amorphous/ill-crystalline 

phases. This type of study helped to estimate the elemental composition (especially 

Si, Al and Fe) of new crystalline or amorphous phases with time of hydration, since 

this may affect the mechanical properties. SEM-EDS analyses of these hydrated 

pastes reveal that the chemical composition of amorphous phase(s) in G10B2 and 

B10B2 at 120 days is very similar, but slightly richer in silicon and iron in A10B2. The 

chemical composition evolution with time generates interesting information. Al/Ca 

vs. Si/Ca atomic ratios, for A10B2 paste at 7 and 120 days of hydration, show that 

particles without a defined shape, which may be amorphous phases, are rich in 

aluminium at 7 days, while they are enriched in silicon with time (120 days). The 

former is related to early hydration products (AFt and amorphous aluminium 

hydroxide) formed in these cements from the dissolution of ye'elimite and calcium 

sulphate; the latter, with the reactivity of belite. Moreover, hydration products which 

contain iron are difficult to be identified by LXRPD. The Al-Fe atomic ratio for A10B2 

pastes at different ages (7 and 120 days) was also studied. When analyzing particles 

with a needle shape, which are identified as ettringite, some amounts of iron were 

found. These results may indicate that iron is incorporating in AFt crystal structure, 

but more research is needed to confirm this item. In addition, A10B2 hydrated during 

7 days shows some small bright particles with a chemical composition similar to 

stratlingite. However these particles seem to have low crystallinity degree, and they 

were not detected by LXRPD at that hydration age, but the DTA thermograph of this 

sample showed a small shoulder at ∼170°C, which is related to stratlingite. 



Abstract 

 

11 

 

 Mechanical properties of standard mortars (from active and non-active 

cements) were prepared with a cement/sand/water ratio of 1/3/0.55. In order to use 

the minimum amount of sample (laboratory studies), moulds with dimensions of 30 x 

30 x 30 mm
3
 were used. To compare the results with those obtained using the 

moulds that fulfil the normative, a conversion factor is used, and the results are 

multiplied by 1.78. 

 The most important result is that all mortars prepared with the active BCSAF 

cement developed higher compressive strengths than non-active mortars, 

independently of the type and amount of sulphate source. In addition, by increasing 

the gypsum content from 5 to 10 wt%, the compressive strength increased in both 

systems. Furthermore, the addition of 15 wt% gypsum produced a slight decrease in 

the compressive strength, likely due to the slowdown of belite hydration rate. Within 

the non-active mortars, A10B0 presented the highest values. This behaviour may be 

explained/justified by the higher BET area value and the slightly higher stability of AFt 

present in that paste when compared to G10B0. Bassanite cement reacts very quickly 

with water showing a short setting time which leads to mortars with low degree of 

homogeneity. Due to this fact, the compressive strength values for B10B0 mortars 

were not measured. For B10B2, although the addition of a small amount of SP 

improved the workability of the mortar, the delay in the setting time was not enough 

to develop comparable mechanical strength values to gypsum and anhydrite mortars. 

 At 120 days, G10B2 mortar developed the highest mechanical strength value 

(68±1 MPa), even when the amount of ettringite in A-paste was slightly larger than 

that for G-paste. Therefore, we are forced to conclude that the amorphous contents 

are playing a key role for the strength development at late ages. Moreover, G10B2 

cement has the highest BET area value (1.8109 + 0.0241 m
2
/g) of all the studied 

cements and this may also justify this behaviour.  The reaction degree of α'H-C2S in 

G10B2 (74%) is slightly higher than that in A10B2 (65%), which could help in 

improving the mechanical strengths. The porosity of the three X10B2 cement pastes 

at 120 days of hydration was measured by mercury intrusion porosimetry (MIP), 

which could be extrapolated to the mortars. Bassanite-paste showed the highest 

percentage of porosity (16%), and the gypsum one showed the lowest value (10%); 

this behaviour also helps to justify the measured mechanical strengths. In conclusion, 

the optimum amount and type of sulphate source in these systems seems to be 

quite close to 10 wt% of gypsum, as higher mechanical strengths are obtained. 

 Finally, the expansion/shrinkage data of BCSAF mortars revealed the effect of 

gypsum content in dimensional stability of BCSAF mortars. The addition of 15 wt% of 

gypsum caused the highest expansion values for both systems. In addition, G5B2 and 

G10B2 mortars showed a length variation roughly from −0.01% to 0.04% within 180 

days. The effect of the sulphate source on dimensional stability was also studied. 
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Mortars prepared with anhydrite presented high expansion in early hydration ages, 

similar to that in CSA mortars. However, the B10B2 mortar showed very low 

expansion values, similar to mortars prepared with 5 wt% of gypsum, in agreement 

with the results obtained in the hydrating behaviour study, as bassanite is completely 

dissolved before the first 45 minutes of hydration and gypsum precipitates. 

Consequently, bassanite-mortars behave similar to those made with gypsum at very 

early ages. 

 Finally, I would say that I am a member of a working group which has a vast 

experience in anhydrous cements and clinkers characterisation by X-Ray powder 

diffraction combined with Rietveld methodology, and in the processing of (ceramic) 

materials. So, I would like to highlight my contribution in the scaled-up synthesis and 

characterisation of BCSAF clinkers and cement pastes, including the quantification 

and “chemical analysis” of ACn content, and the measurement of mechanical 

properties (compressive strength and length change) of the corresponding mortars. 
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 La amenaza del cambio climático es considerada como uno de los principales 

retos ambientales de nuestra sociedad, donde el dióxido de carbono (CO2) es uno de 

los principales gases de efecto invernadero. Las principales fuentes antropogénicas 

de CO2 son la combustión de combustibles fósiles, la deforestación, la insostenible 

combustión de la biomasa, y la descomposición de las fuentes de minerales tales 

como la caliza. 

 La fabricación del cemento se considera como una de las principales fuentes 

de emisiones de dióxido de carbono entre las actividades industriales. Cada tonelada 

de cemento Portland ordinario (OPC, del inglés Ordinary Portland Cement) produce 

alrededor de una tonelada de dióxido de carbono. En consecuencia, la producción del 

OPC representa el 5-7% de las emisiones globales de CO2 resultantes de la actividad 

humana, y el 4% del total del calentamiento global, haciendo que la industria del 

cemento sea un sector importante para las estrategias de mitigación de emisiones de 

CO2. El CO2 procede del proceso de calcinación de la piedra caliza, de la combustión 

de los combustibles en el horno, así como de la generación de energía. 

 Debido a estos problemas ambientales, la industria de los materiales de 

construcción se encuentra bajo una creciente presión para reducir la energía utilizada 

en la producción del clínker del cemento Portland y sobre todo de las emisiones 

asociadas a los gases de efecto invernadero (GHGs, del inglés Greenhouse Gases). Por 

lo tanto, el diseño de nuevas formulaciones de cementos, como los cementos 

basados en belita y/o ye'elimita, tienen muchas ventajas y prometen ser una solución 

viable. Una de las alternativas más interesantes son los llamados cementos belíticos 

de sulfoaluminato de calcio (BCSA, del inglés Belite Calcium Sulpho-Aluminate). 

 Los cementos BCSA se produjeron por primera vez de forma industrial en 

China bajo el nombre "Tercera Serie de Cementos" en la década de 1970, y se 

consideran cementos ecológicos por varias razones, entre ellas la baja cantidad de 

piedra caliza necesaria para lograr la composición deseada. La sustitución de alita 

(fase principal en el OPC) por belita reduce la demanda de caliza y la temperatura de 

fabricación del cemento, reduciendo así las emisiones de CO2 y el consumo de 

energía, manteniendo sus propiedades a largo plazo. Sin embargo, esta sustitución 

compromete el desarrollo de la resistencia a edades tempranas porque el C2S 

reacciona más lento que el C3S. Esto hace que el cemento con altos contenidos de C2S 

sea inutilizable en casi cualquier campo relacionado con aplicaciones estructurales. 

Sin embargo, esto se compensa parcialmente por la presencia de una fase de  

sulfoaluminato de calcio de reacción rápida (ye'elimite) en estos cementos BCSA. Así, 

estos cementos BCSA se forman a partir de clínkeres que contienen belita (C2S) como 

fase principal (de 40 a 50% en peso) y contenidos intermedios (de 20 a 30% en peso) 

de sulfoaluminato de calcio, también llamado sal de Klein o ye'elimita (C4A3S). Estos 

cementos, también conocidos como sulfobelíticos, son un tipo emergente de 
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cementos que contienen ye'elimita, con beneficios ambientales. La formulación más 

común de un clínker BCSA consiste en β-C2S, C4A3S ortorrómbica y C4AF. Debido a la 

presencia de esta última fase, estos cementos se llaman generalmente cementos 

BCSA ricos en hierro (BCSAF). Los cementos BCSAF también pueden contener fases 

minoritarias tales como aluminatos de calcio (C12A7 y CA), gehlenita (C2AS) y 

sulfosilicato de calcio (C5S2S). La temperatura de clínkerización de estos clínkeres está 

en torno a 1250-1300°C, ∼200°C más baja que la de producción del OPC. Esta 

temperatura de síntesis inferior no sólo reduce el consumo de energía y las 

emisiones de CO2 procedentes de la fabricación de cemento, sino que también da 

lugar a un clínker más friable (debido a la alta porosidad), lo que reduce la energía 

necesaria para la molienda (emisiones indirectas). Estos cementos también muestran 

un endurecimiento rápido, una excelente durabilidad, y, dependiendo de la cantidad 

de yeso añadida, una buena estabilidad de volumen. Las propiedades y aplicaciones 

de este tipo de cementos están fuertemente influenciadas por muchos factores: i) la 

composición química y mineralógica del clínker, ii) la fuente de sulfato (cantidad y 

tipo), iii) la relación agua/cemento; iv) la presencia de otros aglutinantes tales como 

materiales suplementarios (SCMs, del inglés Supplementary Cementitious Materials) 

o incluso OPC. 

 Las emisiones de dióxido de carbono en la industria del cemento se pueden 

clasificar en dos categorías principales: las que vienen de las materias primas y las de 

los procesos de operación. Las materias primas y los productos obtenidos durante el 

proceso de clínkerización se conocen bien. Por un lado, la producción de una 

tonelada de clínker OPC formado por un 65% en peso de C3S, 15% en peso de C2S, 

10% en peso de C3A y 10% en peso de C4AF, libera 0.54 toneladas de dióxido de 

carbono. Sin embargo una tonelada de clínker BCSAF compuesta por 50% en peso de 

C2S, 30% en peso de C4A3S, y 20% en peso de C4AF libera 0.39 toneladas de CO2. Esto 

implica una reducción de 0.15 toneladas de CO2 para el BCSAF debido a la 

descomposición de materia prima. Por otro lado, la reducción en las emisiones de 

CO2 procedentes de los procesos de operación está directamente relacionada con el 

tipo de equipo de procesamiento y el combustible específico elegido. La producción 

de cemento es un proceso de alta demanda energética, por lo que es importante 

tener en cuenta las emisiones procedentes del consumo de combustible necesario 

para alcanzar las altas temperaturas de clínkerización en el horno, y así cuantificar las 

emisiones de CO2. Diversos estudios estiman una emisión de ∼0.30 t de CO2 por 

tonelada de clínker producido, asumiendo una buena calidad del carbón bituminoso 

usado y teniendo en cuenta la eficiencia energética de los hornos modernos. La 

reducción en las emisiones de CO2 procedentes de la quema del combustible se 

puede lograr mediante la reducción de la temperatura de clínkerización. Este es el 

caso de la producción de clínker BCSAF donde la temperatura de operación se puede 

reducir en ∼200°C con una reducción asociada de hasta 0.04 t de CO2 por tonelada de 

clínker BCSAF producido. Por otra parte, las emisiones derivadas del consumo de 
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electricidad son aproximadamente 0.09 toneladas de CO2 por tonelada de OPC. Las 

temperaturas de cocción más bajas necesarias para la clínkerización del BCSAF hacen 

que sea más fácil a moler. Por lo tanto, la reducción en el consumo de electricidad 

produce un descenso de las emisiones de CO2 de hasta 0.02 toneladas. Teniendo en 

cuenta todas las emisiones en conjunto, la producción de una tonelada de clínker 

OPC libera un máximo de 0.97 toneladas de CO2; sin embargo, la producción de una 

tonelada de clínker BCSAF conduce a una reducción de ∼22%, dependiendo de la 

composición. 

 En los últimos años, los cementos BCSAF han surgido con el objetivo inicial de 

sustituir al OPC. Una prueba industrial, de ∼2500 toneladas de BCSAF, se llevó a cabo 

en 2011 por Lafarge en el marco del proyecto AETHER
TM

 (http://www.aether-

cement.eu/). La clínkerización se llevó a cabo en un horno de Portland industrial pero 

utilizando temperaturas menores (1225-1300°C), reduciendo las emisiones de CO2 en 

un 25-30% en comparación con el cemento OPC tipo CEM (I). La temperatura en la 

zona de clínkerización resultó ser un parámetro clave, ya que temperaturas 

demasiado altas podían provocar el bloqueo del horno, la pérdida de la capacidad de 

molienda y la descomposición del C4A3S con altas emisiones de SO2, y temperaturas 

demasiado bajas daba un ligante poco quemado con altos contenidos de cal libre y 

C12A7. La temperatura óptima de clínkerización resultó dar menores emisiones de 

NOx que los OPC, debido a la temperatura de combustión inferior, y emisiones de SO2 

del mismo nivel que para la producción de OPC. 

 Como se mencionó anteriormente, la principal desventaja tecnológica de 

estos cementos está relacionada con sus bajas resistencias mecánicas a edades  

tempranas, debido a la lenta hidratación de la belita. Sin embargo, este problema 

puede superarse mediante la activación de la belita y la presencia de altas cantidades 

de ye'elimita. La producción de cementos BCSAF activados implica la estabilización 

de los polimorfos de C2S altamente reactivos, es decir, la forma β-modificada y las 

formas α, ya que estas reaccionan más rápidamente con el agua. Los cementos 

BCSAF activados han sido patentados por Lafarge y contienen sal de Klein y formas 

α de la belita como fases principales. Esta última fue estabilizada debido a la adición 

de elementos minoritarios, como B2O3 y Na2O. Cementos BCSAF activados con 2% en 

peso de B2O3, añadido como bórax, han desarrollado resistencias a la compresión 

comparables a los OPC. 

 Por estas razones, los cementos BCSAF se consideran, hoy en día, como una 

de las alternativas más prometedoras a los OPC. Esto es apoyado por los beneficios 

ambientales (emisiones de CO2) y el interés industrial. Sin embargo, antes de ser 

implantados en Europa, deben de controlarse todos los pasos envueltos en el 

proceso, incluyendo la clínkerización (activación/composición y temperatura), la 

hidratación (comportamiento reológico y ensamblaje de fase), y las propiedades 
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finales (resistencias mecánicas y estabilidad dimensional). Esta tesis doctoral se 

centra en el estudio y optimización de estos parámetros para mejorar las 

propiedades finales de los morteros BCSAF. 

 Uno de los principales objetivos de esta tesis ha sido llevar a cabo la síntesis a 

"mediana escala" (para obtener ∼2 kg) de dos clínkeres BCSAF en nuestro laboratorio 

con una composición de fases esperada de 50% en peso de C2S, 30% en peso de 

C4A3S y 20% en peso de C4AF. Uno de los clínkeres fue "activado" mediante la adición 

de bórax, 2% en peso expresado como B2O3, a la mezcla de materia prima. El objetivo 

de la activación fue obtener clínkeres con diferentes polimorfos de la belita (β-C2S o 

α'H-C2S) y de la ye'elimita (ortorrómbica o pseudo-cúbica), para comprender el efecto 

del polimorfismo en el mecanismo de hidratación de las pastas y en las propiedades 

mecánicas de los morteros correspondientes. Estos clínkeres se llamaron como 

BCSAF_B0 (no activo) y BCSAF_B2 (activo), para el libre de boro y el que contiene 

boro, respectivamente. El proceso de óptimo de clínkerización fue el siguiente: 

calentamiento hasta 900°C manteniendo 30 min a esa temperatura, y calentamiento 

posterior hasta 1350°C manteniendo durante 30 min. El clínker resultante fue 

enfriado rápidamente mediante un flujo de aire forzado. Los dos clínkeres BCSAF 

obtenidos se caracterizaron a través LXRPD, incluyendo el análisis de disoluciones 

selectivas y microscopía electrónica de barrido (SEM-EDS). 

 El análisis cuantitativo de fases de los clínkeres BCSAF es una parte esencial 

de esta tesis necesaria para comprender mejor su comportamiento de hidratación y 

por tanto cómo sus propiedades mecánicas pueden modificarse para cualquier 

aplicación dada. La difracción de rayos X junto con el análisis de Rietveld es una 

metodología adecuada para obtener el análisis de fase cuantitativo de estos 

materiales en el laboratorio. La aplicación de RQPA para caracterizar 

clínkeres/cementos/pastas no es una tarea fácil debido a la presencia de fases 

amorfas y/o no cristalinas en las muestras. Por eso, la cuantificación de las fases 

amorfas es un tema muy importante para entender los mecanismos de hidratación. 

El ensamblaje final de fases obtenido por LXRPD y el método Rietveld para los dos 

clínkeres preparados en el laboratorio confirma que el clínker BCSAF_B0 contiene β-

C2S y ye'elimita (ortorrómbica y pseudo-cúbica) como fases principales, mientras que 

la α'H-C2S y la ye'elimita pseudo-cúbica se estabilizaron en el clínker BCSAF_B2. 

 La cuantificación del contenido amorfo (ACn, del inglés Amorphous and 

Crystalline non-quantified) también se llevo a cabo. Para ello, dos métodos se han 

utilizado en esta Tesis doctoral: i) el procedimiento del estándar externo (Factor G) 

con la geometría de reflexión; ii) el procedimiento del estándar interno (“spiking” 

método con ZnO) con la geometría de transmisión, utilizando radiaciones CuKα1,2. 

Varias conclusiones se han extraído del estudio comparativo usando los dos 

métodos: por un lado, el método del factor G permite la cuantificación tanto de fases 
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cristalinas como del ACn en estos materiales, siendo este último de ∼25% en peso en 

los clínkeres BCSAF. Por otro lado, la cantidad de ACn calculado mostró la misma 

tendencia independientemente de la metodología utilizada. 

  Además, una caracterización micro estructural de ambos clínkeres reveló que 

los tamaños medios de partícula para la ye'elimita (partículas con forma angular) y la 

belita (con típica forma redondeada) presentes en BCSAF_B0 eran ligeramente 

menores que en BCSAF_B2. Por otra parte, las partículas de ye'elimita en el clínker 

activado contienen pequeñas cantidades de Si, Fe y Na. 

 Otro objetivo importante de esta Tesis ha sido comprender la influencia del 

sulfato de calcio (tipo y cantidad) en la hidratación de los cementos BCSAF (activos y 

no activos). Para ello, ambos clínkeres se mezclaron con diferentes tipos y cantidades 

de fuentes de sulfato de calcio [yeso (G), anhidrita (A) y basanita (B)]. Los cementos 

preparados con yeso se van a nombrar a partir de ahora como GgBx, donde g 

representa 5, 10 o 15% en peso de yeso, y x será 0 o 2 (para el clínker no activo o 

activo, respectivamente). Los cementos preparados con diferentes fuentes de sulfato 

se nombrarán en lo sucesivo como G10Bx, A10Bx y B10Bx, para el 10% en peso de 

yeso, anhidrita o basanita, respectivamente. La basanita, CSH0.5, y anhidrita, CS, 

fueron sintetizadas previamente por calentamiento del yeso comercial. Se 

prepararon todas las pastas de cemento, con una relación agua/cemento = 0.55, 

mezclando ambos clínkeres (BCSAF_B0 y BCSAF_B2) con la fuente de sulfato 

correspondiente. Se llevaron a cabo dos estudios para comprender mejor el 

comportamiento de hidratación. Por un lado, un estudio in-situ para las primeras 

horas de hidratación, se llevó a cabo mediante SXRPD en la línea MSPD del sincrotrón 

ALBA (Barcelona, España). Por otra parte, se realizaron estudios ex-situ a edades 

posteriores de hidratación, para determinar la influencia de la cantidad y el tipo de 

sulfato de calcio añadido al cemento BCSAF a través de LXRPD (radiación CuKα1). 

Además, también se ha llevado a cabo un estudio comparativo radiaciones de MoKα1 

y sincrotrón para muestras hidratadas seleccionados. 

 El estudio in-situ, de los cementos GgBx, mostró importantes diferencias 

durante la hidratación, como la diferente cinética de disolución del yeso y la 

ye'elimita. Por ejemplo, en G10B0, el yeso se disolvió completamente después de 5 h 

de hidratación y la ye'elimita se disolvió a un ritmo mayor que en el cemento BCSAF 

activo. Sin embargo, en G10B2, el yeso se disolvió después de 11 h y la ye'elimita 

todavía estaba presente después de 51h de hidratación. Además, la velocidad de 

cristalización del AFt también es diferente en ambos cementos. A 1 h de hidratación, 

G10B0 contiene 14.2(2)% en peso de AFt mientras que para el G10B2 solamente se 

cuantificó 1.9(1)% en peso de AFt. El rápido consumo del sulfato debido a la 

precipitación de etringita cristalina en la pasta de G10B0 es responsable del mayor  

valor de pH, 12.4 + 0.1, en comparación con 10.3 + 0.1 para la pasta G10B2. La 
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segunda diferencia más importante entre ambos comportamientos de hidratación 

tiene lugar después de 1 día. Por un lado, en G10B0, la disolución de β-C2S y C4AF 

comienza después de 24 h, con la consiguiente cristalización de fases tipo AFm, tales 

como la stratlingita. Mientras que para G10B2, el porcentaje de α'H-C2S permanece 

constante hasta las 51 h de hidratación y el C4AF se disuelve muy lentamente a partir 

de las 14 h. La diferencia en la reactividad de ambos polimorfos de la belita está en 

desacuerdo con la idea general aceptada en el campo del cemento: las formas α de la 

belita presentan cinéticas de hidratación más rápidas que las formas  β. Aún así, bajo 

nuestras condiciones experimentales estudiadas, β-C2S reacciona más rápidamente 

que α'H-C2S, para producir stratlingita, y este comportamiento puede estar bien 

justificado con la formación de altas cantidades de etringita en las primeras horas lo 

que implica una gran cantidad de hidróxido de aluminio amorfo. La disponibilidad de 

AH3 amorfo promueve la precipitación de la stratlingita, C2ASH8, a partir de la 

reacción de la belita. En conclusión, el comportamiento de hidratación del C2S es más 

dependiente del ambiente químico que de su polimorfismo. 

 La influencia de la cantidad de yeso añadida en los cementos BCSAF a edades 

tardías de hidratación (>24h) también fue estudiado. Una de las principales 

conclusiones obtenidas en esta parte del estudio fue de nuevo el sorprendente 

comportamiento de la β-belita en el clínker no activo, ya que reaccionó a un ritmo 

más alto que la α'H-belita en BCSAF_B2, como se mencionó antes. Además, la 

ye'elimita reaccionó a un ritmo diferente para BCSAF_B0 y para BCSAF_B2. La forma 

ortorrómbica de la ye'elimita, en los cementos no activos, se disuelve por completo 

después de 3 días de hidratación, mientras que la ye'elimita pseudo-cúbica presente 

en GgB2 se disuelve ligeramente más lenta para el mismo contenido de yeso y la 

misma edad de hidratación. Este efecto también se observó anteriormente en el 

estudio de hidratación en las primeras horas. 

 Otra conclusión de este estudio fue que la cinética de reacción de la 

ye'elimita mostró una pequeña dependencia con la cantidad de yeso añadido, ya que 

la velocidad de hidratación aumentó ligeramente al aumentar el contenido de yeso. 

Este comportamiento parece un poco más marcado para la ye'elimita pseudo-cúbica. 

Por otro lado, el grado final de reacción de ambos polimorfos del silicato dicálcico se 

ve afectada por el incremento de yeso. Por un lado, la reactividad de β-C2S (dada por 

el grado de reacción, α) se mejoró al aumentar el contenido de yeso (α aumenta del 

65% al 75% mediante la adición de 5 a 15% en peso de yeso). Por otro lado, el grado 

de reacción de α'H-C2S se redujo de 62% a 42% para la adición de 5 a 15% en peso de 

yeso, respectivamente. Por último, la hidratación de la fase de ferrita está 

fuertemente retardada por el aumento del contenido de yeso en ambos cementos 

(GgB0 y GgB2). 
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 En todos los casos los principales compuestos cristalinos hidratados 

obtenidos fueron etringita, stratlingita y katoita. La cantidad de etringita cristalizada 

en los cementos GgB2 resultó más elevada que en los cementos GgB0, 

independientemente del contenido de yeso. Por otra parte, la cristalización de la 

stratlingita está fuertemente afectada por la cantidad de yeso añadido; de hecho, la 

cantidad de stratlingita disminuye al aumentar el contenido de yeso. 

 No sólo es importante poder cuantificar el contenido amorfo de estos 

materiales, sino también tratar de caracterizar y estimar su composición elemental y 

correlacionarla con el comportamiento de hidratación del cemento y sus propiedades 

mecánicas. No es posible determinar la composición química de ACn directamente 

por LXRPD, pero se ha llevado a cabo un intento mediante RQPA y la metodología de 

Rietveld combinado con el factor G para descubrir la posible composición de la ACn 

(grupos sulfatos, silicatos, aluminatos y grupos que contienen hierro). Para este fin, 

se ha estudiado la evolución de los diferentes grupos de iones con el tiempo. Puesto 

que la cantidad de sulfatos cristalizadas en GxB2 fue mayor que en las pastas de 

GxB0, esto significaba que una mayor cantidad de grupos sulfatos se disolvieron, 

pero no cristalizaron en la última; entonces, se incorporaron principalmente en la 

fase (s) ACn y/o en los poros de las pastas de cemento GxB0. La cantidad de silicatos 

cristalizados fue mayor en GxB0 que en GxB2, donde se encontraron mayores 

cantidades de stratlingita. Por lo tanto, una mayor cantidad de silicatos hidratado 

permanecen en la fase amorfa (s) para las pastas de cementos GxB2. La cantidad de 

fases que contienen aluminio cristalizadas en GgB0 fue mayor que en las pastas de 

cemento GgB2, igualando en algunos casos el máximo, mientras que más del 30% en 

peso del contenido de aluminato permaneció en la fase de ACn (s) para pastas GgB2, 

y/o en menor medida en los poros. 

 Un estudio de hidratación de cementos BCSAF con diferentes fuentes de 

sulfato de calcio [yeso (G), basanita (B) y anhidrita (A)] también se ha llevado a cabo. 

En primer lugar, un estudio in-situ con SXRPD, se realizó para determinar el papel del 

tipo de sulfato de calcio (con 10% en peso) en las primeras horas de hidratación. Se 

determinó el grado de reacción de la ye'elimita y la etringita en G10B2, A10B2 y 

B10B2 a edades tempranas. Los resultados directos de RQPA se normalizaron 

teniendo en cuenta los datos teóricos de la muestra a 0.0 h de hidratación. 

Comparando los resultados teóricos con los datos RQPA directos, se puede concluir 

que, para la muestra G10B2, el proceso de cristalización del AFt es paralelo a la 

disolución de la ye'elimita, y la disolución de yeso es muy rápida. Además, G10B2 

presentó un período de inducción cercano a 6 h, a partir del cual la disolución y 

cristalización de las fases se vuelven significativas. Para A10B2, los resultados RQPA 

mostraron que la cinética de disolución de la anhidrita es mucho más lenta que la del 

yeso o la basanita, como se esperaba. Para A10B2, la precipitación de la etringita está 

limitada por la disolución de la CS, que empieza a ser significativo a partir de 7 h. 
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Usando estos resultados podemos afirmar que la reactividad prevista de la ye'elimita 

con agua para formar AFm como principal fase hidratada no ha tenido lugar dentro 

de las primeras 6 h de hidratación. Nuestros resultados muestran que la disolución 

de la ye'elimita da etringita a pesar del hecho de que la anhidrita no se disuelve hasta 

6 h. También se analizó la pasta B10B2. Debido a los requisitos experimentales 

(relleno de la muestra en los capilares, alineación,…), no fue posible medir los 

primeros ∼40 min de hidratación. Debido a que la disolución de la basanita y la 

precipitación de yeso son procesos muy rápidos, la basanita está casi ausente y el 

yeso se ha cristalizado justo después de 1 h de hidratación. Las reacciones de 

hidratación posteriores son similares a las ya descritos para los cementos con yeso. 

La rápida disolución de la basanita con la precipitación de yeso, así como la lenta 

velocidad de disolución de la anhidrita fue cuantificada, confirmando la exactitud de 

la metodología utilizada. 

 Debido a que la basanita en contacto con agua sufre un rápido deterioro de 

grano (ataque intergranular) se produce un aumento del área superficial de la fuente 

de sulfato,  y como consecuencia, una alta demanda de agua (y una alta viscosidad). 

Además, la precipitación de yeso primario también afectará al comportamiento 

reológico de la pasta. Por lo tanto, ambos parámetros, la alta demanda de agua y la 

precipitación de yeso aumentan la viscosidad de las pastas con basanita. Dado que 

nuestro objetivo es estudiar el efecto de la fuente de sulfato de calcio (incluyendo 

resistencias a compresión de los correspondientes morteros) es necesario tener 

similares comportamientos reológicos, y, en particular, similares valores de 

viscosidad a edades muy tempranas de hidratación. En este caso una pequeña 

cantidad de un superplastificante comercial (SP), basado en policarboxilato, (0,05% 

en peso de materia activa, referida al total de contenido de sólidos), se añadió al 

agua para preparar pastas que contienen basanita. Se observó una disminución 

considerable de la viscosidad y un comportamiento reológico similar a los preparados 

con yeso o anhidrita. Las principales conclusiones obtenidas de este estudio de 

hidratación a edades más tardías se encuentran a continuación. 

 En todos los casos, la fuente de sulfato se consumió antes de los 3 días de 

hidratación para formar etringita como principal fase cristalina hidratada. AFm y 

stratlingita también se encontraron en todas las pastas estudiadas pero en 

cantidades variables. Independientemente de la fuente de sulfato, la ettringita 

parece ser más estable en los cementos activos (X10B2), los cuales contienen α'H-C2S 

y ye'elimita pseudo-cúbica, y además es casi se mantiene casi constante con el 

tiempo de hidratación. Por otro lado, el contenido de AFt disminuye con el tiempo en 

los cementos X10B0 para dar AFm. En consecuencia, a altas edades la cantidad de 

AFt es mucho mayor en X10B2, lo que probablemente sea responsable de las 

mejores propiedades mecánicas encontradas en esta familia, en comparación con los 

datos obtenidos para X10B0. Centrándose en la reactividad de la belita, β-C2S 
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(presente en X10B0) se disuelve más rápido que α'H-C2S (presente en X10B2) durante 

los primeros 28 días, independientemente de la fuente de sulfato, como se ha 

descrito anteriormente. Por otra parte, se cuantifica stratlingita cristalina en X10B0 

justo después de 3 días de hidratación, pero no se detecta hasta los 28 días en las 

pastas de X10B2. Los análisis térmicos (DTA y TG) para las pastas G10Bx, A10Bx y 

B10Bx a diferentes edades de hidratación también se llevaron a cabo. A modo de 

ejemplo, G10B2 presenta un mayor grado de reacción a 365 días de hidratación con 

una mayor pérdida de peso global (∼32% en peso) comparado con el valor 

correspondiente para G10B0 (∼26% en peso). Por lo tanto, las familias X10B2 

mostraron menores cantidades de agua libre (FW, del inglés Free Water) a edades 

por encima de 28 días, lo que indica un mayor grado de reacción. El análisis de los 

datos, a altas edades, indica que el ensamblaje de fase es poco sensible a la fuente 

de sulfato inicial. Los contenidos de AFt, stratlingita, katoita y AFm, entre 120 y 365 

días son muy similares para G10B2 y A10B2. Comparando los resultados para G10B0 

y A10B0, se detectan algunas diferencias (menores), por ejemplo, se encontraron 

mayores cantidades de AFm en G10B0 que en A10B0. 

 Un estudio SEM-EDS se realizó en las pastas X10B2 para caracterizar mejor la 

composición química de cada fase, especialmente para las fases amorfas/mal 

cristalizadas. Este tipo de estudio ayuda a estimar la composición elemental 

(especialmente para los átomos de Si, Al y Fe) de las nuevas fases cristalinas o 

amorfas que aparecen con el tiempo de hidratación, y que pueden afectar a las 

propiedades mecánicas. Los análisis de estas pastas hidratadas revelaron que la 

composición química de la fase amorfa(s) en G10B2 y B10B2 a los 120 días era muy 

similar, pero ligeramente más rica en silicio y hierro en A10B2. La evolución de la 

composición química con el tiempo puede generar información interesante. La 

representación de las relaciones atómicas, Al/Ca vs. Si/Ca, para la pasta A10B2 a 7 y 

120 días de hidratación, muestra que partículas sin una forma definida, que podrían 

ser fases amorfas, son ricas en aluminio a 7 días, mientras que se enriquecen en 

silicio con el tiempo (120 días). El primer resultado está relacionado con los primeros 

productos de hidratación (AFt e hidróxido de aluminio amorfo) formados a partir de 

la disolución de la ye'elimita y el sulfato de calcio; el segundo con la reactividad de la 

belita. Por otro lado, los productos de hidratación que contienen hierro son difíciles 

de identificar por LXRPD. La relación atómica Al/Ca vs. Fe/Ca para la pasta A10B2 a 

diferentes edades (7 y 120 días) fue también estudiada. Analizando partículas con 

forma de aguja, que se identificaron como etringita, se encontró pequeñas 

cantidades de hierro. Estos resultados podrían indicar que el hierro se incorpora en la 

estructura cristalina de la ettringita, pero se necesita más investigación para poder 

confirmar este hecho. Además, a 7 días la muestra presenta algunas pequeñas 

partículas brillantes con una composición química similar a la de la stratlingita. Sin 

embargo, estas partículas parecen tener un bajo grado de cristalinidad, por lo que no 

fueron detectadas por LXRPD a esa edad de hidratación, pero mediante el análisis 
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térmico, el ATD de esta muestra mostró un pequeño hombro a ∼170°C, que está 

relacionado con la stratlingita. 

 Las propiedades mecánicas de morteros estándar (de cementos activados y 

no activados) se prepararon con una relación cemento/arena/agua de 1/3/0.55. Para 

utilizar la mínima cantidad de muestra (estudios de laboratorio), se utilizaron moldes 

con dimensiones de 30 x 30 x 30 mm
3
. Para comparar los resultados con los 

obtenidos utilizando los moldes que cumplen la normativa, se utilizó un factor de 

conversión, y los resultados se multiplicaron por 1.78. 

 El resultado más importante es que todos los morteros preparados con el 

cemento BCSAF activado desarrollaron mayores resistencias a la compresión que los 

morteros no activados, independientemente del tipo y la cantidad de fuente de 

sulfato usado. Además, aumentando el contenido de yeso de 5 a 10% en peso, la 

resistencia aumentó en ambos sistemas. La adición de 15% en peso de yeso produce 

una ligera disminución en la resistencia a la compresión, probablemente debido a la 

disminución de la velocidad de hidratación de la belita. Dentro de los morteros 

preparados con los cementos no activados, el A10B0 presentó los valores más altos. 

Este comportamiento puede explicarse/justificarse debido a su mayor valor de área 

específica y la mayor estabilidad del AFt presente en esa pasta en comparación con 

G10B0. Los cementos con basanita reaccionan muy rápidamente con el agua 

mostrando un tiempo de fraguado corto, esto conduce a morteros con bajo grado de 

homogeneidad. Debido a este hecho, no se midieron los valores de resistencia de los 

morteros B10B0. Para B10B2, aunque la adición de una pequeña cantidad de SP 

mejora la trabajabilidad del mortero, el retraso en el tiempo de fraguado no es 

suficiente para desarrollar valores de resistencia comparables con los morteros de 

yeso y de anhidrita. 

 A los 120 días, el mortero G10B2 desarrolló el valor de resistencia mecánica 

más alta (68 ± 1 MPa), incluso cuando la cantidad de etringita en la pasta con 

anhidrita era ligeramente mayor que en la pasta con yeso. Este comportamiento nos 

obliga a concluir que el contenido amorfo está jugando un papel clave para el 

desarrollo de las resistencias a edades más tardías. Además, el cemento G10B2, 

presentó el mayor valor de área específica (1.8109 + 0.0241 m
2
/g) de todos los 

cementos estudiados y esto también puede justificar los resultados obtenidos. El 

grado de reacción de la α'H-C2S en G10B2 (74%) es ligeramente mayor que en A10B2 

(65%), que podría ayudar en la mejora de las resistencias mecánicas. La porosidad de 

las tres pastas de cemento activado (X10B2) a 120 días de hidratación medidas 

mediante porosimetría de intrusión de mercurio (MIP, del inglés Mercury Intrusion 

Porosimetry), se pueden extrapolar a los morteros. La pasta con basanita mostró el 

mayor porcentaje de porosidad (16%), y la de yeso el valor más bajo (10%); este 

comportamiento ayuda a justificar las resistencias mecánicas medidas. En conclusión, 
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podemos decir que la cantidad y el tipo de sulfato óptimos en estos sistemas parece 

estar cercanos al 10% en peso de yeso, ya que es con los que se obtienen resistencias 

mecánicas más altas. 

 Finalmente, también se midió la expansión/contracción de los morteros 

BCSAF a diferentes edades de hidratación. El primer resultado revelado de este 

estudio ha sido el efecto del contenido de yeso en la estabilidad dimensional de los 

morteros BCSAF. La adición de 15% en peso de yeso dio los valores de expansión más 

altos para ambos sistemas. Los morteros G5B2 y G10B2 mostraron una variación de 

longitud de entre -0.01% y 0.04% en el plazo de 180 días. En segundo lugar, también 

se estudió el efecto de la fuente de sulfato en la estabilidad dimensional. Los 

morteros preparados con anhidrita presentaron los valores más altos de expansión a 

edades tempranas, de forma similar a los morteros de sulfoaluminato de calcio (CSA, 

del inglés Calcium Sulpho-Aluminate). Sin embargo, el mortero B10B2 mostró valores 

de expansión muy bajos, similares a los morteros preparados con un 5% en peso de 

yeso, de acuerdo con los resultados obtenidos en el estudio de hidratación, en el que 

la basanita se disuelve completamente antes de los primeros 45 minutos de 

hidratación para dar la precipitación de yeso. En consecuencia, los morteros con 

basanita se comportan de manera similar a los realizados con yeso a edades muy 

tempranas. 

 Por último, me gustaría resaltar que pertenezco a un grupo de trabajo que 

tiene una amplia experiencia en la caracterización de clínkeres y cementos anhidros 

por difracción de polvo de rayos X combinada con la metodología Rietveld, y en el 

procesamiento de materiales (cerámicos). En este punto me gustaría destacar mi 

contribución en la síntesis (a mayor escala) y la caracterización de clínkeres BCSAF y 

pastas de cemento, incluyendo la cuantificación del contenido ACn, y la medida de 

las propiedades mecánicas (resistencia a la compresión y cambio longitudinal) de los 

correspondientes morteros preparados. 
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1.1. CLIMATE CHANGE. INDUSTRIAL CO2 EMISSIONS. 

 It is world widely accepted that global warming is indeed the major 
environmental and economic threat in our time. Mahlia (2002) and Zhang et al. 
(2012) confirmed that global warming is mainly caused by the emissions of GHGs 
connected to human activities which will result in catastrophic consequences if it is 
not controlled or mitigated. Progressive emissions of GHGs related to rapid industrial 
extension and dramatic increase of public and individual transportation have reached 
to an alarming level and are expected to be enlarged even at a faster rate. 

 Carbon dioxide is the most important and abundant GHG, where almost 61% 
of global CO2 emissions are caused by industrial activities (electricity, heat generation 
and other industries) (IEA statistics, 2010) showing the significant impact of such 
processes on climate change. Although the urgent request for energy and emissions 
reduction is globally admitted, global industrial GHGs emissions are being rapidly 
increased and it is expected to be 14 Gt CO2 by 2030 (Walsh and Thornley, 2012). 
Thus finding approaches to mitigate CO2 emissions is the priority of many studies 
focused on reducing the threat of climate change. 

 Cement manufacturing has been always ranked in the list of the main sources 
of carbon dioxide emissions among industrial activities. The process emits around 0.9 
tons of CO2 per ton of cement produced (Hasanbeigi et al., 2010) which constitutes 
approximately 5-7% of the global anthropogenic carbon dioxide emissions (Chen et 
al., 2010). In this process carbon dioxide is mainly generated by two sources: 1) 
Combustion of huge amounts of mainly fossil fuels; 2) Decomposition of CaCO3 to 
CaO and CO2 as initial chemical reaction (Benhelal et al., 2012). 

 Portland cement concrete is the most used manufactured material in the 
world, and it is made primarily from water, mineral aggregates, and OPC. Nowadays 
annual worldwide Portland cement production is approaching 4 Gt (U.S. Geological 
Survey, 2014). Figure 1.1 shows the OPC production in the period 2001-2013. 
(www.cembureau.be). Due to the expected growth in population and global demand 
for concrete as the major material for construction, cement production is also 
anticipated to be annually enhanced by 0.8-1.2%, reaching 3.7-4.4 billion tons in 
2050 (IDB, 2010). As a consequence of such significant growth in cement production, 
CO2 emissions will be sharply risen up. In addition, small quantities of solid particles, 
SO2, NOx, CO, and in less percentage, chlorides, organic compounds and heavy metals 
are also emitted. 
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Figure 1.1. World cement production evolution (million tonnes) by region. 

  

 Due to these environmental problems, the industry of building materials is 
under increasing pressure to reduce the energy used in production of Portland 
cement clinker and mainly the associated with GHGs emissions. Moreover, Portland 
cement is not the ideal binder for all construction applications, as it suffers durability 
problems in particularly aggressive environments. Several studies have been carried 
out and there is a growing interest in the development, characterisation, and 
implementation of alternatives to Portland cements. 

 The design of new formulations of cements, such as belite or/and ye'elimite 
based cements, has some advantages and promise to be viable solutions. This will be 
explained below. 
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1.2. BELITE CEMENTS.  

 Belite cements contain, as main phase, belite (C2S) in ∼60 wt%, and, alite 
(C3S), tricalcium aluminate (C3A) and ferrite (C4AF) as minor phases (Chatterjee, 
2002). Belite based cements have a theoretical formation heat of ∼150 kJ/kg lower 
than that for OPC (Stark et al., 1981). Moreover, raw materials with lower lime 
content can be used. Thus it helps to reduce CO2 emissions from the decomposition 
of CaCO3. In particular, approximately 0.50 t of CO2 are released in the production of 
a ton of belite Portland cement. This means a reduction in carbon dioxide emissions 
of ∼7% when compared to OPC (∼0.97 tons of CO2). Moreover, it is possible obtaining 
belite clinker at lower temperature by the additions of mineralisers (as NaF and 
Fe2O3) that contribute to the improvement of the clinker properties (Kacimi et al., 
2009). This reduction in the synthesis temperature leads to additional diminutions of 
CO2 emissions from fuel oxidation and lower heat loss in the kiln during cooling 
(Locher, 1986). In addition, belite cements give more durable concretes than OPC 
due to the lower alkalinity of the pastes. However, they are more difficult to grind 
and their hydration kinetic is slower.  

 

1.3. YE'ELIMITE-CONTAINING CEMENTS. 

 Commercial ye'elimite-containing cements have been manufactured and 
used at large scale in China since 1970s (Zhang et al., 1999). These binders may have 
quite variable compositions, but all of them contain ye'elimite, also called Klein’s salt, 
calcium sulphoaluminate or tetracalcium trialuminate sulphate (C4A3S) (Odler, 2000). 
The properties and applications of this type of binder are strongly influenced by 
many factors: i) chemical and mineralogical composition of the cement; ii) sulphate 
source (amount and type); iii) water to cement ratio (w/c); or iv) blending with other 
binders, for instance, OPC. Some special applications of ye'elimite-containing 
cements are: high strength developments at early-ages to be used in precast 
concrete and at moderate curing temperatures (Quillin, 2001; Glasser and Zhang, 
2001), self-stressing materials (Péra and Ambroise, 2004; Georgin et al., 2008), 
expansive properties for shrinkage compensating concrete (Klein, 1963; Chen et al., 
2012) or for radioactive element encapsulation in high-density cement pastes (Zhou 
et al., 2006; Cau Dit Coumes et al., 2009; Sun et al., 2011).  

 The interest in ye'elimite-containing cements is increasing as are eco-friendly 
materials because their manufacture process releases less CO2 into atmosphere than 
ordinary Portland cement (Sharp et al., 1999; Gartner, 2004; Barcelo et al., 2014). 
This reduction depends on the composition, but it can release up to 40% less CO2 
emissions. This is described below. 
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1.3.1. Classification. 

 Although ye'elimite-containing cements are very promising, their use is 
limited in Europe by the few standards concerning special cements derived from non-
Portland clinkers. At the present state of European standard regulations, binders 
based on ye'elimite-containing cements cannot be used in structural concrete 
according to the EN 206–1; only three formulations of CSA cements, produced by 
Buzzi Unicemin Trino (Italy), obtained in June 2013 a CE mark based on an ETA 
procedure, released by DIBt, allowing their use for structural applications (Paul et al., 
2015). 

 There are very wide ranges of phase assemblages in ye'elimite-containing 
cements (Zhang et al., 1999; Quillin, 2001). These eco-cements can be classified 
according to the content of their main crystalline phase. Aranda and De la Torre 
(2013) unified the terminology used for these cements, and gathered them in three 
mains groups: 

 i) CSA: CSA cements are prepared from clinkers containing a high amount of 
C4A3S (50-80 wt%) (Sahu and Majling, 1993; Zhang et al., 1999; Older, 2000; Glasser 
and Zhang, 2001). These clinkers may also have minor phases such as C2S, CT, C4AF, 
CS and others. The calcium sulphate addition is very important as it may strongly 
affect the properties of the resulting binder (Winnefeld and Barlag, 2010; Marchi and 
Costa, 2011; Berger et al., 2011a; Chen et al., 2012; Bizzozero et al., 2014; García-
Maté et al., 2015a). Due to the high amount of expensive aluminium source needed 
in their productions, CSA clinkers cannot replace OPC in massive constructions. 
Therefore, CSA clinkers can be prepared or partially substituted by different 
industrial by-products or waste materials as source of aluminium, calcium and silica 
(Viani and Gualtieri, 2013; García-Maté et al., 2013; Shen et al., 2014) to reduce cost 
but maintaining their performances. CSA clinkers show a reduction of ∼37% of the 
CO2 emission footprint when compared to OPC. 

 ii) BCSA: this term is reserved to the cements arising from clinkers containing 
C2S as main phase (40-50 wt%) and intermediate C4A3S contents (20-30 wt%). These 
cements, also known as sulphobelite are a new emerging type of ye'elimite-
containing cements due to their environmental benefits. The most common 
formulation of BCSA clinkers consists on β-C2S, C4A3S and C4AF (Janotka and Krajci, 
1999; Janotka et al., 2007; Adolfsson et al., 2007). These cements are called BCSAF. 
The clinkering temperature of these clinkers is 1250-1300°C, ∼200°C lower than that 
for OPC. In addition, BCSAF clinkers are porous, because of that can be easily ground. 
These cements also show a rapid hardening, excellent durability, self-stressing and 
volume stability, depending on the amount of gypsum added (Pera and Ambroise, 
2004). These cements are being studied with the final aim of replacing OPC as the 
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aluminium demand is much smaller when compared to that of CSA. In addition, the 
production of BCSAF clinker shows a relative reduction of ∼22% of the CO2 footprint 
when compared to OPC manufacturing. 

 Other type of BCSA cements are the BCSAA. They have C2S, C4A3S, C12A7 and 
CA as main phases (Martín-Sedeño et al., 2010) and they are prepared in order to 
further enhance mechanical strengths at very early ages. Nevertheless, the clinkering 
temperature should be increased (around ∼100°C higher than that of BCSAF) and 
moreover, higher amounts of expensive bauxite (or another aluminium-rich source) 
are needed. Recently, a new formulation of BCSA cement which contains alite jointly 
with ye'elimite has been published (Liu et al., 2013). These cements are known as 
BACSA cements. Their manufacture may produce 15% less CO2 than OPC. The 
reaction of alite and ye'elimite with water will develop cements with higher 
mechanical strengths at early ages, while belite will contribute to later values (Liu 
and Li, 2005; Lili et al., 2009; Liu et al., 2002; 2009; 2013). BACSA cements may 
contain ∼40 wt% of belite, ∼20 wt% of ye'elimite and ∼20 wt% of alite. BACSA would 
overcome the problems of BCSA cements since the basicity of the pastes should be 
higher due to the presence of alite, and therefore, the pozzolanic effect with fly ash 
or slag will be promoted. 

 iii) ACSA: ACSA cements are characterized by the simultaneous presence of 
C3S and C4A3S phases. In this special case, ye'elimite phase content may be even 
higher than that of alite (Li et al., 2007b). Other phases which may appear in these 
clinkers, in smaller amounts, are C2S, C4AF and C3A (Abdul-Maula and Odler, 1992; 
Odler and Zhang, 1996; Zhang and Odler, 1996). However, there are inherent 
difficulties in the production of this type of clinker due to the differences between 
the optimum formation temperatures of the main phases. On the one hand, alite 
formation is favoured by the presence of melted phases (De la Torre et al., 2007) and 
at least a temperature of 1350°C is required. On the other hand, decomposition or 
melting of ye'elimite takes place above 1350°C (De la Torre et al., 2011a, b). 
However, the addition of minor quantities of fluorite (Ma et al., 2006) and other 
minor elements such as Mg (Liu and Li, 2005), Cu (Ma et al., 2006), Mn (Lili et al., 
2009), Ti (Liu et al., 2009) or Zn (Pérez-Bravo et al., 2014) to raw materials will yield 
to the coexistence of these two phases by using clinkering temperatures of ∼1300°C. 
Recently, a new (different) strategy to produce cements with alite and ye'elimite has 
been published (Ma et al., 2013), which consists on a two-step clinkering cycle, one 
to form alite at 1450°C and a second one to re-crystallise ye'elimite at 1250°C. 

1.3.2. Commercial ye'elimite-containing cements. 

 Nowadays, there are some commercial ye'elimite-containing 
clinkers/cements being marketed and used for special applications in Europe, e.g. 
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S.A. Cement from Buzzi-Unicem, ALIPRE® 2009 from Italcementi Group, or CSA 
cement (model number 62.5, 72.5, 82.5, 92.5) from Tangshan Polar Bear Building 
Materials, China, among others. 

 An industrial trial of low energy belite-based cements was reported by 
Popescu et al. (2003), highlighting environmental profits of belite-rich materials and 
even concluded that these cements developed higher mechanical strengths than OPC 
at very large hydration ages (after 90 days). However, mechanical strengths at early 
ages resulted much lower than those of a typical OPC due to the low C4A3S content 
(∼12 wt%). 

 In the last few years, BCSAF cements have emerged with the initial aim to 
substitute OPC. An industrial trial, ∼2500 tons of BCSAF, was carried out in 2011 by 
Lafarge under the AETHERTM project (http://www.aether-cement.eu/) (Walenta and 
Comparet, 2011). Clinkering was performed in a Portland industrial kiln but using 
lower operating temperatures (1225-1300°C), reducing CO2 emissions by 25-30% in 
comparison with CEM (I) type OPC cement. The temperature in the clinkering zone 
resulted to be a key parameter, as too high temperatures may give kiln blockage, loss 
of grindability and C4A3S decomposition with high SO2 emissions, and too low 
temperatures gave under burnt binder with high free lime and C12A7 contents. The 
optimum clinkering temperature resulted much lower in NOx emissions than those 
for OPC, due to the lower burning temperature, and SO2 emissions resulted at the 
same level than for OPC production. 

 The main technological disadvantage of these cements is related to their low 
mechanical strengths developed at very-early ages due to the slow hydration of 
belite. However, this problem is being overcome by the activation of belite and the 
presence of high amounts of ye'elimite (Gartner and Li, 2006; Cuberos et al., 2010; 
Morin et al., 2011). The production of aBCSAF cements involves the stabilization of 
highly reactive C2S polymorphs, i.e. β-modified form and α-forms, as they react faster 
with water. aBCSAF cements have been patented by Lafarge (Gartner and Li, 2006; 
Morin et al., 2011). They show ∼20-30 wt% of Klein’s salt and α-forms of belite, the 
latter due to addition of minor elements, such as B2O3 and Na2O. These minor 
elements promoted the stabilisation of α'-forms of belite and the distortion of β-
form. aBCSAF with 2.0 wt% of B2O3, added as borax, developed comparable 
compressive strengths to those of OPC. The role of belite polymorphs is explained in 
detail in section 1.4.3. This material developed mechanical strengths of 25 MPa at 
one hydration day and the strengths were even better than those developed by type 
I 52.5 OPC after 7 days (Walenta and Comparet, 2011).  
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1.4. BELITE CALCIUM SULPHOALUMINATE CEMENTS (BCSA). 

 Belite calcium sulphoaluminate cements are environmentally friendly 
cements for several reasons, including the low amount of limestone required to 
achieve the desired composition. Table 1.1 shows the lime contents of the main 
phases present in BCSAF clinkers and C3S, present in OPC. C3S shows the highest lime 
amount and requires the highest formation temperature. The substitution of alite by 
belite reduces the limestone demand and temperature of cement manufacturing, 
thereby reducing CO2 emissions and energy consumption while maintaining satisfying 
long-term properties. However, that substitution compromises the early-age 
strength development because C2S reacts slower than C3S. This renders the high-C2S 
cement unusable in nearly any field related to structural applications. However, this 
is partially compensated by the presence of a fast reacting calcium sulphoaluminate 
phase (ye'elimite) in these BCSA cements (Mehta, 1980). This phase, that was 
described by Alexander Klein in 1963 as an additive to Portland cement to make 
expansive cements, has the lowest lime content of any of the cement phases 
reported in Table 1.1. 

Table 1.1. Lime content for different cement phases (Mehta, 1980). 

Cement Phase Lime Content (wt%) 

C2S 65.1 

C4A3S 36.7 

C4AF 46.2 

C3S 73.7 

 

 Raw meal formulations for BCSA clinkers have been discussed extensively in 
the literature (Gartner and Li, 2006; Idrissi et al., 2010, 2012; Martín-Sedeño et al., 
2010; Cuberos et al., 2010). However, due to environmental and cost concerns, BCSA 
cements are mostly produced by combining natural and industrial waste materials to 
provide the necessary CaO, SiO2, Al2O3 and SO3 amounts required for each phase 
formation. The addition of waste materials in the raw mixtures to produce BCSA 
clinkers also has been investigated (Arjunan et al., 1999; Katsioti et al., 2006; Phair, 
2006; Seluck et al., 2010; Yang et al., 2013; Ma et al., 2014a). For example, Yang et al. 
(2013) studied the use of the phosphate fertilizer industry waste products as raw 
materials to prepare BCSAF cements with similar performances to those obtained by 
using common grade raw materials. This material is not only an iron source but also 
supplies silicon, aluminium and sulphur to reduce burning temperature. 
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 Other authors (Strigac et al., 2000) studied the composition of ferrite phase 
in BCSA cement and showed that this phase formed a solid solution and 
accommodated some SiO2. It is also known that the actual composition of the ferrite 
phase solid solution can range from C4AF to C6AF2. C4A3S accommodated some SiO2 
and up to 2% of Fe2O3. C2S can accommodate minor elements such as sulphur or 
alkaline (Ghosh et al., 1979) and on the other hand, CS forms more homogenous 
compositions with minor substitute ions.  

 In the last decade, the research in the preparation of BCSAF clinkers has 
increased (De la Torre et al., 2011a, b; Chen et al., 2011). A recent study (Bullerjahn 
et al., 2014) proved that iron-rich BCSA contains ye'elimite with significant amounts 
of iron stabilizing the cubic form and enhancing its hydration rates. Moreover, they 
stated that ternesite (C5S2S) was formed under certain clinkering conditions and it 
was found to be hydraulically active. In addition, stoichiometric C4A3S is 
orthorhombic at room temperature (RT) (Calos et al., 1995; Cuesta et al., 2013). 
However, it can form solid solution with Na+, B3+, Si4+ and/or Fe3+, among other 
elements, to restore the pseudo-cubic symmetry (Saalfeld and Depmeier, 1972; 
Cuesta et al., 2014c). 

 Sokol et al. (2014) have recently reported natural ye'elimite-larnite rocks 
found in the Hatrurim formation of Negev Desert, Israel, which mineralogical 
compositions are similar to BCSA clinkers. Their mineralogy consists on 35-50 wt% β-
C2S, 15-20 wt% C4A3S, 7-15 wt% ferrites, and 15–20 wt% fluorapatite and/or 
fluorellestadite. This study concludes that chalky and/or marly sediments with 
randomly distributed clay, phosphorite, and gypsum may be used as cheap naturally 
homogenised and pulverised mixtures for industrial production of BCSA cement 
clinkers. 

1.4.1. Reduction of CO2 emissions.  

 Carbon dioxide emissions in the cement industry can be classified in two 
main categories: those coming from raw materials and those from the operation 
processes. Figure 1.2 depicts in detail the CO2 emissions released during the 
manufacturing of both a typical BCSAF clinker (50 wt% of C2S, 30 wt% of C4A3S, and 
20 wt% C4AF) and OPC (65 wt% of C3S, 15 wt% of C2S, 10 wt% of C3A and 10 wt% of 
C4AF). Considering all emissions together, the production of one ton of OPC clinker 
releases a maximum of 0.97 t of CO2; however the production of one ton of BCSAF 
clinker leads to a reduction of ∼22%, which will depend on the composition. 

 On the one hand, the generation of CO2 from decarbonation of raw materials 
for different minerals was calculated by Gartner (2004). For example, RMCO2 values 
for C4A3S, C2S and C4AF resulted to be 0.216, 0.511 and 0.362, respectively. However, 
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the value for C3S (major phase of OPC), is much higher, 0.578 (Gartner, 2004). 
According to these values, CO2 emissions released during clinkering of 1 ton of BCSAF 
and OPC are 0.54 t and 0.39 t, respectively (figure 1.2). It implies a reduction of 0.15 
tons of CO2 for BCSAF due to raw material decomposition. 

 On the other hand, CO2 emissions derived from operation processes are 
directly related to the type of processing equipment and the specific chosen fuel. 
Gartner in 2004 estimated 0.30 t of CO2 per ton of clinker produced assuming that 
good quality of bituminous coal is used and taking into account energy efficiency of 
modern kilns. The reduction in CO2 emissions coming from fuel burning can be 
achieved by different strategies (Gartner, 2004; Juenger et al., 2011) including the 
reduction of clinkering temperature. This is the case of BCSAF clinkers where the 
operating temperature can be reduced down to 150°C with a concomitant reduction 
of up to 0.04 t of CO2 per ton of BCSAF clinker produced. Moreover, emissions 
derived from electricity consumption are about 0.09 t of CO2 per ton of OPC 
(McCaffrey, 2002). The lower firing temperatures needed for BCSAF clinkering make 
it easier to be ground, hence it yields a depletion of up to 0.02 t of CO2 emissions. 

 

OPC
Raw materials
78 wt% calcite
10  wt% kaolin
10 wt% quartz
2 wt% iron oxide

OPC clinker 
Phases
65 wt% C3S
15 wt% C2S
10 wt% C4AF
10 wt% C3A 

BCSAF clinker 
Phases 
50 wt% C2S
30 wt% C4A3S
20 wt% C4AF0.09

0.34

0.54

Electricity

Fuel

Raw
materials

0.30

0.39

OPC BCSA

0.07

BCSAF
Raw materials
59 wt% calcite
9 wt% kaolin
7 wt% quartz
17 wt% red bauxite
8 wt% gypsum

~0.97 t

~0.76 t

Clinkering kiln 1.00 t

t CO2 / t clinker

Al2O3 approximate contents of the clinkers, wt%, just above

~17%~6%

 

Figure 1.2. Comparison of OPC and BCSAF production CO2 footprint. 
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1.4.2. Crystallochemistry of main anhydrous phases of BCSAF cements.  

 The crystallography of the main anhydrous phases present in BCSAF cements 
(belite, ye’elimite and ferrite) is described. 

i) Belite or dicalcium silicate [Ca2SiO4, C2S]. 

 Belite is of great interest in BCSAA and BCSAF cements as it is their main 
component (∼60 wt%). Stoichiometric dicalcium silicate presents five forms (Mumme 
et al., 1996) γ, β, α'L, α'H and α. On the other hand, element substitutions stabilize 
different structures of dicalcium silicate and β-C2S is the form that commonly prevails 
in OPC, BCSAF and BCSAA without any activation. All the structures are built from 
Ca2+ and SiO4

4- ions. The arrangements of these ions are closely similar in α, α'L, α'H 
and β polymorphs, but that in γ-C2S is somewhat different. γ-C2S is much less dense 
than the other polymorphs. These polymorphic transformations, as a function of 
temperature, are shown in Figure 1.3. The physical and chemical properties of these 
phases can be altered by introducing defects or strains in their crystalline structures. 
Moreover, these defects can even stabilize high-temperature forms of C2S at room 
temperature (Ghosh et al., 1979; Nettleship et al., 1992). The different type of 
defects can be produced by the addition of foreign elements to form solid solutions 
(Jelenic et al., 1978) or by specific thermal treatments (Fukuda and Ito, 1999). There 
are many studies concerning the chemical-stabilization of β-C2S by foreign ions such 
as SO3, B2O3, Cr2O3, Na2O, K2O, BaO, MnO2 and Al2O3 (Pritts and Daugherty, 1976; 
Kantro and Weise, 1979; Matkovic et al., 1981; Fierens and Tirlocq, 1983; Ziemer et 
al., 1984; Benarchid et al., 2004; Cuesta et al., 2014b). 

 
Figure 1.3. Dicalcium silicate polymorphic transformations with temperature. 

 

 These investigations showed that the hydration reactivity of stabilized β-C2S 
depends on the preparation parameters that influence particle and crystallite size. 
These parameters include temperature, type and amount of stabilizer, and fineness 
of the final ground. The stabilization of α'-forms through the introduction of foreign 
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oxides, such as MgO, P2O5, K2O, BaO, Na2O, B2O and SO3 has also been studied 
(Bensted, 1979; Fukuda et al., 2001; Park, 2001; Morsli et al., 2007a, b; Li et al., 
2007a; Wesselsky and Jensen, 2009; Cuberos et al., 2010; Morin et al., 2011; Cuesta 
et al., 2012). These works stated that hydraulic properties were increased when 
compared to the materials without foreign ions. 

 Table 1.2 shows the crystallographic information of dicalcium silicate 
polymorphs. The crystal structures of α'H, α'L and β phases are derived from that α 
form by progressive decreases in symmetry, which arise from changes in the 
orientations of the SiO4

4- tetrahedral and small movements of Ca2+ ions (Taylor, 
1997). Such structures belong to the family of the glaserite, K3Na(SO4)2 (Moore, 
1973). However, the γ-C2S framework belongs to the olivine type structure (O'Daniel 
and Tescheischwili, 1942). 

Tabla 1.2. Crystallographic data of dicalcium silicate polymorphs. 

Polymorph 
Space 
Group 

Unit cell parameters V/Z T(°C)/  

a (Å) b (Å) c (Å) 
ββββ 

(º) 
(Å3) Stabilizer ICSD 

αααα P63/mmca 5.420 5.420 7.027 90.0 89.4 - 81099 

 P63/mmcb 5.532(9) 5.532(9) 7.327(11) 90.0 97.1 1545/- 82998 

 P-3m1b 5.532(9) 5.532(9) 7.327(11) 90.0 97.1 1545/- 82999 

αααα'H Pnmaa 6.7673(4) 5.5191(4) 9.3031(6) 90.0 86.9 
-/5% (molar) 

Ca3(PO4)2 
81097 

 Pnmab 6.871(0) 5.601(0) 9.556(1) 90.0 92.0 1250/- 82997 

 Pmnbc 5.647(1) 7.037(1) 9.644(2) 90.0 95.8 
-

/Ca1.8Sr0.2SiO4 
49662 

 Pnmad 6.8263(3) 5.4684(3) 9.2658(4) 90.0 86.5 
RT/ B2O3 and 

Na2O 
- 

αααα'L Pna21
b 20.527(2) 9.496(1) 5.590(1) 90.0 90.8 1060/- 82996 

 Pna21
d 20.863(2) 9.5000(8) 5.6005(5) 90.0 92.5 

-/ 
Ca0.84Sr1.16SiO4 

39203 

 P21cne 5.566 9.355 20.569 90.0 89.3 - 39100 

ββββ P21/na 5.512(0) 6.758(0) 9.314(0) 94.6 86.5 
-/0.5 wt% 

Cr2O3 
81096 

 P21/nf 5.48(2) 6.76(2) 9.28(2) 85.5 85.7 - 24640 

 P21/ng 5.502(1) 6.745(1) 9.297(1) 94.6 86.0 - 963 

 P21/ni 5.5127(1) 6.7586(1) 9.3266(2) 94.5 86.6 RT/Al2O3 - 

γγγγ Pbnma 5.082(0) 11.224(0) 6.764(0) 90.0 96.5 - 81095 

 Pbnmh 5.081(2) 11.224(5) 6.778(10) 90.0 96.6 - 200707 

(a) Mumme et al., 1995; (b) Mumme et al., 1996; (c) Catti et al., 1984; (d) Cuesta et al., 2012; (e) 
Il´inets and Bikbau, 1990; (f) Udagawa et al., 1979; (g) Midgley, 1952; (h) Jost et al., 1977 ; (i) 

Cuesta et al., 2014b; (j) Udagawa et al., 1980. 
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 Figure 1.4 shows the simulated diffractograms of different C2S polymorphs. 
The presence of ions in the structure stabilizes the high temperature forms at RT. The 
stabilization of the high temperature polymorph is due to both ionic substitutions 
and quenching. It has been found the existence of α and α'H forms in clinkers 
(Regourd and Guinier, 1974; Morsli et al., 2007a, b). 

 

Figure 1.4. Range from 29 to 35° (2θ) of the theoretical diffractograms. (a) α-C2S 
at RT (Mumme et al., 1995); (b) α'H-C2S at RT (Cuesta et al., 2012); (c) β-C2S at RT 

(Mumme et al., 1995) and (d) γ-C2S at RT (Udagawa et al., 1980). 

 

ii) Ye'elimite, also named Klein´s salt or calcium sulphoaluminate, [Ca4Al6O12(SO4), 

C4A3S]. 

 Ye'elimite is the major mineralogical compound in CSA cements. It is liable 
for high mechanical strengths at early hydration ages. Stoichiometric calcium 
sulphoaluminate or ye'elimite, can be described as a sodalite (M4[T6O12]X) where 
M=Ca, T=Al, and X=SO4, and crystallizes as a tectoaluminosilicate sodalite structure 
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(Cuesta et al., 2013). This structure was first analyzed by Hanstead and Moore (1962) 
using X-ray powder diffraction. Wang et al. (1990) and Saalfeld and Depmeier (1972) 
reported atomic parameters for a cubic crystal structure with space group I-43m and 
a=9.195 Å. In 1995, Calos published an orthorhombic crystal structure, Pcc2 space 
group, which has been revised by joint neutron and X-ray powder diffraction, 
Rietveld refinement and atomistic calculations (Cuesta et al., 2013). Recently, the 
disordered crystal structure of cubic stoichiometric ye'elimite at 800°C has been 
satisfactorily studied in the I-43m space group using a split-atom model (Kurokawa et 
al., 2014). In a recent study (Bullerjahn et al., 2014) the existence of two polymorphs 
of ye'elimite (pseudo-cubic and orthorhombic) was observed in BCSA cements. 
Published crystallographic data for the Klein´s salt are shown in Table 1.3. Fe-Si-
doped ye'elimite shows a pseudo-cubic structure at room temperature and suffers a 
phase transition on heating (Cuesta et al., 2014c).  

 

Table 1.3. Crystallographic data of Klein´s salt polymorphs. 

Polymorph 
Space 
Group 

Unit cell parameters V/Z Ref.  

a (Å) b (Å) C (Å) ββββ (º) (Å3) bibl. ICSD 

Cubic I-43m 9.205 9.205 9.205 90.0 390 (a) 9560 

Orthorhombic Pcc2 13.028 13.037 9.161 90.0 389 (b) 80361 

Tetragonal P-4c2 13.031 13.031 9.163 90.0 389 (c) - 

Cubic I-43m 9.197 9.197 9.197 90.0 389 (d) - 

Orthorhombic Pcc2 13.036 13.035 9.168 90.0 346 (e) - 

Cubic at 1073 K I-43m 9.253 9.253 9.253 90.0 396 (d) - 

Cubic at 1073 K I-43m 9.243 9.243 9.243 90.0 395 (f) - 

(a) Saalfeld y Depmeier, 1972; (b) Calos et al., 1995; (c) Zhang et al., 1992; (d) Cuesta et al., 
2014c; (e) Cuesta et al., 2013; (f) Kurokawa et al., 2014. 

  

 Figure 1.5 shows the simulated patterns of two of the C4A3S polymorphs 
(orthorhombic and pseudo-cubic). As seen in this figure, all the peaks of the pseudo-
cubic structure are also present in the orthorhombic form. We highlight that the RT 
pseudo-cubic form is not a strict ye'elimite polymorph as it required the presence of 
dopants within the crystal structure. 
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Figure 1.5. Region 15° to 35° (2θ) of the theoretical diffractograms, (a) 
stoichiometric (orthorhombic) C4A3S (Cuesta el al., 2013); (b) doped 

(pseudo-cubic) C4A3S (Cuesta el al., 2014c). 

  

iii) Brownmillerite or tetracalcium aluminoferrite, [Ca2(AlFe)O5, C4AF]. 

 The term “ferrite” usually refers to a solid solution with a wide range of 
compositions of the general formula Ca2(AlxFe2−x)O5, where x can vary from 0 to 
about 1.33. The compound C2F has an orthorhombic primitive lattice, with space 
group Pnma (Taylor, 1997). This symmetry is preserved when aluminium substitutes 
iron up to x∼0.4–0.6. The insertion of additional aluminium leads to a modification of 
the structure to an orthorhombic, body-centred phase termed brownmillerite with 
space group Ibm2. The solid solution is complete when x is up to ∼1.4 at 1250–
1300°C, although, as the substitution of Fe(III) by Al is not ideal, gradual symmetry 
changes occur. Four compositions are generally taken as reference points in this 
extensive solid solution, namely C2F, C6AF2, C4AF (brownmillerite) and C6A2F, 
corresponding to x = 0, 2/3, 1 and 4/3, respectively. Typical elemental composition of 
this phase in a clinker is: 46.1 wt% of CaO, 21 wt% of Al2O3 and 32.9 wt% of Fe2O3, it 
is equivalent to x∼1. In cement chemistry the ideal composition C4AF 
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(4CaO·Al2O3·Fe2O3), is used to describe the ferrite phase in Portland cement, in full 
awareness that other elements may be present and that the A/F ratio is commonly 
not unity (Ectors et al., 2013). Table 1.4 gives the crystallographic data of C4AF 
structures. 

Table 1.4. Crystallographic data of ferrite phase polymorphs (Ca2AlxFe2-xO5). 

Space 
Group 

Z 
Unit cell parameters V/Z 

(Å3) 

x ICSD 

a (Å) b (Å) c (Å)   

Pcmna 4 5.559 14.771 5.429 111.5 0.0 14296 

Ibm2b 4 5.584 14.600 5.374 109.5 1.0 9197 
(a) Colville, 1970 y (b) Colville y Geller, 1971 

 
 

 The coexistence of C4A3S and ferrite solid solution was investigated (Juenger 
and Chen, 2011; Touzo et al., 2013) and some iron content, up to 4.3 mol% (=8.8 
wt%), was found in the C4A3S phase which coexists with melt and ferrite phase. 
However, at high overall iron contents, it is difficult to avoid (i) formation of excessive 
amounts of liquid phase, (ii) rather rapid development of a very fluid melt over a 
short range of temperatures, (iii) formation of other iron bearing phases such as 
monocalcium ferrite in iron-rich compositions, (iv) progressive replacement with 
increasing iron content of C4A3S by CaSO4 as sulphate-containing solid. These factors, 
taken together, suggest that the control of the Al/Fe ratio may well be a key 
parameter in optimising sulphoaluminate clinker production. 

1.4.3. Reactivity of principal constituents of BCSAF cements during hydration. 

 Once the main anhydrous phases present in BCSAF cements are described, it 
is essential to know the evolution of those phases during the hydration, and the 
properties of the new formed phases. During the hydration process (Sahu et al., 
1991), three main issues take place: (i) the dissolution of crystalline anhydrous 
phases; (ii) the appearance of new phases; and (iii) the consumption of free water. 

 Overall, the hydration of BCSAF cements can be summarized as follow. 
During early age hydration, ettringite is the main crystalline hydration product 
together with aluminium oxide hydrate gel, commonly reported as amorphous 
gibbsite (AH3, although its stoichiometry is still not well described). Ettringite is 
formed in these cements from the dissolution of ye'elimite and calcium sulphate. 
Once the sulphate source is depleted and there is enough water available, 
monosulphate (AFm) is formed (Winnefeld and Lothenbach, 2010). However, there 
are some contradictory results concerning the reactivity of ye'elimite with water in 
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absence of sulphate. In addition, hydration kinetics not only depend on the water-
cement (w/c) ratio and the solubility of the additional sulphate source, but also on 
the polymorphism of ye'elimite and the presence of foreign ions incorporated into 
the ye'elimite crystal structure (Cuesta et al., 2014a). It should be noted that the 
hydration of a phase within the cement matrix, does not have to exhibit the same 
behaviour as when hydration of an isolated phase is studied. 

 Furthermore, and independently of the kinetic of the reaction, C2S may yield 
stratlingite (C2ASH8) or amorphous C-S-H gel and portlandite (CH). Finally, the 
reactivity of ferrite (C4AF) during hydration in these cements is slower than that of 
C4A3S and it is not well understood. If the calcium concentration increases as a 
consequence of C2S hydration, ferrite can take part of the formation of katoite or 
siliceous hydrogarnet. 

 In the cement, all the anhydrous phases do not have the same reactivity. The 
hydration of phases of interest in BCSAF cements is discussed just below: 

C4A3S (Ye'elimite): 

 It is considered the most reactive phase of BCSA cements (Palou and Majling, 
1996, 1997; Canonico and Bernardo, 2006; Zhang and Li, 2007). As soon as water is 
added to the cement, both ye'elimite and the sulphate source (gypsum, bassanite 
and/or anhydrite) start to get dissolved. Immediately after wetting, the following 
reaction takes place: 

C4A3S + 2 CSHx + (38-2x) H → C6AS3H32 + 2 AH3                                                          [1.1] 

 This reaction [1.1] corresponds to the formation of ettringite (C6AS3H32), as 
main crystalline hydration product, and amorphous AH3; the former contributes to 
the early-age strength development. The formation of ettringite will continue while 
calcium sulphate is present. Once the sulphate source is depleted and there is 
enough free water available, monosulphate also known as AFm (C4ASH12) (Glasser 
and Zhang, 2001; Winnefeld and Lothenbach, 2010) is formed according to equation 
[1.2]. 

C4A3S + (16+x) H → C4ASH(10+x) + 2 AH3           x=0, 2, 4                                              [1.2] 

 These two reactions may take place in the early hydration of CSA and BCSA 
cements. However, there are some contradictory results concerning the reactivity of 
ye'elimite with water in the absence of another sulphate source. Some authors 
stated that only reaction [1.2] takes place (Winnefeld and Barlag, 2010), while others 
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have published that mixture of AFt and AFm phases are produced (Berger et al., 
2011a). 

 As an example, Figure 1.6 shows the cryo-scanning electron microscopy 
micrographs of BCSAF pastes. BCSAF cement pastes with 20 wt% of gypsum (Figure 
1.6.a) showed acicular-hexagonal AFt crystals even at very early hydration ages, 
reaction [1.1]. Conversely, BCSAF cement pastes with (only) 5 wt% of gypsum (Figure 
1.6.b) showed, in addition to AFt crystals, thin-layered AFm crystals, due to reaction 
[1.2]. 

 The influence of the polymorphism of C4A3S on hydration was recently 
studied by Cuesta et al. (2014a). In the absence of additional sulphate sources, 
stoichiometric-ye'elimite (orthorhombic) reacts slower than doped-ye'elimite 
(pseudo-cubic), and AFm-type phases are the main hydrated crystalline phases. 
Moreover, doped-ye'elimite produces higher amounts of ettringite than 
stoichiometric-ye'elimite. However, in the presence of additional sulphates, 
stoichiometric-ye'elimite reacts faster than doped-ye'elimite. 

 
Figure 1.6. Cryo-SEM photographs of BCSAF cement pastes after 4 h of hydration for 

(a) 20 wt % of gypsum and (b) 5 wt % of gypsum (Cuberos et al., 2010). 

 

 Hargis et al. (2014b) studied the influence of gypsum, calcite, and vaterite 
during the ye'elimite hydration in six calcium sulphoaluminate-based cementitious 
systems. Moreover, vaterite was more effective than calcite in mitigating the 
compressive strength loss. The expansion was reduced by calcite and vaterite, 
irrespective of the presence of gypsum.  
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C2S (Belite):  

 C2S hydration is of special interest in BCSA cements and its hydration kinetics 
seems to depend on its type of polymorph. Thus, α-forms of belite are considered 
more reactive than β-C2S (Jelenic et al., 1978; Chatterjee, 1996). Nevertheless, it 
should be noted that the presence of sulphate in the belite structure or the chemical 
environment (high or low available amorphous aluminum hydroxide content) may 
enhance its reac]vity due to the enlargement of its specific surface and/or 
occurrence of crystal distor]ons (Gies and Knofel, 1987; Mar_n-Sedeño et al., 2010). 

Different hydration products, C-S-H gel (Odler, 2003) and stratlingite (Andac and 

Glasser, 1999) have been identified during the hydration of this phase. According to 

the distinct hydrates, two chemical reactions (equations [1.3] and [1.4]) are 

proposed. The hydration of belite to form both amorphous gel CySHx and portlandite 

corresponds to reaction [1.3]. However in BCSA pastes, belite coexists with 

aluminium rich amorphous hydrates and the formation of an AFm-type phase called 

stratlingite is favoured (Palou et al., 2005; Cuberos et al., 2010; Gartner and 

Macphee, 2011; Santacruz et al., 2015) (reaction [1.4]). Then, C2S consumes the 

amorphous AH3 formed by the hydration reactions of aluminium-rich phases. The 

presence of stratlingite was confirmed by XRPD and DTA techniques by several 

researchers (Cuberos et al., 2010; Aranda et al., 2011; Morin et al., 2011), and likely 

play an important role in the advanced-ages mechanical strengths as it is produced at 

a larger pace when high temperature polymorphs of belite are present. 

C2S + (2+x-y) H → CySHx (gel) + (2-y) CH                                                                            [1.3] 

C2S + AH3 + 5 H→ C2ASH8                                                                                              [1.4] 

 Other reactions need to be taken into account. Some studies have confirmed 

the presence of katoite phases, also known as siliceous hydrogarnet. When the 

calcium concentration increases, ferrite phase can take part of the formation of this 

katoite by the following equation: 

C2S + x C4AF + 10x H → C3A1-xFxSH4 + (4x−1) CH + (2x−1) AH3                              [1.5] 

 Reaction [1.5] justifies the formation of portlandite, which is not detected by 

XRPD or DTA, through the consumption of ferrite. Consequently, this portlandite may 

be consumed by stratlingite as follows, producing larger quantities of katoite: 

C2ASH8 + CH → C3ASH4 + 5 H                                                                                         [1.6] 

 Katoite may provide with durability to these corresponding mortars and 

concretes as portlandite is consumed.  
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C4AF (Ferrite phase):  

 Ferrite phases present in sulphoaluminate cements show many compositions 

(different concentrations of Si, Ti and Mg) (Drabik et al, 1987). C4AF was found "more 
reactive" in BCSAF during hydration than that present in OPC (Sharp et al., 1999), 
likely due to the lower clinkering temperature. However, the hydration of ferrite in 
CSA cements was found much slower than C4A3S (Kasselouri et al., 1995). 

 In the absence of any other phases, the hydration of brownmillerite appears 
to be similar to the hydration of the iron-free C3A, in which a C-A-H gel first coats the 
C3A grains from which metastable hexagonal C-A-H plates develop within 10 min 
(Jupe et al., 1996; Meredith et al., 2004). However, the hydration products are (quite 
often) assumed to incorporate some iron (Rogers and Aldridge, 1977; Fukuhara et al., 
1981; Older, 1998; Meller et al., 2004b). The hydration of pure brownmillerite with 
water initially forms metastable C-(A,F)-H hydrates (hydroxy-AFm), possibly in a C-
(A,F)-H gel (Meredith et al., 2004). These metastable C-(A,F)-H hydrates eventually 
convert to a hydrogarnet-type phase C3(A,F)H6 (katoite) over time (Ectors et al., 
2013). The exact Al/Fe ratios of the hydrogarnets are as yet under debate but it is 
generally accepted that the Al/Fe ratio of the crystalline products is greater than in 
C4AF itself (Meller et al., 2004a). The hydration of brownmillerite (Meller et al., 
2004b) could be written formally as: 

C4AF + 10 H → C3AH6 + FH3 + CH                                                                                    [1.7] 

 In this equation, FH3 denotes a hydrated amorphous Fe-containing gel. If iron 
is incorporated into the hydrogarnet product by consumption of the CH produced, 
then the reaction could be expressed as: 

C4AF + 10 H → (4/3) C3(A0.75F0.25)H6 + (2/3) FH3                                                              [1.8] 

 The addition of calcium sulphates to C4AF inhibits the direct hydration of 
C4AF to hydroxy-AFm or C3(A,F)H6. In this case, ettringite is the most commonly 
hydration product observed. There are some theories about the exact mechanism 
governing the retardation process (Ectors et al., 2013). In the presence of sulphate 
the simplest (i.e. no Fe-solid solution) scheme is: 

C4AF + 3 CSH2 + 30 H → C6AS3H32 + FH3 + CH                                                               [1.9] 

 In turn, ettringite could decompose to an AFm monosulfoaluminate hydrate 
as stated next: 

C6AS3H32 → C4ASHn + 2 CSH2 + (28-n) H                                                                          [1.10] 
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 The gypsum released can react with any remaining C4AF to form further AFm 

(C4ASHn) with overall stoichiometry: 

C4AF + CSH2 + (n+2) H → C4ASHn + FH3 + CH                                                               [1.11] 

 However, the hydration process involving iron-containing phases may be 

more complex, as the formation of solid solutions between Fe- and Al-containing 

hydrates may stabilize mixed solids, such as Fe-AFt (Möschner et al., 2009) and Fe-
AFm (Dilnesa et al., 2012).  

1.4.4. Crystallochemistry of main hydrated phases of BCSAF cements. 

i) Ettringite or AFt phase. 

 AFt is the abbreviation for "alumina, ferric oxide, tri-sulfate" or (Al2O3-Fe2O3-
tri). It represents a group of calcium sulfoaluminate hydrates and has the general 
formula [Ca3(Al,Fe)(OH)6·12H2O]2·X3·nH2O, where X represents a doubly charged 
anion or, sometimes, two singly charged anions. Ettringite is the most common and 
important member of the AFt group and, in this case, X denoting sulfate (X=SO4

2-).  
The crystal structure of ettringite can be described as compact columns of 
[Ca3Al(OH)6·24H2O]3+, running parallel to the c-axis, with 3SO4

2- and H2O molecules in 
the intervening channels. Figure 1.7 shows a revised structure model of ettringite 
presented by Goetz-Neunhoeffer and Neubauer (2006). 

 

Figure 1.7. Hexagonal ettringite unit cell of the revised structure projected 
down c. (Goetz-Neunhoeffer and Neubauer, 2006). 
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ii) AFm phases.  

 Phases in this family (Al2O3-Fe2O3-mono) are comprised of a layer structure 

with the general formula [Ca2Al(OH)6]X·xH2O where X denotes one formula unit of a 

singly charged anion, (for instance OH
-
 or [SiAlO2(OH)4]

-
 in the case of stratlingite, or 

half a formula unit of a doubly charged anion (for instance SO4
2-

) placed in the 

interlayer space jointly with water molecules. These compounds crystallize in 

hexagonal planes and are very relevant to cement hydration. AFm are formed from 

aluminium rich phases, such as C4A3S, when the sulphate source (gypsum, bassanite 

or anhydrite) is depleted and there is enough free water available (Winnefeld and 

Lothenbach, 2010). The presence of AFm-phases with different layer spacing is 

justified twofold: i) by the partial anion replacement OH
-
/SO4

2-
 within the layers; and 

ii) by the progressive release of the water molecules as a consequence of the 

hydration of other phases. Stratlingite (Rinaldi et al., 1990), kuzelite (Allmann, 1977) 

or C2AH8 are AFm-type phases. There are other AFm-type phases such as 

monocarbonates (François et al., 1998) or monochlorides (Renaudin et al., 1999) that 

usually appear in chemically aggressive environments.  

Stratlingite:   

 Ca4Al2(OH)12[AlSiO2(OH)4]2·2H2O, is an AFm phase which appears as hydration 

product of aluminium-rich cements, such as calcium aluminate, calcium 

sulphoaluminate and also belite calcium sulphoaluminate cements. The structure of 

stratlingite is known from single crystal studies of mineral fragments from Mayern 
and Montalto di Castro (Rinaldi et al., 1990). It is formed by a principal octahedral or 
brucite-type layer, [Ca2Al(OH)6·2H2O]+ with a full occupancy, and a double tetrahedral 
layer, [(T,□)4(OH,O)8·0.25H2O]-, with a 45% of vacancies. The symmetry of stratlingite 
is R3m. The structure analysis (Rinaldi et al., 1990; Kwan et al., 1995) indicates that 
the octahedral layer shows an ordered scheme where each Al-octahedron is linked to 
6 edge-sharing CaVII polyhedra (2 out 3 positions are then occupied by the seven 
coordinated Ca-type cation). Figure 1.8 shows the crystal structure of stratlingite 
where selected atoms are labelled (Santacruz et al., 2015). 

 It is known that the structural and microstructural models have important 
implications for a correct quantitative phase analysis of stratlingite in cement pastes 
and it is highly dependent on the hydration conditions (for instance, in pastes of 
BCSA cements) (Santacruz et al., 2015).  
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Figure 1.8. Layered crystal structure of stratlingite (Santacruz et al., 2015). 

  

 

iii) Katoite.  

 Katoite has a structure related to the grossular or garnet. Garnet minerals 

have a cubic structure with the general formula X3Y2(SiO4)3. The X site is usually 

occupied by divalent cations (Ca
2+, Mg2+ and Fe2+) and the Y site by trivalent cations 

(Al3+, Fe3+ and Cr3+) in an octahedral/tetrahedral framework with [SiO4]
4− occupying 

the tetrahedral positions (see Figure 1.9). The anhydrous end members of the 
Ca3(Al,Fe)2(SiO4)3 series are grossular (Ca3Al2(SiO4)3) and andradite (Ca3Fe2(SiO4)3). 
Hydrogarnet (Ca3(Al,Fe)2(SiO4)y(OH)4(3−y); 0 < y < 3) includes a group of minerals where 
the [SiO4]

4− tetrahedra are partially or completely replaced by OH−. The Al-containing 
hydrogarnet includes hydrogrossular (Ca3Al2(SiO4)y(OH)4(3−y); 0 < y < 3) with the end 
member katoite (Ca3Al2(OH)12 or C3AH6).  

 The nomenclature of minerals of the hydrogarnet group 
Ca3(AlxFe1−x)2(SiO4)y(OH)4(3−y) as recommended by Passaglia and Rinaldi (1984) is given 
in Figure 1.10. The formation of siliceous hydrogarnet was reported for cements 
hydrated at high temperatures (Collier et al., 2009; Le Saout et al., 2006; Lothenbach 
et al., 2008; Neuville et al., 2009) or in the presence of excess of Fe(OH)3 (Collier et 
al., 2006). 
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Figure 1.9. Octahedral and tetrahedral connections of hydrogarnet 

structure (Dilnesa et al., 2014). 

 

 

Figure 1.10. Nomenclature of minerals of the hydrogarnet group 

Ca3(AlxFe1−x)2(SiO4)y(OH)4(3−y) (Passaglia and Rinaldi, 1984). 
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1.4.5. Properties of BCSA mortars and concretes. Durability. 

 Ye'elimite-containing cements and their corresponding mortars and 

concretes are considered as durable binders. Nevertheless, degradation processes 

should be taken into account, depending on the environment on which these 

mortars or concretes are serving. There are different ways of cement degradation 

e.g. carbonation, sulphate attack or chlorine diffusion. All these effects need ions 

diffusion through the porous microstructure. In CSA and BCSAF cements, the 

resistance to diffusion is enhanced due to the quick water consumption during the 

hydration process. Moreover, porosity decreases during hydration due to the large 
amount of hydration products generated at very early ages (Bernardo et al., 2006). 

1.4.5.1. Sulphate Resistance. 

 Cementitious building materials are damaged by sulphate attack at moderate 
temperatures due to delayed ettringite formation. In OPC, when insufficient gypsum 
is added, ettringite reacts with the aluminium containing phases (C3A and C4AF) to 
form AFm (C4ASH12) (Mindess et al., 2003). Calcium monosulphoaluminate is subject 
to transform back to ettringite in the presence of environmental sulphate, causing 
cracking due to the enlargement of volume. However, BCSA cement generally shows 
good sulphate resistance (Quillin, 2001; Dan and Janotka, 2003) even for insufficient 
amounts of calcium sulphate in the system. The durability of these materials is 
usually studied through XRPD (Paglia et al., 2001), microscopy, linear expansion and 
compressive strengths. 

1.4.5.2. Corrosion Resistance. 

 Atmospheric carbon dioxide can be dissolved in the pore solution of cement 
pastes and react with the hydration products increasing the carbonate concentration. 
This phenomenon will cause three effects: i) lowering pH value, ii) precipitation of 
CaCO3 by the reaction of carbonate ions with Ca2+ ions and iii) possible damaging of 
ettringite. Porosity and water/cement (w/c) ratio determine the degree of resistance 
to carbonation. Carbonation happens quicker in CSA than in Portland concretes, 
leading to partial decomposition of ettringite, which may cause a moderate strength 
loss (Sharp et al., 1999; Mechling et al., 2013). In addition, decreasing w/c ratio (high-
strength concrete) increases resistance to carbonation as there is not free water 
available to dissolve CO2. 

 The pH of the pore solution in BCSA cements is generally lower than that in 
OPC due to the lower amount of CH formed in BCSA cements (Kalogridis et al., 2000). 
Furthermore, ettringite, the main hydration product in BCSA cements, is susceptible 
to carbonation, which further reduces the pore solution pH at later ages (Quillin, 
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2001). In steel reinforced concrete, a passivated oxide layer is formed on the 

reinforcement steel surface and protects it from corrosion when the pH of the 

surrounding pore solution is high (Jones, 1996). However, this passivated layer breaks 

down when the surrounding pore solution pH is below ∼11.5. The low pH of the pore 

solution in BCSA cement might not be high enough to protect the reinforcement 

steel, leading to corrosion in the reinforcement steel if cracking is developed in the 

concrete.  

1.4.5.3. Compressive Strength. 

 BCSA cements can be produced with a wide range of properties from rapid to 

slow hardening and good to poor durability depending on their phase assemblage 

(Mehta, 1980), as it is shown in Figure 1.11. The hydration reactions of the fast-
reacting C4A3S and C4AF with CS to form ettringite and AH3 resulted in rapid setting 
and contributed to the high early-age strength development, while the hydration 
reaction of the slow-reacting C2S to form C-S-H contributed to the long-term strength 
development. However, mortars made from BCSAF cements that contain 10 wt% 
C4A3S, 50-65 wt% C2S, 10 wt% CS and 15-30 wt% C4AF with a water-to-cement ratio of 
0.4 show slow hardening, poor early-age and long-term compressive strengths likely 
due to their low C4A3S, C4AF and CS contents and high C2S contents.  

Sulphates
(C4A3S + CS)

C4AFC2S
 

Figure 1.11. Schematic phase diagram of ternary system representing BCSA 
cement; slow, normal and rapid refer to hardening rates (adapted from 

Mehta, 1980). 
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1.4.5.4. Dimensional Stability. 

 Other problem related to durability is the expansion of concrete during 

hydration. Differences in dimensional stability are observed in BCSA systems by 

different factors: i) C4A3S content (Kasselouri et al., 1995; Beretka et al., 1996; 

Janotka et al., 2007; Chen et al., 2012); ii) amount of gypsum available in the system 

(Glasser and Zhang, 2001; Bizzozero et al., 2014); iii) w/c ratio and curing conditions 

(humidity degree) (Beretka et al., 1996; Odler and Colan-Subauste, 1999; Chen et al., 

2012). 

 The sulphate diffusion into the mortar matrix may delay the ettringite 

formation and cause expansion (Chen et al., 2012). When most of the ettringite is 

formed before the paste hardens, non-expansive and rapid hardening BCSA cements 

can be achieved. However, the formation of a significant amount of ettringite after 

hardening may cause expansion and cracking (Ogawa and Roy, 1982). However, after 

some days of hydration water may be exhausted and, unless there is another 

deterioration mechanism (as leaching) (Berger et al., 2011b), the expansion due to 

the delayed formation of ettringite is not significant (Glasser and Zhang, 2001). 

 For the reasons discussed above, BCSAF cements are considered, nowadays, 

as one of the most promising alternatives to OPC. This is supported by the 

environmental benefits (lower CO2 emissions) and industrial interest. However, 

before been implanted in Europe, all the steps involved in the process need to be 

under control, including synthesis (activation, clinkering conditions and composition), 

hydration (rheological behaviour and phase assemblage), and final performances 

(mechanical strength, durability, and dimensional stability). This PhD Thesis is 

focused on the study and optimisation of most of those parameters to improve the 

final performances of BCSAF mortars. 

 

1.5. METHODOLOGY. 

 The most important characterisation techniques used in this work are 

described in this section. They are gathered in two mains groups: those used for 

cements and those for pastes and mortars. 

1.5.1.   Cement (anhydrous and paste) characterisation. 

1.5.1.1.LXRPD and Rietveld method. 
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 XRPD can reveal the mineralogical nature of phases present in the solid. 

Principle is that a beam of X-ray penetrates the sample, and a constructive 

interference occurs between the X-rays and the crystals in the sample. The angle and 

the intensity of diffraction are characteristic of a crystalline structure. All lines of 

diffraction are used to identify the nature of crystals.  

 LXRPD studies can be performed using different radiations (Mo and Cu) and 
setups: i) Transmission geometry (Debye-Scherrer), and ii) Reflection geometry 
(Bragg-Brentano). 

 The irradiated volume in diffraction is a key issue since higher volume yields 
enhanced particle statistics. For a given sample, several methods can be used to 
increase the number of crystallites contributing to the diffraction pattern, including: 
i) rotate the sample about the normal to the sample surface for a flat plate sample or 
the sample axis for a capillary sample-holder; ii) oscillate the sample about the 
incident angle axis, this motion removes the exact Bragg-Brentano theta/2theta 
relationship between sample and receiving slit and may lead to aberrations in the 
peak intensities; iii) repack the sample, recollect and reanalyze the diffraction data, 
averaging the results from each analysis will produce more meaningful parameter 
values, iv) reduce the average crystallite size(s) by milling, however, caution must be 
exercised in the choice of mill since many grinding techniques introduce peak 
broadening (amorphization or inducing crystal strains) and some phases can undergo 
solid-solid phase transitions or dehydration during grinding; and v) enhancing particle 
statistic by the increasing the diffracting volume. The irradiated volume for Mo-
radiation (transmission with flat sample) is higher than the volume for Cu-radiation 
(reflection). This larger irradiated volume for Mo-radiation should show several 
benefits that will be demonstrated in the results section. 

 The experimental set-up details for different diffractometers used for this 
Thesis were the following: 

 - X'Pert MPD PRO diffractometer (PANalytical B.V.) with strictly 
monochromatic CuKα1 radiation (λ=1.54059 Å) and primary monochromator Ge 
(111). The optics configuration was a fixed divergence slit (1/2°), a fixed incident 
antiscatter slit (1°), a fixed diffracted antiscatter slit (1/2°) and X'Celerator RTMS 
(Real Time Multiple Strip) detector, working in scanning mode with maximum active 
length. Data were collected from 5° to 70° (2θ) for ∼2h. The samples were rotated 
during data collection at 16 rpm in order to enhance particle statistics. 

 - EMPYREAN diffractometer (PANalytical B.V.): used to recorded in flat-
sample transmission geometry the patterns studied by the internal standard method. 
It has equipped with a θ/θ goniometer, CuKα1,2 radiation (λ=1.542 Å) and a focusing 
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mirror. This PreFIX optical component is capable of converting the divergent beam 

into a convergent radiation focused on the goniometer circle. The EMPYREAN 
diffractometer was equipped with fixed incident and diffracted beam anti-scatter 
slits of ¼° and 5 mm, respectively. The detector was PIXCEL 3D RTMS, which 
comprises more than 65,000 pixels, each 55×55 μm in size; each having its own 
circuitry. The overall measurement time was ∼3h per pattern to have very good 
statistic over the 2θ range of 5–70° with 0.0131° step size (2θ). The samples were 
spun at 16 rpm. 

 - D8 ADVANCE DaVinci diffractometer (Bruker AXS), (250 mm of diameter) 
with Mo radiation equipped with a primary Johansson monochromator Ge (220), 
which gives a strictly monochromatic radiation (λ = 0.7093 Å), MoKα1. The X-ray tube 
worked at 50 kV and 45 mA. The optics configuration was a fixed divergence slit (2°) 
and a fixed diffracted anti-scatter slit (9°) and the energy-dispersive linear detector 
LYNXEYE XE 500 μm, specific for high energetic radiation, was used with the 
maximum opening angle. Using this conditions the samples were measured between 
3-30º (2θ) with a step size of 0.009º and with a measurement total time of 2 hours 
and 30 minutes. The samples were spun at 10 rpm. 

 Hugo Rietveld in the late sixties (Rietveld, 1967; 1969) devised “The Rietveld 
method” for the deeper characterisation of polycrystalline compounds. It consisted 
in the use of measured powder pattern intensities instead of reflection (peak) 
intensities, and supposed a conceptual breakthrough. This methodology, together 
with the coming of new technologies (computers), allowed to properly dealing with 
strongly overlapping reflections. Rietveld method is currently the most effective 
procedure for analysing powder diffraction data. This method can be used to carry 
out the QPA in crystalline samples. 

 To obtain a successful RQPA, a properly prepared sample, a well aligned and 
maintained diffractometer and good structural descriptions for each crystalline phase 
are needed. Under these pre-requisites, a good powder diffraction pattern may be 
collected and RQPA can be carried out. Furthermore, every crystalline phase in the 
sample should be identified. This is easy to say but sometimes quite complex to fulfil 
because sometimes there are strong peak overlapping in the diffraction patterns and 
does not allow to conclusively determining all present phases. Finally, the RQPA 
needs to be to carry out with the appropriate software. In our case GSAS (Larson and 
Von Dreele, 2000; Toby, 2001) was the software package used. In addition to the raw 
data, any Rietveld program needs a control file to execute the refinements. In this 
control file, the crystal structures of the different components must be included. The 
fit is carried out by optimising all appropriate variables such as: i) scale factor of 
every crystalline phase; ii) background parameters for the chosen function; iii) unit 
cell parameters for every crystalline phase; iv) peak shape parameters for every 
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computed phase; and finally, v) correction parameters which may be phase-

dependent (such as preferred orientation, extinction, etc.) or pattern-dependent 

(zero-shift, absorption correction when working in transmission geometry, etc.). 

Usually, for RQPA, the structural descriptions (atomic positional parameters, atomic 

displacement parameters and occupation factors) are not optimised but kept as 

reported in bibliography. 

 The application of RQPA to clinkers/cements/pastes is not an easy task for 

the following reasons (Aranda et al., 2012; Aranda et al., 2015): i) there are many 

phases, usually more than five, which increases the diffraction peak overlapping and 

so the correlations; ii) each phase has its own mass absorption coefficient which may 

yield the micro-absorption problem; iii) the small irradiated volume (∼2 mm
3
) for Cu 

Kα, which may lead to poor particle statistics; iv) some phases, for instance alite or 

gypsum, crystallise as plaques which show preferred orientation, increasing the 

errors; v) phases can crystallise as several polymorphs that must be identified a 

priori; vi) the diffraction peak broadening for some phases may be anisotropic and it 

must be properly modelled; and vii) the atomic impurities inside each phase are not 

known and their scale factors are usually computed for ideal/stoichiometric phases. 

In any case, RQPA shows several advantages over other methods based on powder 

diffraction and other technologies (microscopy, thermal analysis, etc.).  

 As stated above, conventional RQPA requires all crystal structures to be 

known. Aranda et al (2012) reported the main hydrated and anhydrous cement 

standard phases. There are alternative whole-pattern quantitative phase analysis 

methods for crystalline phases with unknown structures (Smith et al., 1987; Taylor 

and Zhu, 1992; Scarlett and Madsen, 2006; Snellings et al., 2014). Currently, three 
ways to derive the phase content, Wα, from the Rietveld refined scale factor, Sα, can 
be used to determine the RQPA (Madsen et al., 2011; Gualtieri et al., 2014): 

 i) Normalization to full crystalline phase content method. The simplest 
approach is the approximation that the sample is composed only of crystalline 
phases with known structures. This method normalises the sum of the analysed 
weight fractions to 1.0. Thus, if the sample contains amorphous phases, and/or some 
amounts of unaccounted crystalline phases, the analysed weight fractions will be 
overestimated. 

 This approach is by far the most widely used method in RQPA. However, it 
must be highlighted that the resulting weight fractions are only accurate if the 
amount of unaccounted crystalline phases and amorphous content are very small 
(negligible) which may not be the case in anhydrous cements and for sure, is not the 
case in cement pastes. 
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 ii) Internal standard method. A second, more experimentally-demanding, 

approach is to mix the sample with a crystalline standard in a known amount, Wst 

(also known as spiking method) (Cline et al., 2011). This standard must be free of 

amorphous content or at least its non-diffracting content must be known. This 

(artificial) mixture must be well homogenised as the particles should be randomly 

arranged. The addition of the standard dilutes the crystalline phases within the 

sample. This may be quite problematic for low-content phases.  

 This method allows the determination of an overall unaccounted content 

which is composed by amorphous phase(s), misfitting problems of the analysed 

crystalline phases, and some crystalline phases which may not be included in the 

control file due to several reasons (its crystal structure is not known, the phase was 

not identified, and so on). This overall content is hereinafter named ACn, which 

stands for Amorphous and Crystalline non-quantified, to highlight that not only an 

amorphous fraction but also any non-computed crystalline phase and any misfit 

problem (for instance the lack of an adequate structural description for a given 

phase) may contribute to this number. The method derives the (overall) ACn content 

of the sample from the small overestimation of an internal crystalline standard (De la 

Torre et al., 2001a). The errors associated to this approach and the optimum amount 

of standard have been discussed (Westphal et al., 2009). Several standards can be 

used as an internal standard. In this work ZnO was used as internal standard.  

 This methodology has been applied to anhydrous cement and also to pastes. 

However, the addition of an internal standard may alter the cement hydration 

reactions, dilutes the phases in the pastes, microabsorption problems, and so on. 

 iii) External standard method (G-factor approach). To avoid complications 

that may arise from mixing an internal standard with the sample, it is possible to use 

an external standard method. This approach requires the recording of two patterns 

in identical diffractometer configuration/conditions for Bragg-Brentano θ/2θ 

reflection geometry. The method was proposed sometime ago (O’Connor and Raven, 

1988) and very recently applied to anhydrous cements (Jansen et al., 2011b), to OPC 

pastes (Jansen et al., 2011a, b) and organic mixtures (Schreyer et al., 2011). This 

method consists on determining the diffractometer constant, Ke (also called G), with 

an appropriate standard (for instance silicon powder from Si-single crystal). This 

methodology is also known as G-method since the standard allows calculating the G-

factor of the diffractometer in the operating conditions. This calculated G-factor 

represents a calibration factor for the whole experimental setup and comprises the 

used diffractometer, radiation, optics, and all data acquisition conditions (f.i. 

detector configuration, integration time, etc.). It is experimentally more time 

demanding but it does not interfere with the hydration reactions. 
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1.5.1.2.SXRPD (BL04 – MSPD, ALBA). 

 In SXRPD, X-rays are generated by a synchrotron facility and are thus at least 

5 orders of magnitude more intense than the best X-ray laboratory source. The high 

brilliance of the synchrotron radiation drastically improves the structural 

characterisation and level of detection of mixture components. The speed of the 

measurement makes possible to perform kinetic studies on structural changes during 

chemical reactions or under temperature and pressure ramps. 

 In this PhD. Thesis, SXRPD patterns have been collected in MSPD (BL04) 
beamline of ALBA, the Spanish Synchrotron Radiation Facility (Barcelona, Spain) 
(Fauth et al., 2013). Debye–Scherrer (transmission) mode was used (Knapp et al., 
2011) with a wavelength of 0.61984(3) Å. The diffractometer is equipped with a so 
called MYTHEN detector system especially suited for time-resolved experiments. Raw 
SXRPD patterns were normalised taking into account the loss of X-ray beam flux with 
time due to the electron beam current decline in the storage ring. Normalised SXRPD 
patterns were analysed by using the Rietveld methodology in order to obtain RQPA. 

1.5.1.3.SEM. 

 SEM is a type of electron microscope that images the sample surface by 
scanning it with a high-energy beam of electrons in a raster scan pattern. The 
electrons interact with the atoms that make up the sample producing signals that 
contain information about the sample surface topography, composition and other 
properties such as electrical conductivity.  

 SEM is used to study the microstructure of cement and cementitious 
materials and in combination with EDS to characterize the chemical (elemental) 
composition of the different phases and their spatial distribution of polished cement 
pastes (Gobbo et al., 2004; Crumbie et al., 2006). Both optical and electron 
microscopes are good complementary techniques to RQPA of clinkers and cements 
(Campbell and Galehouse, 1991; Stutzman and Leigh, 2002; Suherman et al., 2002; 
Stutzman, 2011). 

 Microstructural characterisation of anhydrous and hydrated samples was 
performed in a JEOL JSM-6490LV scanning electron microscope. EDS measurements 
were carried out (on samples coated with graphite) with the OXFORD INCA Energy 
350 attachment. This unit has a Si(Li) detector with a super atmospheric thin window. 
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1.5.1.4. Solid-state NMR spectroscopy. 

 NMR spectroscopy is a powerful characterisation method capable of 
providing information about the structure of materials. The method exploits the 
interaction of nonzero spin nuclei and an external magnetic field to gain information 
about the local atomic environment of a specific nucleus. In cementitious materials, 
the 29Si and 27Al nuclei are the most widely studied nuclei. Different nuclei have 
different natural abundances and spin which affect the clarity of the resulting 
spectra. The natural abundance of a nucleus affects the time required for an 
experiment to achieve an acceptable signal/noise ratio. A higher natural abundance 
requires less experimental time. 

 Much information can be gained from the 29Si nucleus in cementitious 
materials. The presentation of structural information obtained from 29Si NMR in 
silicates often uses Q notation: Qn(mAl), where Q indicates a silica tetrahedron 
forming bridges through n oxygen atoms with adjacent tetrahedra, of which m are 
alumina tetrahedra, where n and m range from 0 to 4. The information gained from 
27Al NMR is much more limited due to the quadrupolar interaction of the 5/2 spin 
nucleus. The quadrupolar interaction causes extreme line broadening that makes 
difficult the fine distinctions in the local atomic environment. An increase in the 
magnetic field used greatly reduces these effects. The basic 27Al NMR experiment 
only gives information about the coordination of the aluminum nucleus, and not 
information on specific local bonding to the nucleus. 

 NMR techniques have been increasingly employed in studies of cementitious 
materials mainly for quantification and characterization of anhydrous and hydrated 
cement phases (Andersen et al., 2003; Poulsen et al., 2009; Florian et al., 2012; 
García-Lodeiro et al., 2012; Cuesta et al., 2014c;) and to understand the hydration 
reactions in OPC cements (Skibsted et al., 2002; Rawal et al., 2010) or blended OPC 
cements (Dyson et al., 2007).  

 The (independent) use of RQPA and NMR methods for characterising 
anhydrous cements and hydration reaction products can be used (Skibsted and Hall, 
2008; Stark, 2011; Brunet et al., 2010). 

 NMR spectra for selected samples were conducted in a Bruker Avance-400 
spectrometer with a 9.39 T widebore superconducting magnet. 

1.5.1.5. Thermal measurements. 

 DTA-TGA have been used to quantify phases in cements and pastes, including 
the free water content. DTA-TGA measurements were performed in a SDT-Q600 



Introduction 

 

61 

 

analyzer from TA Instruments (New Castle, DE). The temperature was varied from 

room temperature to 1000°C at a heating rate of 10 °C/min. Measurements were 
carried out in open platinum crucibles under nitrogen flow. 

 Although the use of this analysis is straightforward, it allows the 
determination of different phases (f.i. calcium silicate hydrate, ettringite, gypsum, 
monosulphate, aluminium hydroxide and calcium hydroxide in a CSA cement paste) 
through the corresponding dehydration endothermic peaks (Winnefeld and Barlag, 
2010; Telesca et al., 2014; Song et al., 2015). In addition, the overall calcite content 
(700-800°C) or portlandite (∼450°C) can be determined from their decomposition 
temperatures (Scrivener et al., 2004; Puertas et al., 2010). DTA-TGA also allows 
distinguishing between gypsum and bassanite under the appropriate experimental 
conditions (Blaine, 1995), and verify the gypsum/bassanite ratio obtained from RQPA 
(Leon-Reina et al., 2009).  Furthermore, DTA-TGA and RQPA have been carried out to 
monitor the long-term hydration behaviour of cement monoliths containing organic 
waste (Leoni et al., 2007), and to investigate long-term leaching in concretes 
(Marinoni et al., 2008). 

1.5.1.6. Isothermal conduction calorimetry. 

 The rate of reaction with water in cements can be evaluated using an 
isothermal conduction calorimetry. The heat produced by cementitious materials in 
exothermic hydration reactions is a good indicator of their early-age hydration 
behaviour (Gartner et al., 2002). This methodology allows understanding the 
chemical origin of different regions/features (hydration reactions), the changes in 
reaction kinetics (Winnefeld and Barlag, 2010; Jansen et al., 2012b; Hargis et al., 
2014b) and also supports the accuracy of RQPA (Hesse et al., 2011; Jansen et al., 
2011b; Jansen et al., 2012a).  

 The isothermal calorimetric study was performed for selected samples in an 
eight channel Thermal Activity Monitor (TAM) instrument using glass ampoules. 
Pastes were prepared by mixing ∼6 g of each sample with the appropriated water 
and the heat flow was collected up to 168 h at 20°C. 

1.5.1.7. MIP. 

 Mercury intrusion porosimetry is based on the principle that the intrusion 
volume of mercury into a porous medium depends on the applied pressure. If the 
pore geometry is assumed to be cylindrical the pore diameter (size) can be related to 
the applied pressure. Open porosity was measurement through mercury porosimetry 
using a Quantachrome (Autoscan 33, Boynton Beach, Florida, US) porosimeter. 
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 BCSA cement hardens quicker than OPC due to the fast formation of 

ettringite and AH3. The initial hydration products quickly reduce the internal pore 

space at first hours of hydration, and smaller pores (∼25 nm) dominate over the 

capillary pores (∼200 nm) and the system develops a bimodal pore structure, which 

generally correlates to a disconnected pore structure and a denser microstructure 

(Bernardo et al., 2006). 

1.5.1.8. Rheological behaviour. 

 Rheology is the science that studies the flow and deformation of the matter 

under the influence of a mechanical force. It is concerned particularly with the 

material behaviour which cannot be described by the simple linear models of 

hydrodynamics and elasticity. When cement is mixed with water, each phase 

dissolves at least partially, leading to the establishment of supersaturated solution 

with respect to different hydrates, which can precipitate. As all chemical reactions, 

they obey the laws of thermodynamics and kinetics (Roussel, 2012). 

 Rheological measurements of the cement pastes were carried out using a 

viscometer (Model VT550, Thermo Haake, Karlsruhe, Germany) with a serrated 
coaxial cylinder sensor, SV2P, provided with a solvent trap to reduce evaporation. 
Flow curves were obtained with controlled rate (CR) measurements using a three-
stage measuring program with a linear increase in the shear rate from 0 to 100 s-1 in 
60 s, a plateau at 100 s-1 for 30 s, and a further decrease to zero shear rate in 60 s. 
Before starting the rheological measurement, the pastes were presheared for 30 s at 
60 s-1.  

 In rheology the graph representation of the correlation between shear stress 
and shear rate defining the flow behaviour of a liquid is called the “Flow Curve” (see 
figure 1.12.a). Other way to show the flow behaviour is through the “Viscosity curve”, 
the correlation between viscosity and shear rate (see figure 1.12.b). Once the cement 
is rheologically characterised, it is possible to improve the workability/flowability of 
mortars/pastes (Banfill, 2006) by the addition of additives to obtain more 
homogeneous mixtures and hence, improved mechanical properties (García-Maté, 
2015). Moreover, the setting evolution of cement pastes can be also followed at very 
early hydration times by following their viscosity values with time at a fixed shear 
rate, or even through oscillatory measurements. 
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Figure 1.12. Examples of a) flow curve and b) viscosity curve of CSA cement 

paste (A25CSA; w/c=0.5) (García-Maté, 2015). 

 

1.5.2. Mortar characterisation. 

1.5.2.1. Compressive strength. 

 The compressive strength is defined as the capacity of a material or structure 
to withstand loads tending to reduce size. It can be measured in a testing machine by 
checking the deformation of the material by applying pressure. At their compressive 
strength limit, some materials fracture and others deform irreversibly. So a given 
amount of deformation may be considered as the limit for compressive load. In 
cement based materials (mortars) high values of compressive strength are desired. In 
this PhD Thesis, moulds of 30 x 30 x 30 mm3 have been used to measurement the 
compressive strength values under compression machine (Model Autotest 200/10 W, 
Ibertest, Madrid, Spain). Standard mortars were prepared and mechanically 
homogenized according to the standard EN196-1. A factor of 1.78 was used in order 
to obtain values comparable to those determined by use of standard prisms (40 × 40 
× 160 mm3). 

 Factors determining the compressive strength of a cement paste (Taylor, 
1997) include: i) characteristics of the cement, such as clinker composition and 
microstructure, gypsum content and particle size distribution; ii) w/c ratio and 
contents of air and of any admixtures present in the mix; iii) mixing conditions; iv) 
curing conditions (temperature and relative humidity); v) curing age; vi) the manner 
of testing, including the water content of the specimen. The factors listed determine 
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the degree of hydration of the clinker phases, the phase composition and the 

microstructure of the hardened paste, which in turn determine its physical 

properties, including strength.  

1.5.2.2. Shrinkage/Expansion properties (Length Changes). 

 During the cement hydration, length changes can occur. The expansion (or 

shrinkage) experienced in mortars is mainly related to the nature of the pore 

structure, which affects the mobility of ions and the available space to accommodate 

new phases. Both adequate deformability and strength values are required to allow 

expansion without the formation of cracks. The dimensional stability of all the 

mortars prepared was measured with an analogic length comparator (mod. E077, 

MATEST) in standard prismatic samples (40× 40×160 mm) by applying the equation 
ΔL(%) = [(Lf − L0)/L0] × 100. In this equation, Lf is the measured length at a given time 
and L0 is the initial length (taken just after demolding and prior to immersion in 
water).  

 The hydration of OPC cement causes a reduction in the absolute volume of 
the paste. In CSA and BCSA cement systems the expansive behaviour associated with 
ettringite formation has been widely studied (Mehta, 1973; Cohen, 1983a, b; Andac 
et al., 1999; Scherer, 1999; Scherer, 2004; Flatt and Scherer, 2008; Winnefeld and 
Lothenbach, 2010; Chen et al., 2012) but the mechanisms of expansion are still not 
fully understood. Calcium, sulphate or hydroxyl ions promote, when present in 
elevated amounts, the formation of fine ettringite crystals on the surface of C4A3S 
particles; in addition, they can combine, if their concentration is relatively low, with 
enough Al(OH)4

- ions to produce large ettringite crystals in the bulk solution. Various 
mechanisms implicated in external sulphate attack of cementitious materials were 
well reviewed by Brown and Taylor (1999). Most of their arguments have a general 
validity to systems in which expansion is related to ettringite formation (Bizzozero et 
al., 2014). The two head theories about the origin of expansion associated with 
ettringite are: the “crystal growth” and “swelling”. First one concludes that expansion 
is caused by the growth of ettringite crystals and the related crystallization pressure 
(Bentur and Ish-Shalom, 1974; Ogawa and Roy, 1981; Herrick et al., 1992; Deng and 
Tang, 1994); but according to the last theory (Mehta, 1973; Mehta and Hu, 1975; 
Mehta and Wang, 1982), the expansion is due to the adsorption of water molecules 
on ettringite, resulting in interparticle repulsion and swelling. 

1.5.2.3. Setting. 

 The setting and hardening of cement is a continuous process, but two points 
are distinguished for test purposes: 
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 i) The initial setting time, which is the interval between the mixing of the 

cement with water and the time when the mix has lost plasticity, stiffening to a 

certain degree. It marks roughly the end of the period when the wet mix can be 

moulded into shape. It is determined by monitoring the repeated penetration of a 

needle into a fresh cement paste of standard consistence (using the Vicat apparatus), 

and the time of initial setting is taken when the distance between the needle and the 

base plate is of 6±3 mm according to UNE-EN 196-3. 

 ii) The final setting time, which is the point at which the set cement has 

acquired a sufficient firmness to resist a certain defined pressure and according to 

UNE-EN 196-3 corresponds to a penetration of the needle of only 0.5 mm in the 

cement paste specimen. 

 There are several parameters which affects initial and final setting times such 

as water/solid ratio, fineness, sulphate source, solubility and so on. For example 

Pelletier-Chaignat et al. (2012) measured the setting times of samples containing 

calcium sulphoaluminate clinker and gypsum combined with quartz filler or 

limestone filler. The results show that the use of limestone filler instead of quartz 

filler accelerates the early hydration of the cement, thus shortening the initial setting 

time. 

 In this Thesis, paste setting times were determined using the Vicat test 

method according to UNE-EN 196-3, in VICATRONIC continuous penetration 

equipment (mod. E044N, MATEST). 
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2. OBJECTIVES 

 The general aim of this PhD Thesis is to better understand the hydration 

mechanism of BCSAF cements to correlate it with the mechanical properties of the 

corresponding mortars. The specific objectives established in this work are described 

below: 

 i) To scale up the synthesis of two iron-rich belite sulphoaluminate clinkers 

(BCSAF) in the laboratory at "medium scale" (∼2 kg) that contain different 

polymorphs of belite and ye'elimite. 

 ii) To perform an accurate full mineralogical analysis of anhydrous BCSAF 

clinker and other related materials, including the quantification of amorphous and 

crystalline non-quantified (ACn) contents by LXRPD and Rietveld method.  

 iii) To understand the hydration of BCSAF cement pastes at different curing 

ages through the quantification of the phase assemblage including ACn contents. To 

estimate the elemental composition of ACn phase(s) through LXRPD (indirectly) and 

SEM-EDS studies (directly). 

 iv) To determine the effect of different parameters in the phase assemblage 

of the cement during hydration, such as the type of polymorphs present in the clinker 

composition, and the amount and type of sulphate source in the cement. 

 v) To correlate the phase assemblage of BCSAF cement pastes with the 

mechanical properties, mainly compressive strength values and shrinkage/expansion 

of the corresponding mortars. 
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Abstract 

Iron-rich Belite Calcium SulfoAluminate cements, BCSAF, are a sustainable alternative 
to OPC to reduce CO2 emissions. Their most common composition includes belite, 
ye'elimite and ferrite. The hydration of BCSAF-pastes is affected by the presence of 
different sulfate sources, water-to-cement (w/c) ratio, and the polymorphs of 
ye'elimite and belite. The aim of this research is to understand the influence of the 
sulfate source on the hydration of two laboratory-prepared BCSAF-cements. One 
studied clinker contained β-belite and orthorhombic-ye'elimite (non-active), and the 
other one α'H-belite and pseudo-cubic-ye'elimite (activated with borax during 
clinkering). Pastes were mainly characterized through Rietveld-quantitative-phase-
analysis of powder patterns, thermal analysis and scanning-electron-microscopy. 
Active-mortars developed higher compressive strengths than non-active-mortars, 
independently of the sulfate source. The highest values for active-mortars (w/c=0.55) 
were 40±1MPa (28d) with anhydrite, and 68±1MPa (120d) with gypsum. Ettringite 
content and stability and hydration of belite are key issues that justify the reported 
mechanical strengths. 
 
 

Keywords: Hydration (A), Rietveld Method (B), Backscattered Electron Imaging (B), 
Compressive Strength (C), Sulfobelite (D). 
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4.1. SYNTHESIS OF LABORATORY-PREPARED BCSAF CLINKERS: SCALE-UP. 

 One of the main objectives of this Thesis has been to perform the "medium-
scale" synthesis of two BCSAF clinkers in our laboratory. The term "medium-scale" 
has been used in this work because the amount prepared from each of them has 
been about 2 kg, much higher than that used until now in the laboratory (a few 
grams). 

4.1.1. Raw material characterisation. 

 In the preparation of the clinkers, the same raw materials commonly used in 
cement plants were used. Their characterisation was carried out by XRF chemical 
analysis, RQPA and DTA-TG studies. The raw materials used here were: limestone, as 
a source of calcium (from the cement factory Financiera y Minera, in Málaga); kaolin, 
as source of aluminium and silicon (from the company Caolines Vimianzo, S.A.U., 

CAVISA, La Coruña, ref. NC-35); gypsum, as a sulphur source (from the cement 
factory Financiera y Minera, in Málaga); a red bauxite, as a source of iron and 
aluminium, supplied by Cementos Molins; marl, a sand supplied by Financiera y 
Minera (in Málaga) was used as a silicon corrector; and finally borax (Prolabo, 97% 
min.), Na2B4O7 • 10H2O, was used as an activator of clinker. The chemical composition 
of raw materials was determined by XRF and is given in Table 4.1. 

Table 4.1. Elemental composition of raw materials determined by XRF and 
expressed as oxide wt%. 

 Limestone Sand Kaolin Bauxite 

Al2O3 0.18 1.85 35.17 54.5 
CaO 54.02 3.10 0.029 1.90 
SiO2 0.80 85.0 47.48 2.27 
Fe2O3 0.09 2.45 1.14 25.3 
K2O  0.46 1.88 0.096 
SO3   0.027 0.175 
Na2O   0.08 0.015 
MgO 0.50 1.95 0.16  
TiO2   0.053 2.58 
MnO   0.016 0.037 
P2O5   0.095 0.061 
ZrO2   0.008 0.054 
LoI

* 44.41 5.19 13.8 12.89 
LoI

*
: Loss on ignition at 1000°C 
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4.1.2. BCSAF clinkers preparation: optimisation of process. 

 Two BCSAF clinkers with the expected phase composition of 50 wt% of C2S, 
30 wt% of C4A3S and 20 wt% of C4AF (Cuberos et al., 2010) were prepared. One of the 
clinkers was “actived” through the addition of borax, 2 wt% expressed as B2O3, to the 
raw material mixture. The aim of the activation has been obtaining clinkers with 
different belite (β-C2S or α'H-C2S) and ye'elimite (orthorhombic or pseudo-cubic) 
polymorphs to understand the effect of the polymorphs on the pastes hydration 
mechanism and mechanical performances. Hereafter, these clinkers will be named as 
BCSAF_B0 (non-active) and BCSAF_B2 (active), for boron-free and boron-containing 
clinker, respectively. Table 4.2 depicts dosage of raw materials used to prepare both 
clinkers and the corresponding elemental composition of the raw mixtures. The 
clinkering process was optimised to obtain about 2 kg of clinker. 

Table 4.2. Raw materials dosages in wt% and elemental composition of raw 
mixtures except for water or CO2 (expressed as oxide in wt%).  

 BCSAF_B0 BCSAF_B2 

Limestone 59.2 56.9 

Bauxite 17.1 16.5 

Kaolin 9.3 8.9 

Gypsum 7.5 7.2 

Marl 6.9 6.6 

Borax - 3.9 

CaO 52.7 51.3 

SiO2 17.5 17.0 

Al2O3 19.2 18.6 

Fe2O3 6.6 6.4 

SO3 4.0 3.8 

B2O3 - 2.0 

Na2O - 0.9 

   

 In both cases, the raw mixture (∼3 kg) was pre-homogenized in plastic bags 
for a few minutes. Then, the sample was mixed for 15 min in a micro-Deval machine 
(A0655, Proeti S.A., Spain) at 100+5 rpm with steel balls (9 balls of 30 mm of 
diameter, 21 balls of 18 mm of diameter and balls of 10 mm of diameter up to a total 
ball weight of 2500+4 g). A small amount of grinding additive was used to prevent the 
sticking of the material to the balls. The resulting mixture was pressed into pellets of 
about 40 g (55 mm of diameter and ∼5 mm of height, see figure 4.1.a). Pellets were 
placed in a large Pt/Rh crucible of 325 cm3 of volume (figure 4.1.b). 
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(a) (b)

 
Figure 4.1. (a) BCSAF raw mixture pellet; (b) Pt/Rh crucible use for clinkering. 

 

 A two-step clinkering cycle was previously optimised for 5 g of BCSAF clinkers 
(dye-pressed samples with 10 mm of diameter) with different boron contents, 
(Cuberos et al., 2010). In that study, the best results were found when samples were 
heated at 900°C during 30 min (heating rate of 5 °C/min) and further heated at 
1300°C for 15 min; all samples were quenched with air flow. 

 The same clinkering process was followed to start our study but keeping the 
sample at 1300°C for 15 min resulted not enough for the scaling up; hence, the 
process had to be optimised. Table 4.3 gives RQPA for BCSAF_B0 clinker prepared 
under different thermal cycles. Two main parameters were controlled to determine 
both the optimum temperature and time of dwelling at high temperature: i) the 
targeted phase assemblage and ii) the minimum free lime content. It can be seen 
that 1350°C is the temperature with the lowest percentage of free lime (< 1 wt%) 
indicating the success of the clinkering process. In addition the content of non-
hydraulically active phases, such as gehlenite (C2AS) and γ-C2S, is the lowest when 
heating the samples at this temperature. Figure 4.2 shows, as an example, a selected 
region of three patterns of BCSAF_B0 clinker after different heating cycles. From all 
these results, we concluded that 1350°C (and 30 min of dwelling) was the optimum 
clinkering cycle for our two scaled-up clinkers. 
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Table 4.3. Direct RQPA for BCSAF_B0 clinker prepared following different 
clinkering cycles. 

 1300°C 1325°C 1350°C 

 15 min 45 min 30 min 45 min 30 min 

β-C2S  41.5(4) 38.3(4) 46.7(3) 45.6(3) 46.8(3) 

o-C4A3S 16.2(2) 17.1(2) 13.6(6) 16.1(6) 13.8(5) 

c-C4A3S - - 13.0(6) 11.3(6) 12.8(5) 
C4AF  9.9(3) 10.1(3) 11.0(2) 11.7(3) 15.9(2) 

C2AS  12.2(2) 18.3(2) 6.4(2) 6.5(2) 4.9(2) 

C3A  - - 4.6(3) 4.3(2) 3.3(2) 

γ-C2S  1.7(1) 2.2(2) 2.9(2) 3.1(2) 1.8(1) 

CS  2.9(1) 1.0(1) - - - 

CaO  15.6(1) 13.1(1) 1.8(1) 1.3(1) 0.8(1) 

  
 
 

  
Figure 4.2. Selected region of patterns of BCSAF_B0 clinker after heating at (a) 

1300°C for 15 min , (b) 1325°C for 30 min, and (c) 1350°C for 30 min; and � 
highlights free lime (CaO). 

 

15 20 25 30 35 40 45 50

(a) 

(b) 

(c) 
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 Once the heating cycle was optimised, ∼3 kg of raw material was clinkered to 
obtain ∼2 kg of each clinker (BCSAF_B0 and BCSAF_B2). For that, six pellets (∼40 g 
each) were placed into the Pt/Rh crucible, heated (900°C/30 min and 1350°C/30 min 
with heating rates of 5 °C/min) and quenched with air flow. Since only ∼200 g of raw 
mixture can be clinkered at the same time, the process was repeated several times. 
The as-clinkered pellets were grinded in a micro-Deval mill at 100 rpm for 1 h in 
batches of ∼700 g; the obtained powder was sieved through a 250 μm mesh and 
characterised to verify the viability of the methodology. 

 

4.1.3. Characterisation of the scaled-up BCSAF clinkers. 

 Once the clinkering process was optimised, the two obtained clinkers were 
characterised through LXRPD, including the analysis of selective dissolutions, and 
SEM-EDS. 

4.1.3.1. RQPA (normalised to 100% of crystalline phases). 

 Both scaled-up BCSAF_B0 and BCSAF_B2 clinkers were studied by LXRPD 
(CuKα1 radiation) to identify, characterise and quantify the crystalline phases (by the 
Rietveld method), as described in A#1. Table 4.4 reports the direct RQPA results 
(wt%), normalised to 100% of crystalline phases, obtained for these two clinkers.  
 
 

Table 4.4. Direct RQPA results (wt%) for the two BCSAF clinkers normalised to 100% 
of crystalline phases. Numbers between brackets are the standard deviations of 
three independent measurements. Rietveld disagreement factors are also given. 

Phase BCSAF_B0 BCSAF_B2 

αH’-C2S - 57(2) 

β- C2S 48.7(6) - 

γ-C2S 2.6(5) - 

o-C4A3S 15(1) - 

c-C4A3S 14(1) 31(2) 

C4AF 14.9(2) 10.1(6) 

C2AS 4.4(2)  

CT 1.3(2) 2.1(1) 

RWP/% 3.7 4.3 
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 Figure 4.3 shows a selected range of Rietveld plots for both clinkers, where 
the main phases are labelled. The final phase assemblage obtained for the two 
laboratory-scaled-up prepared clinkers confirms that BCSAF_B0 clinker contains β-C2S 
and both orthorhombic and pseudo-cubic ye'elimite as main phases, meanwhile α'H-
C2S and pseudo-cubic ye'elimite are stabilised in BCSAF_B2. 
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Figure 4.3. Selected range of Rietveld plots for (a) BCSAF_B0, and (b) BCSAF_B2 
clinkers. Peaks due to a given phase are labelled. 

 

 

4.1.3.2. Selective dissolutions. 

 Selective dissolutions of BCSAF_B0 and BCSAF_B2 clinkers were carried out 
for a better characterisation (see A#1). Since main peaks of CT, C3A and merwinite, 
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Ca3Mg(SiO4)2, are overlapped, their identification/quantification by LXRPD and RQPA 
is a very rough task. Figures 4.4 and 4.5 show a small selected region of the Rietveld 
plots for the aluminate and silicate residues of BCSAF_B0 and BCSAF_B2 clinkers, 
respectively. It should be noted that the silicate residue is obtained when aluminate 
phases are removed. In similar way, the aluminate residue is achieved when the 
silicate phases were dissolved.  
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Figure 4.4. Selected range of the Rietveld plots for: (a) BCSAF_B0 aluminate 
residue and (b) BCSAF_B0 silicate residue. 

 
 
 In Table 4.5 is reported the direct RQPA results (wt%), normalised to 100% of 
crystalline phases, obtained for both aluminate and silicate residues of BCSAF_B0 and 
BCSAF_B2 clinkers. The results of this table show that aluminium containing phases 
have not been completely removed from the silicate residue (e.g. little amounts of 
C4A3S and C4AF is still present in BCSAF_B2 clinker). Moreover, it also can be 
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observed the existence of a small amount of C2AS in both aluminate and silicate 
residue of BCSAF_B2, that it was not quantified in the original clinker.  
 

Table 4.5. Direct RQPA results (wt%) for the aluminate and silicate residues of 
two BCSAF clinkers normalised to 100% of crystalline phases. Rietveld 

disagreement factors are also given. 

Phase 
Silicate residue Aluminate residue 

BCSAF_B0 BCSAF_B2 BCSAF_B0 BCSAF_B2 

α’H-C2S - 82.8(1) - - 

β- C2S 78.1(1) - - - 

γ-C2S 4.9(2) - - - 

o-C4A3S 3.5(1) - 20.1(6) - 

c-C4A3S - 7.1(1) 26.8(5) 66.4(1) 

C4AF - 3.1(1) 33.9(3) 22.2(3) 

C2AS 10.6(2) 2.8(2) 15.6(3) 4.6(4) 

CT 2.8(1) 4.1(1) 3.7(2) 6.8(2) 

RWP/% 5.5 4.8 4.3 3.9 

 
 
 The Rietveld plot for the silicate residue of BCSAF_B0 is very informative as 
the diffraction peaks from C4AF disappear but the diffraction peak at ∼33.3° (2θ) is 
still present (arrows in Figure 4.4 and 4.5). Hence, this phase may be perovskite or 
merwinite but not C3A. The Rietveld refinements of the silicate residue indicated that 
the fit with perovskite was better (lower R-factors) than that with merwinite. A deep 
analysis of the Rietveld plots of the residues indicates that the peak widths in the 
BCSAF_B2 are narrower than those in BCSAF_B0. For instance, the diffraction peaks 
from CT and C4A3S in BCSAF_B2 aluminate fraction are narrower than those in the 
BCSAF_B0 aluminate fraction; see Figures 4.5.a and 4.4.a, respectively. This 
behaviour is likely due to a better particle growth when borax is added. In fact, 
scanning electron microscopy data (figure 4.6 in the next section) indicate that the 
average particle sizes for BCSAF_B2 are larger than those of BCSAF_B0. 



Results and discussion 

 

181 

 

(a)

(b)

C
2
A

S

C
T

c-
C

4
A

3S

C
4
A

F c-
C

4
A

3
S

, C
4A

F

α
’ H

-C
2S

C
2
A

S

C
4
A

F

α
’ H

-C
2
S

α
’ H

-C
2
S

α
’ H

-C
2
S

C
T

 ,
α

’ H
-C

2
S

c-
C

4
A

3S
, C

4
A

F

 

Figure 4.5. Selected range of the Rietveld plots for: (a) BCSAF_B2 aluminate 
residue and (b) BCSAF_B2 silicate residue. 

 

4.1.3.3. SEM-EDS characterisation. 

 Size, morphology and composition of particles of both clinkers were studied 
through SEM-EDS (in A#2). Figures 4.6.a and 4.6.b show SEM micrographs of the 
polished anhydrous BCSAF_B0 clinker at different magnifications. Figures 4.6.c and 
4.6.d show the equivalent micrographs for the polished anhydrous BCSAF_B2 clinker. 
Figures 4.6.a and 4.6.c show ye'elimite angular shaped particles, as previously 
described (Pérez-Bravo et al., 2014). The identification of these particles was 
confirmed by EDS analysis, showing semi-quantitative average Al/Ca and S/Ca ratios 
of 1.4 and 0.10, respectively, which are relatively close to the theoretical values, 1.5 
and 0.25, respectively. Moreover, this study revealed that the average particle size of 
ye'elimite in BCSAF_B0 was slightly smaller than that in BCSAF_B2; this is marked 
with arrows in Figures 4.6.a and 4.6.c. In addition, belite particle size was also studied 
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by SEM, being also smaller in BCSAF_B0 than in BCSAF_B2 clinker; in both cases these 
particles show a typical rounded shape.  

 
Figure 4.6. SEM micrographs of (a) and (b) anhydrous non-active-BCSAF 

clinker (BCSAF_B0), and (c) and (d) anhydrous active-BCSAF clinker 
(BCSAF_B2) (Figure 4 in A#2).  

 

4.2. PHASE ANALYSIS OF DIFFERENT YE'ELIMITE-CONTAINING CLINKERS AND 

CEMENTS. 

 In general, ye'elimite-containing cements are complex materials due to the 
presence of many crystalline phases, some of them also displaying polymorphism. 
LXRPD is the most appropriate technique to identify, characterise and quantify the 
crystalline phases within these samples. Therefore, if the mixture has an appreciable 
amount of amorphous and/or non-crystalline phases, this method may be considered 
as semi-quantitative. To overcome this problem, two approaches have been used in 
this PhD Thesis, the internal and the external standard methods (see Introduction 
section).  

 In this section we discuss the most relevant results described in A#1 
concerning the characterisation of these anhydrous materials through RQPA. The 
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research was aimed to: i) identify and quantify the crystalline phases present in 
several ye'elimite-containing clinkers and cements and ii) quantify their ACn content 
through two methodologies (external standard in reflection geometry and internal 
standard in transmission geometry). In order to do so, three commercial CSA clinkers 
(ALIPRE®, BELITH_CS10 and S.A.cement), one CSA cement (CSA_trial) and two 
laboratory-prepared BCSAF clinkers (BCSAF_B0 and BCSAF_B2) were analysed 
through LXRPD. 

4.2.1. RQPA (normalized to 100% of crystalline phases). 

Firstly, direct RQPA of these samples, normalised to 100% of crystalline 
phases, was performed, and they are shown in Tables 4.4 and 4.6. These values were 
obtained from the approach described in section 1.5.1.1., and hence, the presence of 
an ACn fraction was not considered. Note that standard deviations in these tables are 
those derived from three independent measurements (they are not the 
mathematical errors from the Rietveld refinements). These three analyses were 
carried out to different portions of the samples for better averaging (i.e. not 
recording three patterns for the same sample). Figures 1 to 6, in A#1, show a selected 
range of the Rietveld plots for the six studied ye'elimite-containing materials, 
showing the good fit of the analysis. The major peaks for each phase are labelled. 
Several conclusions can be obtained from this analysis, as described below: 

 

Table 4.6. Direct RQPA results (wt%) for the ye'elimite-containing cements normalized to 
100% of crystalline phases. Numbers between brackets are the standard deviations of three 

independent measurements. 

 o-C4A3S c-C4A3S αααα’H-C2S ββββ-C2S C4AF CT M C5S2S CSH2 CS C3S 

ALIPRE®
a
 51.0(7) 18.5(6) 9.4(3) 7.7(1)  3.5(1) 0.52(2)   9.0(4)  

BELITH-

CS10
b
 

40.1(9) 25.5(6)  16.0(2) 2.4(1) 9.3(1) 2.2(2)     

S.A.cement
c 27.5(5) 28.7(6) 21.4(9) 9.7(4)  3.5(4) 1.1(1)   6.3(1)  

CSA_trial
d
 17(1) 23.6(7)  9.0(9)  4.8(2)  16.2(5) 13.7(4) 8.5(2) 5.9(5) 

aAlso contains 0.5(1) wt% of Na2Si2O5. 
bAlso contains 4.6(1) wt% of akermanite. cAlso contains 

1.9(1) wt% of CA. dAlso contains 1.8(7) wt% of dolomite. 

 

 i) The good accuracy of the analyses was confirmed by comparing the 
amount of magnesium oxide obtained by RQPA and the obtained by XRF (Tables 2 
and 5 in A#1). Magnesium oxide contents were chosen because magnesium is little 
soluble in the ye'elimite or belite structures. For example, RQPA showed the highest 
amount of periclase (MgO) for BELITH_CS10, 2.2(2) wt%, and this is in full agreement 
with elemental analysis determined by XRF. Furthermore, S.A.cement (the second 
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sample with the highest magnesium content determined by XRF, 1.5 wt%) showed 
the second highest periclase content, 1.1 wt%, calculated by RQPA. 

ii) Five out of six studied samples contained a mixture of orthorhombic and 
pseudo-cubic sodalite type-structures of ye'elimite. Only, BCSAF_B2 clinker showed 
just pseudo-cubic ye'elimite (Cuesta et al., 2014c). Stoichiometric ye'elimite at room 
temperature is orthorhombic Pcc2. However, the substitutions of Ca2+ by Na+ and Al3+ 
by B3+, Si4+ or Fe3+ seem to restore the cubic symmetry (Hargis et al., 2014a). The 
SEM-EDS study performed on BCSAF_B0 and BCSAF_B2 clinkers (see previous section 
4.1.3.3.) shows that the ye'elimite particles in BCSAF_B2 containing little amount of 
Si, Fe and Na. The crystal structure of a doped (disordered) ye'elimite 
(Ca3.8Na0.2Al5.6Fe0.2Si0.2O12SO4) has been studied at room temperature (Cuesta et al., 
2014c). These authors established that the addition of SiO2, Na2O, and Fe2O3 
stabilized the high temperature pseudo-cubic form of ye'elimite at room 
temperature. Bullerjahn et al. (2014) also found a mixture of pseudo-cubic and 
orthorhombic ye'elimite in their cements, and the pseudo-cubic polymorph increased 
at the expense of the orthorhombic one with increasing the iron content. A reverse 
correlation between the amount of ye'elimite and tetracalcium aluminoferrite (C4AF) 
was found, which agrees with the incorporation of iron into the ye'elimite 
framework. 

 iii) Different belite polymorphs have been identify and quantify. Borax 
addition fully transforms β-belite in BCSAF_B0 to α′H-belite in BCSAF_B2. The 
mechanism for the borax activation of belite has been very recently unraveled as a 
solid solution, Ca2−xNax(SiO4)1−x(BO3)x, and the crystal structure of α′H-
Ca1.85Na0.15(SiO4)0.85(BO3)0.15 has been worked out (Cuesta et al., 2012). It is also 
noteworthy that S.A.cement has high α′H-belite content. This can be justified with the 
elemental composition (determined by XRF) containing a quite high amount of Na2O 
(1.4 wt%). 

 iv) CS quantified in ALIPRE®, S.A.cement and CSA_trial is the high 
temperature polymorph, anhydrite-II (Kirfel and Will, 1980). So, this less reactive CS 
was produced during the clinkering process. It should be noted that gypsum, 
bassanite and less-soluble anhydrite-II can be easily distinguished and quantified by 
RQPA. However, bassanite and highly soluble anhydrite-III can only be distinguished 
in especial experimental conditions (Seufert et al., 2009) with high-quality LXRPD 
data. 

 v) The presence of ternesite (C5S2S, also known as sulphate-spurrite) is quite 
uncommon in CSA or BCSA clinkers. However, CSA_trial has a high amount of 
ternesite, 16.2(5) wt%. This is likely due to a very high SO3 dosage in the raw 
materials. SO3 value for this cement determined by XRF (16.7 wt%) is very high even 
taken into account the ∼14 wt% of gypsum added. Overall SO3 values range 



Results and discussion 

 

185 

 

approximately from 9 to 14 wt% for CSA clinkers and between 3 and 4 wt% for BCSA 
clinkers. 

 vi) Titanium is usually present in CSA and BCSA cements as it accompanies 
aluminium in bauxites. Furthermore, titanium may replace aluminium in some 
phases but the solubility limits are normally exceeded in CSA and BCSA clinkers. This 
is evident from the RQPA as the perovskite CaTiO3 phase segregates. We have carried 
out the RQPA with this assumed stoichiometry, CaTiO3, however further studies are 
needed in order to establish the stoichiometry of the perovskite phase as it is well 
known that this phase forms extensive solid solutions with transition metals. 

 

4.2.2. ACn content determination. 

 The ACn contents for the ye'elimite-containing samples were determined by 
two approaches: i) external standard procedure (G-factor method) with reflection 
geometry; ii) internal standard procedure (spiking method with ZnO), using CuKα1 
radiation. 

 Table 6 in A#1 shows the RQPA results (wt%) including the ACn content for 
the studied ye'elimite-containing samples. The values obtained from reflection 
geometry using an external standard (G-factor method) are given in the first row, and 
those obtained from transmission geometry using ZnO as internal standard are given 
in the second row. In both cases, standard deviations are derived from three 
independent measurements. 

 The main conclusions drawn from the comparative study were: on the one 
hand, the G-factor method allows the measurement of both crystalline phases and 
ACn contents. The ACn contents obtained for CSA clinkers/cements are similar to 
those found in OPC cements, ∼10 wt%. However, these contents are much higher in 
BCSAF clinkers, of the order of 25 wt%, in agreement with García-Maté et al. (2015b). 
On the other hand, the ACn values obtained by the internal standard showed the 
same trend obtained by the G-factor methodology, except for BELITH_CS10, which 
essentially showed a cero value.  

 The quantification of crystalline samples, taking into account ACn contains, 
obtained under these two methods matched quite well for four samples (S.A.cement, 
CSA_trial, BCSA_B0 and BCSAF_B2). However, for ALIPRE® and BELITH_CS10, the 
results are not that satisfactory. For the former, the differences in the quantification 
of c-C4A3S, β-belite and ACn are 5.7, 4.3 and 10.3 wt%. Three times the standard 
deviations is commonly used for a good level of confidence. So, the sum of 3σ for the 
two analyses (internal and external standard methods) was calculated giving 3.0, 5.1 
and 9.6 wt% for c-C4A3S, β-belite and ACn values, respectively. Therefore, the 
quantification of c-C4A3S for ALIPRE® is well out of the limits. For BELITH_CS10, the 
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differences in the quantification of o-C4A3S, β-belite and ACn are 4.3, 7.2 and 14.5 
wt%, with the sum of 3σ for the two analyses giving 3.9, 3.9 and 5.7 wt%, 
respectively. In this case, the quantification of β-belite and ACn do not agree. García-
Maté et al. (2015b) have recently published a comparative study of the amorphous 
determination in CSA and building related materials by these two methodologies. 
They reported that scale phase factors seem to be correlated to peak shape 
parameters or phenomena such as preferred orientation, which results in the 
overestimation of the ACn contents determined by G-factor method. 

 To finish this study, it is worth to highlight the importance of having accurate 
structural descriptions for every phase of the cements to be analysed. This is more 
important for major phases, and it will be illustrated for the RQPA of BCSAF_B2. If the 
‘old’ published approximate crystal structure of α′H-C2S is used (Mumme et al., 1995), 
the Rietveld fit of the reflection data gave RWP=5.2% and RF(α′H-C2S)=7.2%. The 
application of the G-method gave α′H-C2S and ACn contents of 35(1) and 33(1) wt%, 
respectively. A better Rietveld fit of the same pattern was achieved when a revised 
structural description was used, α′H-Ca1.85Na0.15(SiO4)0.85(BO3)0.15 (Cuesta et al., 2012). 
As a result lower disagreement factors were obtained: RWP=4.9% and RF(α′H-
C2S)=5.7%. This better fit gave a larger α′H-C2S scale factor (30.9(3) instead of 25.5(2)) 
and therefore, the α′H-C2S content was higher (41(1) wt%) and ACn content smaller, 
28(1) wt%. So, the use of approximate crystal structures gives lower determined 
crystalline phase contents and higher ACn contents, as expected. 

 

4.3. HYDRATION STUDY OF BCSAF CEMENTS. 

 The hydration and inter-relationship between phase composition and 
performance of the two laboratory-prepared BCSAF cements were studied. The 
presence of different polymorphs of ye'elimite and belite affects the hydration due 
to the different reactivity of those polymorphs. The aim of this section is to 
understand the influence of different types and amounts of calcium sulphate sources 
on the hydration of two laboratory-prepared BCSAF cements which contain different 
belite (β-C2S or α'H-C2S) and ye'elimite (orthorhombic or pseudo-cubic) polymorphs 
(A#2, A#3 and A#5). 

 The methodology to prepare cement pastes was previously optimised. 
Initially, methacrylate sample holders (at 20±1°C and 99% relative humidity) covered 
with a plastic wrap were used to store the pastes until the corresponding 
measurements were performed (A#3); this procedure gave irreproducible results 
(due to carbonation problems) and segregations during early-age hydration. Finally, 
cement pastes were poured into hermetically closed PTFE cylinder shape moulds and 
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rotated at 15 rpm during the first 24 hours at 20±1°C; after that, the samples were 
demoulded and stored within deionised water at 20±1°C until the age of study (A#5, 
submitted). With this procedure, we have achieved homogenous cement pastes, 
avoiding the undesired drying and carbonation effects during hydration.  

 Additionally, a methodology to stop hydration was established prior to LXRPD 
characterisation (described in A#3). It is known that complete drying of sample 
without any chemical and/or physical effects is not possible in practice, so it is very 
important to select the appropriate methodology for water removal (Zhang and 
Scherer, 2011). One fraction of the pastes was milled to fine powder in an agate 
mortar prior to stopping hydration. The stopping procedure consisted on filtration in 
a Whatman system (90 mm diameter Whatman filter with a pore size of 2.5 μm and a 
Teflon support) with acetone (Prolabo S.A.) twice and finally with diethyl ether 
(Prolabo S.A.). Although, the use of acetone may affect the specific surface area of 
the cements (Zhang and Scherer, 2011), we have not observed this effect in our 
experimental conditions. The stopped-hydration samples were stored in a desiccator 
to avoid further hydration and any possible carbonation/alteration.  

 All the cement hydration studies were performed on pastes prepared by 
mixing cement with water at w/c = 0.55. We are fully aware that lower w/c ratios 
give large mechanical strength developments, but we have chosen this ratio in this 
first study to avoid irreproducible local drying effects. Studies with variable w/c ratios 
are planned, but not for this Thesis.  

4.3.1. Hydration of BCSAF cements with gypsum as setting regulator. 

 Two studies were carried out in our BCSAF cements to better understand 
their hydration behaviour. On the one hand, an in-situ SXRPD study for the first hours 
of hydration was carried out in the XRPD station of ALBA, the Spanish Synchrotron 
Radiation Facility (Barcelona, Spain). RQPA was used to establish the degree of 
reaction (α) of main crystalline phases. Kinetics of hydration and factors influencing 
the hydration reactions were established and correlated to calorimetric data. On the 
other hand, ex-situ studies at later ages of hydration (3, 7, 28 and 120 days) were 
performed to determine the influence of the amount of gypsum added to BCSAF 
cements on hydration behaviour through LXRPD (CuKα1 radiation).  

 Moreover, an attempt to determine the possible composition of the ACn 
(sulphate, silicate, aluminate and iron-bearing groups) was performed; in addition, a 
comparative study of MoKα1 and synchrotron radiations for selected samples was 
also performed. 
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 Sample preparation. For the in-situ study, the two BCSAF clinkers, BCSAF_B0 
and BCSAF_B2, were used and mixed with 10 wt% of gypsum. Then, pastes 
(w/c=0.55) were immediately introduced into glass capillaries of 0.5 mm of diameter 
with a syringe. The capillaries were sealed with wax and grease to avoid any water 
loss. During data collection (Figure 4.7), the capillaries were rotated to improve 
diffracting particle statistics. The data acquisition time was ∼15 min per pattern to 
attain very good signal-to-noise ratio over the angular range of 1–35° (2θ) with λ = 
0.61984 Å. The temperature inside the experimental hutch was 26(1)°C. 

 For ex-situ experiments, the optimisation of the sulphate source content was 
performed by adding different amounts of gypsum (5, 10 and 15 wt%) to both 
clinkers. Cements are labelled hereafter as GgBx, where g = 5, 10 or 15, and x = 0 or 2 
(for non-active or active clinkers, respectively). These cement pastes were also 
prepared by mixing cement with water at w/c = 0.55 (mass ratio). 

 

 

Figure 4.7. Cement paste in sealed capillary placed in the sample holder 
in the XRPD end station of MSPD beamline of ALBA synchrotron.  

 

4.3.1.1. In-situ early hydration behaviour (< 24 h). 

 The early hydration of two BCSAF cements was studied and reported in A#2. 
Figure 4.8 gives selected ranges of SXRPD raw patterns of G10B0 (containing β-C2S 
and orthorhombic ye'elimite) and G10B2 (with α'H-C2S and pseudo-cubic ye'elimite), 
at selected times of hydration. Figures 2 and 3 in A#2 give the extended range of 
these SXRPD raw patterns. 

 The first important difference in the hydration process is the dissolution 
kinetic of gypsum and ye'elimite as reported in Li et al., 2007a. In G10B0, gypsum is 
completely dissolved after 5 h of hydration. However, in G10B2, gypsum is dissolved 
after 11 h (Figures 4.8.a and 4.8.c). Moreover, in non-active BCSA, ye'elimite phase 
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dissolves at a higher pace than in active BCSA. For instance, ye'elimite is fully 
dissolved after 26 h in G10B0, but it is still present after 51 h of hydration for G10B2 
(Figure 4.8.b and 4.8.d). In addition, the crystallisation rate of AFt is also different in 
both cements. At 1 h of hydration G10B0 contains 14.2(2) wt% of AFt while at the 
same hydration time, only 1.9(1) wt% was quantified for G10B2. Both clinkers 
present different ye'elimite crystal structures that may also justify the hydrating 
behaviours. Moreover, the SEM study performed on BCSAF_B0 and BCSAF_B2 
clinkers, discussed in the previous section, revealed that ye'elimite average particle 
size in BCSAF_B0 was slightly smaller than that in BCSAF_B2. This observation may 
also partly justify the faster dissolution of ye'elimite in G10B0. The pH value of the 
pastes was measured to understand the difference in dissolution rates of ye'elimite 
and gypsum between both systems. To measure the pH, a fraction of the prepared 
G10B0 and G10B2 pastes was filtered in a Whatman filter (pore size of 8 μm) after 10 
min of hydration. The pH of the filtration waters was measured by using standard 
digital pHmeter, giving a value of 12.4 + 0.1 for G10B0 and 10.3 + 0.1 for G10B2. It is 
known that the depletion of dissolved sulphate ions causes the increase of hydroxide 
concentration, and consequently a higher pH value (Winnefeld and Lothenbach, 
2010). The fast sulphate consumption by crystalline ettringite precipitation in G10B0 
paste is likely responsible for the higher pH value.  
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Figure 4.8. Selected ranges of SXRPD raw patterns for (a) and (b) G10B0; and (c) 
and (d) G10B2 cement paste at different ages of hydration (λ = 0.61984 Å). 



Chapter 4 

 

190 
 

 The second most important difference between both hydration behaviours 
takes place after 1 day of hydration. On the one hand, in G10B0, the dissolution of β-
C2S and C4AF starts after 24 h of hydration, with the consequent crystallisation of 
layered AFm type phases, such as stratlingite (see Figure 4.8.a). On the other hand, 
for G10B2, α'H-C2S percentage remains constant up to 51 h of hydration and C4AF 
dissolves very slowly after 14 h. The difference in reactivity of both belite polymorphs 
is astonishing, i.e. β-C2S reacts faster than α'H-C2S. This behaviour is in disagreement 
with the general accepted idea in the cement field: α-forms of belite are reported to 
have faster hydration kinetics than β-forms (Jelenic et al., 1978; Chatterjee, 1996). 
However, under our studied experimental conditions, β-C2S reacts faster than α'H-
C2S, to yield stratlingite, see equation [1.4] (introduction section). This behaviour may 
well be justified with the formation of high amounts of ettringite at early hours which 
implies a concomitant large quantity of amorphous aluminium hydroxide. The 
availability of amorphous AH3 promotes the precipitation of stratlingite, C2ASH8, from 
belite reaction (equation [1.4]). In conclusion, the hydration behaviour of C2S is likely 
more dependent on the chemical environment than on its polymorphism. 

4.3.1.2. Ex-situ hydration behaviour at late ages (> 24 h), with different amounts of 

gypsum. 

 The influence of the amount of gypsum in BCSAF cements at late ages of 
hydration (> 24 h) was determined through LXRPD and published in A#3. 

 Three different amounts of gypsum were tested: 5, 10 and 15 wt%. The 
hydrated pastes, after stopping hydration, were characterised by LXRPD and Rietveld 
methodology at 3, 7, 28 and 120 days. The G-factor approach was used to obtain a 
full mineralogical phase assemblage including ACn contents. The FW content was 
also determined by the difference between the added water and the combined 
water determined by DTA-TGA. Figure 4.9 shows the degree of reaction of belite 
polymorphs, orthorhombic and pseudo-cubic ye'elimites, and ferrite as a function of 
hydration time and amount of added gypsum. 

Several conclusions can be drawn of this study: 

 - Effect of the activation of clinkers on hydration. The most surprising result of 
the previous study at early ages was that β-belite in non-active clinker reacts at a 
higher pace than α′H-belite in BCSAF_B2. That behaviour has been corroborated in 
this study at later ages, Figure 4.9.a. Thus, the reactivity of β-C2S seems to be 
enhanced by an oversaturation of aluminate ions at early hours to yield stratlingite 
(Martín-Sedeño et al., 2010; Winnefeld and Lothenbach, 2010;). Moreover, ye'elimite 
reacts at a different pace for BCSA_B0 and BCSA_B2. Orthorhombic ye'elimite, in 
non-active cements, is completely hydrated after 3 days of hydration in GgB0, while 
pseudo-cubic ye'elimite in GgB2 reacts at slightly slower pace for the same gypsum 
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content and age of hydration, Figure 4.9.b. This effect was previously observed in the 
hydration study at early hours (A#2). 
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Figure 4.9. Hydration degree, α (%), for GgB0 and GgB2 pastes as a function of 
curing time and amount of gypsum added of (a) C2S; (b) C4A3S; and (c) C4AF. 

Solid lines are just guide3 to the eyes. 
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 It must be underlined that although the phases in BCSAF_B0 react faster than 
in BCSAF_B2, the non-active cement develop much smaller mechanical strength, 
which clearly indicate the importance of the hydration chemistry/environment, as 
discussed previously. 

  - Effect of the amount of gypsum during hydration. Ye'elimite reaction 
kinetics show a small dependence on the amount of added gypsum, as there is a 
slight increase in hydration rate by increasing the gypsum content. This behaviour 
seems to be slightly more marked in pseudo-cubic ye'elimite. The final reaction 
degree of both polymorphs of dicalcium silicate is more affected by the addition of 
gypsum. On the one hand, β-C2S reactivity (α) was enhanced by increasing the 
gypsum content (α rises from 65% to 75% by the addition from 5 to 15 wt% of 
gypsum). On the other hand, α′H-C2S reaction degree decreased from 62% to 42% for 
addition of 5 to 15 wt% of gypsum, respectively, Figure 4.9.a. The hydration of the 
ferrite phase was strongly retarded by increasing the gypsum content in both GgB0 
and GgB2 cements, Figure 4.9.c, in agreement with previous studies (Wang, 2010). 

 - Concerning the hydration products. The main crystalline hydrated 
compounds were ettringite, stratlingite and katoite. Figure 4.10 shows, as a 
representative example, a selected range of Rietveld plots for two samples, G15B0 
and G15B2, hydrated for 120 days. The main peaks of each phase are labelled. The 
amount of crystallised ettringite in GgB2 cements is higher than that in GgB0 
cements, irrespective of gypsum content (see Tables 1 and 2 in A#3). Moreover, the 
crystallisation process of stratlingite is strongly affected by the amount of added 
gypsum; in fact, the amount of stratlingite decreases by increasing the gypsum 
content, Tables 1 and 2 in A#3. The crystallisation of stratlingite was confirmed by 
DTA measurements. DTA curves for G15B0, at all the studied ages, were plotted (see 
Figure 3 in A#3). The endothermic signal at ∼235°C, corresponding to the dehydration 
of AH3, is present at 3 and 7 days. After 28 and 120 days, this signal disappears and 
two endothermic peaks related to stratlingite precipitation at 160−175°C and ∼200°C 
appear (arrows in figure 3 in A#3), thus confirming stratlingite formation by 
consumption of AH3, according to reaction 1.4 given in the introduction. 
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Figure 4.10. Selected range of Rietveld plots for two pastes, (a) G15B0 and (b) 

G15B2, cured for 120 days. 

  

 In addition, the amount of precipitated crystalline katoite seems to depend 
on C4AF hydration, as significant amounts of this siliceous-hydrogarnet phase 
crystallises just after the dissolution of C4AF (Tables 1 and 2 in A#3). This supports the 
hypothesis that katoite might contain a significant amount of iron as a substitute for 
aluminium. Consequently, the katoite solid solution, also known as hydrogarnet, may 
be expressed as C3A1−xFxSH4. The x values were determined by unit cell parameter 
inspection. Refined a unit cell parameters obtained in cubic katoites, for all cement 
pastes, were compiled. Then, according to the equation a = 0.16x + 12.29, obtained 
by assuming a linear variation of the unit cell (Taylor, 1997) the Al/Fe ratio in 
C3A1−xFxSH4 can be estimated. Figure 4.11 shows the theoretical values of a as a 
function of x (dotted line), and the corresponding values obtained for the different 
cement pastes. The average value of the refined unit cell parameters at different 
hydration ages was used in the cement pastes for which the standard deviation (σn−1) 
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was lower than 0.009. When σn−1 was higher, the average was not calculated. For 
G10B2 and G15B2 pastes two values of refined unit cell (a) were calculated. One at 
early hydration ages (3 and 7 days), marked with an asterisk in figure 4.11, and other 
at later ages of hydration (28 and 120 days). 
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Figure 4.11. Values of the cell parameter (a) for katoite vs values of x (moles of 
Fe2O3 in formula C3A1-xFxSH4) for different GgBx pastes. (Dotted line stands for 

theoretical dependence of a as function of x). 

 

4.3.1.3. Elemental composition of ACn.  

 It is not only important to quantify the amorphous content, also try to 
characterise and estimate its elemental composition to correlate it with the cement 
hydration behaviour and mechanical properties. As it was discussed in the 
introduction, it is not possible to determine the chemical composition of ACn directly 
by LXRPD. An attempt to find out the possible composition of the ACn (sulphate, 
silicate, aluminate and iron-bearing groups) was performed through RQPA combined 
with G-factor, which was published in A#3. For this purpose, the evolution of 
different ions-containing groups was studied with time: 

 i) Sulphate groups. The amount of reacted/dissolved sulphate was 
determined from the disappearance of ye'elimite and gypsum; and the amount of 
crystallised sulphate was calculated from the formation of ettringite. Figure 4.12 
shows the evolution of sulphate content with time for G10B0 and G10B2 pastes as 
representative examples. The dotted line represents the maximum sulphate that can 
be hydrated and/or crystallised. As mentioned before, we can observe that the 
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crystallisation of AFt in BCSA_B2 is higher than that in BCSA_B0 pastes: ∼76 wt% of 
the hydrated sulphates had crystallised for G10B2 against ∼57 wt% for G10B0, 
meaning that, in this case, ∼43 wt% of dissolved, but not crystallised, sulphate groups 
(Figure 4.12) were mainly incorporated into ACn phase(s) and/or in pore solution 
(Winnefeld and Lothenbach, 2010). 
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Figure 4.12. Hydration and crystallization rate of sulphate groups for (a) G10B0 
and (b) G10B2 pastes. Dashed lines represent the maximum values of dissolved 

sulphate group. 

  

 ii) Silicate groups. The evolution of silicate contents (both dissolved and 
crystallised) in G10B0 and G10B2 pastes (as representative examples) during 
hydration is shown in Figure 4.13. On the one hand, hydrated silicate contents stand 
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for the amount of silicon-bearing phases that have reacted with water (calculated 
from belite consumption, Tables 1 and 2 in A#3). On the other hand, crystallised 
silicate contents mean the amount of silicon-containing crystalline hydrated phases 
that have precipitated and been quantified, that is, stratlingite and katoite (from 
Tables 1 and 2 in A#3). Dotted lines in Figure 4.13 stand for the maximum hydrated 
silicate content for G10Bx cement pastes. The amount of crystallised silicate is higher 
in G10B0 than in G10B2, where higher amounts of stratlingite were found. Thus, a 
higher amount of hydrated silicate remains in the amorphous phase(s) for G10B2 
cement paste. 
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Figure 4.13. Hydration and crystallisation rate of silicate groups for (a) 

G10B0 and (b) G10B2 pastes. Dashed lines represent the maximum values 
of dissolved silicate group. 
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 iii) Aluminate groups. The evolution of aluminium was also studied through 
the same methodology. Hydrated aluminate contents were obtained from C4A3S and 
C4AF consumption, and crystallised aluminate amounts were calculated from the 
precipitated AFt, katoite, and stratlingite. Evolution of aluminate with hydration time, 
for G10Bx, G5Bx and G15Bx pastes, is given in Figures 4, S4 and S5 (Supporting 
Information) of A#3. The amount of crystallised aluminium-bearing phases was 
higher in GgB0 than in GgB2 cement pastes, matching in some cases the maximum, 
whereas more than 30 wt% of the aluminate content remained in the ACn phase(s) 
for GgB2 cement pastes, and/or to a minor extent in pore solution. 

 - NMR study: A NMR study was also performed on these samples (G10Bx) 
during my research stage at Instituto de Ciencias de los Materiales (ICMM-CSIC) in 
Madrid. Here, the complex heterogeneous molecular compositions and structures of 
anhydrous and hydrated cements have been followed by solid-state NMR. One-
dimensional (1D) single-pulse NMR measurements are generally quantitative, 
allowing resolved species to be evaluated and their relative populations monitored 
over time, as the cement hydrates and solidifies. 1D single-pulse 29Si and 27Al NMR 
have been used to characterise the species in anhydrous and hydrated G10Bx 
cement. 

 It has been established that the primary silicate constituents of cements are 
so-called Q0 29Si silicate species that compose dicalcium silicate (C2S) phase. (“Qn” 
refers to 29Si atoms that are covalently bonded via bridging oxygen atoms to n < 4 
other Si atoms; “Qn(mAl)” similarly refers to a 29Si atom bonded via bridging oxygen 
atoms to n other silicon or aluminium atoms, m of which are Al). During the 
hydration process, more condensed silicate species form disordered products, such 
as calcium-silicate hydrates or amorphous phases, are characterised by Q1 and Q2 
29Si moieties with broad distributions of local environments that are typically not 
resolved by single-pulse 29Si MAS NMR or other methods. In cements hydrated for 
longer times, Q3 and Q4 29Si silicate species are also prevalent, which indicates a 
more densely cross-linked silicate network, as expected. 29Si NMR MAS spectra for 
G10B0 and G10B2 (anhydrous and hydrated) are shown in Figures 4.14 and 4.15, 
respectively. Similarly, solid-state 1D 27Al NMR measurements show that aluminate 
species in anhydrous cements have principally 4-fold coordination (AlIV). The initial 
anhydrous cement phases, containing aluminate, are C4A3S and C4AF, and they are 
composed principally of AlIV species. The 27Al NMR signals are often extensively 
broadened by ferro- or paramagnetic iron components in close proximity. The iron 
components can be present in crystalline or disordered regions as cations, oxides, 
and/or hydroxides (e.g., Fe2+, Fe3+, Fe2O3, Fe3O4, Fe(OH)3, referred to broadly as 
“ferrites” within the cement literature) with indefinite compositions and 
distributions. During hydration, AlIV species are thought to react with the calcium 



Chapter 4 

 

198 
 

silicate species and be partially incorporated into the amorphous phase, with some 
AlIV species replacing four-coordinated 29Si atoms. For these reasons, the 
quantification of the intensities in all the 27Al MAS NMR spectra becomes very 
difficult. 
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Figure 4.14. 29Si NMR MAS spectra for G10B0 cement, (a) anhydrous, and hydrated at 
different curing times: (b) 7 days, (c) 28 days, and (d) 180 days. 

 The 29Si signals, that are clearly resolved at -70.3, -71.4 and -73.5 ppm in 
Figures 4.14 and 4.15, are assigned to α, β and γ belite polymorphs, respectively. 
Other 29Si signal was observed in two figures (Figures 4.14 and 4.15) at -72.5 ppm 
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related to the gehlenite phase. Hydrated cements are substantially more complicated 
than the anhydrous starting materials due to the presence of species with local 
environments witout long-range order which exacerbates the 29Si signals overlapping. 
29Si signals intensity over the range -67 to -76 ppm, decrease slightly with the 
hydration time, which indicates that the anhydrous silicate species have reacted to 
form hydration products. Additionally, at early hydration time (7 days) of G10B0, 
broad upfield 29Si signal is observed at aprox. -86.5 ppm, (Figure 4.14.b), which is 
attributed to Q2(1Al) silicate species. This signal indicates that the stratlingite is 
formed in this paste (Santacruz et al., 2015) and it increases with the hydration time 
(Figures 4.14.c and d). Moreover the 29Si signal intensity over -80 ppm increases with 
the hydration time, indicating that a condensed Q2(2Al) silicate species are being 
formed, probably in the amorphous phase. In G10B2 the 29Si signal corresponding to 
the formation of stratlingite is not observed until 28 days of hydration (Figure 4.15.c). 
In general the 29Si signal for G10B2 is wider than the corresponding for G10B0, likely 
due to the higher amount of ACn content present in the G10B2. These results seem 
to be in accordance with that obtained in previous studies about the evolution of 
silicate groups in G10B0 and G10B2 samples. 

 The quantification of 29Si NMR measurements is possible, but it is not an easy 
task. The lack of information about the 29Si signals corresponding to different 
hydrated cement phases and the presence of an amorphous fraction, made difficult 
to perform an accurate quantification. 
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Figure 4.15. 29Si NMR MAS spectra for G10B2 cement, (a) anhydrous, and hydrated at 
different curing times: (b) 7 days, (c) 28 days, and (d) 180 days. 

 27Al MAS NMR spectra for G10B0 and G10B2 hydrated pastes show two 
chemical shift regions, Figure 4.16. Once for Al in tetrahedral coordination (50 < δ < 
100 ppm) that displays centre bands from the Al of ye'elimite (∼70 ppm) and 
gehlenite (∼61 ppm). The other spectral region corresponds to octahedrally 
coordinated Al (-10 < δ < 20 ppm). This region exhibits three distinct resonances: i) 
the first frequency peak (δ = 13.1 ppm) assigned to ettringite (AFt); ii) the second 
resonance located at ∼ 9 ppm, and reported for monosulphate (AFm phases); iii) 
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finally, a third resonance is observed at ∼ 10 ppm corresponding to the octahedral Al 
in stratlingite. Figure 4.16 shows, as an example, the 27Al MAS NMR spectrum for 
G10B0 and G10B2 at 28 days of hydration. The main difference observed in the figure 
is the 27Al signals intensity corresponding to the AFt and AFm. These results are in 
concordance with the results obtained by RQPA 

(a) G10B0

Strat + AFmEtt

Gehl + Strat

Strat

Ett

Gehl + Strat

(b) G10B2

δδδδ (ppm)

120             100               80                60                40                20                 0              -20              -40               -60

120             100               80                60                40                20                 0              -20              -40               -60

 
Figure 4.16. 27Al NMR MAS spectra at 28 days of hydration for (a) G10B0, 

and (b) G10B2 cement paste. 

 

4.3.1.4. A comparative study of MoKα1 and synchrotron radiations for selected 

samples. 

 Selected samples (G10B0, G5B2 and G10B2 at 28 days of hydration time) 
were also analysed under two different radiations: strictly monochromatic MoKα1 
radiation with transmission geometry and also synchrotron, for the sake of 
comparison, included in A#4. These samples were selected as they presented a very 
complex phase assemblage when hydrated (see Table VII in A#4).  

 Irradiated volume in diffraction is a key issue since higher volume yields 
enhanced particle statistics. Therefore, the use of a high-energy radiation is 
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beneficial as the irradiated volume of sample can be increased, and absorption 
effects can be reduced. Figure 4.17 shows a graphical representation of the volumes 
that are bathed by X-ray radiations (MoKα and CuKα) for two laboratory diffraction 
geometries (transmission and reflection). The total irradiated volume was calculated 
taking into account different parameters depending on the geometry used (the beam 
width, the thickness of the sample, the mass absorption coefficient, the density, the 
packing fraction, and so on). The values obtaining for the irradiated volume for flat 
sample holder in transmission mode using Mo-radiation is close to 100 mm3, whereas 
for Cu-radiation the value is not larger than 5 mm3. Unfortunately, the latter cannot 
be enlarged without decreasing the resolution and having strong absorption effects. 
For reflection geometry with Cu-radiation, the calculated irradiated volume is close 
to 2 mm3. Furthermore, the enlargement of this value is not possible as it only 
depends on the absorption factor of the sample. 

 
Figure 4.17. Irradiated volume for flat sample holder in the transmission mode 

using (a) Mo radiation and (b) Cu radiation; and (c) reflection mode using Cu 
radiation. 

 

 Moreover, to keep the angular resolution in powder diffraction is a key point 
since high-energy patterns are squeezed and therefore, if the appropriate optic 
elements are not present, peak overlap may become an important drawback. The 
instrumental contribution to peak broadening for LXRPD and SXRPD was determined 
with SRM LaB6 and Na2Ca3Al2F14 (NAC) standards, respectively. Measured FWHM as a 
function of angle for different diffractometers and configurations was studied (Figure 
1 in A#4). As expected, the SXRPD pattern yielded the narrowest diffraction peaks. 
On the other hand, the broadest diffraction peaks arisen from the CuKα1,2 
transmission geometry with the focusing mirror. The most important outcome from 
this study was the observation of quite low FWHM values for strictly monochromatic 
MoKα1 radiation, implying that peak overlapping is not very important. 
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 As a representative example, Figure 4.18 gives Rietveld plots for G10B0 paste 
(MoKα1 and synchrotron patterns). This figure highlights not only the complexity of 
the sample, but also the high resolution features of the MoKα1 pattern, where the 
diffraction peak overlapping is similar to that observed in the synchrotron pattern. 
The main conclusions derived from these RQPA results are: i) the carbonation effects 
are clearly observed in these patterns where calcium carbonate (calcite and vaterite 
phases) slightly evolves with time; ii) in spite of the carbonation effects and the 
complexity of the systems, the derived contents for the main crystalline phases agree 
relatively well with both radiations and optics setups. 
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Figure 4.18. Rietveld plots for G10B0 hydrated sample patterns (a) strictly 

monochromatic MoKα1 radiation in transmission (flat sample), (b) synchrotron 
radiation in transmission (capillary) (Figure 5 in A#4). 
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 It is also recommended to use high-energy radiation (Mo), and transmission 
geometry for better particle statistic distribution, which give more accurate results 
and, moreover, some effects such as the preferred orientation or micro-absorption 
are minimised. The results obtained combining high energy radiation and 
transmission geometry with internal standard seem to be the most appropriate 
approach for determining amorphous contents. 

4.3.2. Hydration of BCSAF cements with different calcium sulphate source. 

 Bassanite, CSH0.5, and anhydrite, CS, were previously synthesized by heating 
commercial gypsum at 90°C for 24 h in a stove and at 700°C for 1 h in a furnace, 
respectively. Cement pastes were prepared, at a w/c = 0.55, by mixing both BCSAF 
clinkers, BCSAF_B0 and BCSAF_B2, with 10 wt% of gypsum (G), bassanite (B) or 
anhydrite (A), hereafter G10Bx, B10Bx and A10Bx, respectively; where x can be either 
0 or 2, for non-active and active clinkers. 

4.3.2.1. Early hydration behaviour (< 24 h).  

 An in-situ SXRPD study was performed to determine the role of the type of 
calcium sulphate source (10 wt%) in the first hours of BCSAF hydration (A#2). Cement 
pastes were poured into glass capillaries. Tables 4.7, 4.8 and 4.9 give direct RQPA 
results as a function of hydration time for G10B2, A10B2 and B10B2, respectively. 
The reaction degrees of ye'elimite and ettringite for the three cements are given in 
Figure 4.19, and both normalised direct RQPA results and calorimetric curves are 
shown in Figure 4.20. The normalised data, calculated taking into account the 
theoretical data of the sample at 0.0 h of hydration, were: 28.0 wt% of ye'elimite and 
10.0 wt% of gypsum/anhydrite or bassanite. Taking into account these values, the 
theoretical amount of dissolved and formed (ettringite) phases were calculated, 
assuming that the reaction degree of independent phases is the same. As an 
example, if we consider a reaction degree (α) of 10% for both ye'elimite and gypsum 
for G10B2, according to Eq. [1.1] (in the introduction section), that sample should 
contain 25.2 wt% of ye'elimite, 9.0 wt% of gypsum and 5.8 wt% of AFt. Then, these 
values were normalised to obtain the crystalline fraction at a reaction degree of 
α∼10%, using the percentages corresponding to three crystalline phases, i.e. 
ye'elimite, gypsum and AFt (63.1, 22.5 and 14.4 wt%, respectively). These latter data 
are now comparable to direct Rietveld results, without taking into account gibbsite. 
Thus, theoretical data were tabulated for all possible α values. Comparing these 
theoretical results with data reported in Table 4.7, we can conclude that, at 2 h of 
hydration, ye'elimite was dissolved at α∼11% and the crystallisation of ettringite was 
∼6%. These results are plotted in Figure 4.19 (α vs. time). For G10B2 paste, the AFt 
crystallisation process is parallel to ye'elimite dissolution, and the gypsum dissolution 
is very fast. Moreover, a passivation effect is observed, where gypsum showed a 
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degree of reaction of almost 100% and ye'elimite and ettringite over 80% after one 
day of hydration, Figures 4.19.a, and 4.20.a, and Table 4.7. In addition, G10B2 
presented an induction period close to 6 h, when the dissolution and crystallisation 
of phases become significant. The calorimetric curve shows two broad signals mainly 
associated to first dissolution and precipitation processes, Figure 4.19.a. A10B2 RQPA 
results plotted in Figures 4.19.b and 4.20.b, demonstrated that the dissolution kinetic 
for anhydrite is much slower than that for gypsum or bassanite. For A10B2 paste, the 
precipitation of ettringite is limited by CS dissolution, which starts to be significant up 
to 7 h. Using these results we can also state that the predicted reactivity of ye'elimite 
with water to form AFm as main hydrated phase (Winnefeld and Barlag, 2010; Song 
and Young, 2002) has not taken place within the first 6 h of hydration. Our results 
state that ye'elimite dissolution yields ettringite in spite of the fact that anhydrite is 
not dissolved until 6 h, in agreement with a recent work (Cuesta et al., 2014a). This 
behaviour is in disagreement with chemical equation [1.2] although it is 
thermodynamically expected (Damidot and Glasser 1993) and it has been also 
previously described (Berger et al., 2011a; Andac and Glasser, 1999). 

 

Table 4.7. Direct Rietveld quantitative phase analysis results (wt%) for G10B2 sample 
as a function of hydration time. Numbers between brackets are mathematical errors 

from Rietveld calculations. 

Phases t0 2h 4h 6h 9h 11h 18h 24h 

αααα’H-C2S 50.2(1.8) 47.6(2) 47.7(2) 48.0(2) 47.3(2) 47.4(2) 47.0(1) 47.0(2) 

C4A3S 27.5(1.7) 22.9(1) 19.9(1) 16.7(1) 10.8(1) 9.3(1) 3.8(1) 3.6(1) 

C4AF 8.9(6) 11.4(2) 11.3(2) 11.3(2) 10.5(2) 10.8(2) 8.5(1) 8.3(2) 

C2AS 1.4(2) 2.7(1) 2.8(1) 2.8(1) 2.8(1) 2.8(1) 1.4(1) 1.3(1) 

CT 1.9(2) 1.6(1) 1.7(1) 1.8(1) 1.8(1) 1.8(1) 2.0(1) 1.9(1) 

CSH2 10.0(-) 10.7(1) 8.0(1) 5.8(1) 1.8(1) 1.0(1) - - 

AFt - 3.1(1) 8.5(2) 13.7(2) 25.1(1) 26.9(1) 37.3(1) 37.9(1) 
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Table 4.8. Direct Rietveld quantitative phase analysis results (wt%) for A10B2 sample 
as a function of hydration time. Numbers between brackets are mathematical errors 

from Rietveld calculations. 

Phases t0 2h 4h 6h 9h 11h 13h 24h 

αααα’H-

C2S 

50.2(1.8) 47.0(2) 48.9(2) 49.0(2) 48.7(2) 48.3(2) 48.2(2) 46.6(2) 

C4A3S 27.5(1.7) 23.1(1) 20.3(1) 18.8(1) 14.7(1) 12.8(1) 11.3(1) 4.8(1) 

C4AF 8.9(6) 11.8(2) 11.5(2) 11.4(2) 11.3(2) 11.1(2) 11.1(2) 10.8(1) 

C2AS 1.4(2) 3.4(1) 2.6(1) 2.6(1) 2.7(1) 2.7(1) 2.7(1) 2.6(1) 

CT 1.9(2) 1.6(1) 1.7(1) 1.7(1) 1.7(1) 1.7(1) 1.7(1) 1.6(1) 

CS 10.0(-) 11.1(1) 9.8(1) 9.2(1) 7.2(1) 6.2(1) 5.5(1) 1.8(1) 

AFt - 2.0(1) 5.2(2) 7.2(2) 12.0(2) 17.2(1) 19.5(1) 31.7(1) 

 

 

 

 

Table 4.9. Direct Rietveld quantitative phase analysis results (wt%) for B10B2 sample 
as a function of hydration time. Numbers between brackets are mathematical errors 

from Rietveld calculations. 

Phases t0 1h 12h 24h 

αααα’H-C2S 50.2(1.8) 46.7(2) 45.8(2) 44.9(2) 

C4A3S 27.5(1.7) 20.0(1) 5.9(1) 5.1(1) 

C4AF 8.9(6) 11.4(2) 10.7(2) 10.2(2) 

C2AS 1.4(2) 3.2(1) 3.8(1) 3.7(1) 

CT 1.9(2) 1.9(1) 1.6(1) 1.6(1) 

CSH0.5 10.0(-) 0.6(1) 0.5(1) 0.5(1) 

CSH2 - 11.3(2) 0.8(1) 0.6(1) 

AFt - 5.9(1) 30.8(1) 33.4(1) 
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Figure 4.19. Degree of reaction [α] of ye'elimite, sulphate source and 
AFt as a function of time for (a) G10B2, (b) A10B2 and (c) B10B2. Solid 

lines are just guide to the eyes. 
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Figure 4.20. Normalised direct RQPA results and the calorimetric heat 
flow curve (dashed line) for (a) G10B2, (b) A10B2 and (c) B10B2. Solid 

lines are just guide to the eyes. 
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 The slower kinetic of precipitation of AFt in A10B2 paste has allowed 
following the growth of the ettringite crystals by inspecting the FWHM of some 
diffraction peaks. For instance (010) diffraction peak at ∼9.7 Å had FWHM values of 
0.0494(3), 0.0439(6) and 0.0408(2)° for 1, 3 and 8 h of hydration, respectively. This 
sharpening of the diffraction peak is likely due to the growth of AFt crystals.  

 B10B2 was also analysed. Due to experimental requirements (sample loading 
in the capillaries, alignment and so on) it is not possible to measure the first ∼40 min 
of hydration. The dissolution of bassanite and precipitation of gypsum are reported 
as very fast processes (Solberg and Hansen, 2001). Our measurements fully agree 
with this behaviour and after 1 h of hydration, bassanite was almost absent and 
gypsum had crystallised. In addition, the FWHM of (020) peak of gypsum in this 
sample after 1 h of hydration was 0.0495(3)°, and it was compared to the same peak 
of gypsum in G10B2 under same hydration conditions, 0.0457(4)°. These broader 
peaks are due, as expected, to smaller particle sizes for in-situ crystallised gypsum. 
Subsequent hydration reactions are similar to those already described for the 
gypsum-regulated cement, G10B2.  

 The very fast dissolution of bassanite with precipitation of gypsum, as well as 
the low dissolution rate of anhydrite were quantified, confirming the accurateness of 
the methodology reported in A#2. 

 

4.3.2.2. Hydration with different sulphate sources at late ages (> 24 h). 

 In article a#5, the three systems, G10Bx, A10Bx and B10Bx, with 10 wt% of 
sulphate source at w/c = 0.55 were characterised through LXRPD and Rietveld 
methodology at 3, 7, 28, 120, 180 and 365 days, DTA-TGA, SEM and porosimetry 
after stopping hydration. 

 Rheological characterisation of the fresh pastes. Since bassanite in contact 
with water suffers from a fast grain decay (intergranular attack) which produces an 
increasing of the surface area of the sulphate carrier, and as a consequence, a high 
water demand (and high viscosity). In addition, a primary gypsum precipitation 
occurs, which will also affect the rheological behaviour of the paste. Thus, both 
parameters the high water demand and the gypsum precipitation increase the 
viscosity of bassanite-pastes. The viscosity curves of X10B2 pastes (Figure 4.21) show 
that the bassanite-containing pastes presents both the highest viscosity values and 
the largest rheopectic cycle, in agreement with previous studies (García-Maté et al., 
2015a). Since our objective is to study the effect of the calcium sulphate source 
(including compressive strengths of the corresponding mortars) similar rheological 
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behaviour, and in particular, similar viscosity values at very early hydration ages are 
desired. When a small amount of a commercial polycarboxylate-based 
superplasticizer (SP) (0.05 wt% of active matter referred to total solids content), with 
25 wt% of active matter, was added to water to prepare bassanite-containing pastes, 
it exhibited a considerable diminishing in viscosity, (Figure 4.21) and a similar 
rheological behaviour to those prepared with gypsum or anhydrite. The addition of 
that small amount of SP would not delay considerably the setting time or modify the 
phase assemblage (RQPA) of these pastes (García-Maté et al., 2012; 2015a; Ma et al., 
2014b); the main effect is just related to the improvement of workability and 
homogeneity of the corresponding mortars. 
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Figure 4.21. Viscosity curves of G10B2, A10B2, B10B2 and B10B2 with 

0.05 wt% superplasticizer pastes. 

 

 - Hydrating phase evolution. The evolution of the phases during hydration 
was followed by RQPA. Tables 4.10-4.15 show the phase assemblage, including both 
ACn and FW contents, for both types of cement (active and non-active) prepared 
with 10 wt% of gypsum, anhydrite or bassanite. In all cases, the sulphate source was 
consumed before 3 days of hydration to form ettringite as the main crystalline 
hydrated phase. AFm and stratlingite were also found in all the studied pastes but in 
variable amounts. As found before, independently of the sulphate source, lower 
quantities of AFt were found and consequently, larger amounts of AFm were 
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quantified in non-active cements (X10B0) than in active cements (X10B2). This is 
related to the different ye'elimite polymorphs found in both clinkers (see Tables 
4.10-4.15). 

  In addition, the presence of larger amounts of ettringite in X10B2 is very 
likely the responsible of the improved mechanical properties of this family when 
compared to the lower data for X10B0; this will be discussed below. Focusing on the 
belite reactivity, β-C2S (present in X10B0) dissolves faster than α'H-C2S (present in 
X10B2) within the first 28 days, independently of the sulphate source. In addition, 
crystalline stratlingite is quantified in X10B0 just after 3 days of hydration, but it is 
not detected until 28 days in X10B2 pastes. However, X10B2 families showed lower 
amounts of FW at curing ages over 28 days, indicating higher degree of reaction. 

 To conclude this study devoted to the phase evolution from RQPA, the 
analysis of the data reported in Tables 4.10-4.15, indicate that the phase assemblage 
at latter ages are slightly sensitive to the initial sulphate source. AFt, stratlingite, 
katoite and AFm contents between 120 and 365 days are very similar for G10B2 and 
A10B2. When comparing the results for G10B0 and A10B0, some (minor) differences 
are detected, for instance larger amounts of AFm in G10B0 than in A10B0 were 
found. 

Table 4.10. RQPA results for G10B0 cement paste, as a function of hydration time, 
including ACn calculated with G-method and free water content. Numbers between 

brackets are mathematical errors from Rietveld calculations. 

Phase t0 3d 7d 28d 120d 180d 365d 

ββββ-C2S 17.5(3) 17.0(3) 15.7(3) 8.9(4) 5.2(3) 4.2(3) 4.0(4) 

o-C4A3S 9.5(7) 2.2(1) 0.8(1)     

C4AF 5.3(2) 4.1(2) 3.2(2) 1.1(2)    

C2AS 3.7(2) 4.6(1) 4.3(1) 3.3(1) 3.3(1) 3.7(1) 3.4(1) 

γγγγ-C2S 1.9(1) 1.8(1) 1.9(1) 1.5(1) 1.8(1) 1.7(1) 1.7(1) 

CT 0.5(1) 0.4(1) 0.4(1) 0.2(1) 0.2(1) 0.2(1)  

CSH2 9.9(1)       

AFt  17.7(2) 15.9(2) 9.3(2) 9.6(3) 9.8(3) 10.6(3) 

Stratlingite  4.1(6) 6.6(4) 12.5(2) 13.4(5) 10.6(5) 12.2(5) 

AFm   2.3(1) 5.5(2) 8.8(2) 10.8(2) 9.6(2) 

Katoite    2.3(4) 4.9(3) 4.6(2) 6.2(3) 

CAH10  0.4(1) 0.6(1)     

Hemicarbo     0.7(1) 1.0(1) 1.0(1) 

CC       0.8(1) 

ACn 16.1(8) 28.8(8) 30.7(6) 41.9(7) 37.5(8) 40.6(7) 40.3(8) 

FW 35.5(-) 18.9(-) 17.6(-) 13.5(-) 14.7(-) 12.9(-) 10.2(-) 
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Table 4.11. RQPA results for G10B2 cement paste, as a function of hydration time, 
including ACn calculated with G-method and free water content. Numbers between 

brackets are mathematical errors from Rietveld calculations. 

Phase t0 3d 7d 28d 120d 180d 365d 

αααα'H-C2S 18.6(4) 20.5(4) 20.0(4) 13.6(5) 5.0(6) 4.3(4) 4.4(6) 

ββββ-C2S 1.1(2) 1.2(3) 1.3(2) 1.5(2) 2.1(2) 2.0(2) 2.3(2) 

c- C4A3S 10.5(1) 0.7(1) 0.2(1)     

C4AF 5.1(2) 4.5(2) 4.4(2) 3.4(2) 1.1(2) 0.9(2) 0.9(2) 

C2AS 1.6(1) 2.5(1) 2.2(1) 2.1(1) 1.8(1) 1.8(1) 2.1(1) 

CT 0.5(1) 0.7(1) 0.7(1) 0.5(1)    

CSH2 6.5(1)       

AFt  21.3(2) 21.8(2) 18.7(2) 19.1(2) 20.6(2) 20.8(2) 

Stratlingite    10.2(4) 16.9(4) 17.4(4) 15.3(4) 

AFm   0.2(1) 0.5(1) 1.8(1) 1.5(1) 1.0(1) 

Katoite    0.5(1) 3.2(3) 3.9(3) 4.7(3) 

AH3  0.4(1) 0.5(1)     

ACn 20.6(5) 30.7(6) 30.7(6) 35.8(7) 41.1(9) 44.9(7) 45.1(9) 

FW 35.5(-) 17.5(-) 17.8(-) 13.1(-) 7.8(-) 2.6(-) 3.3(-) 

 

 

Table 4.12. RQPA results for A10B0 cement paste, as a function of hydration time, 
including ACn calculated with G-method and free water content. Numbers between 

brackets are mathematical errors from Rietveld calculations. 

Phase t0 3d 7d 28d 120d 180d 365d 

ββββ-C2S 17.3(3) 17.1(3) 13.3(3) 10.9(4) 5.9(4) 5.9(5) 5.4(5) 

o-C4A3S 10.2(6)       

C4AF 5.4(2) 3.3(2) 1.4(2) 1.2(2) 0.9(2) 1.0(2) 0.8(2) 

C2AS 2.9(2) 5.0(1) 4.6(1) 4.3(1) 4.6(2) 4.7(2) 4.6(2) 

γγγγ-C2S 1.8(1) 1.4(1) 1.2(1) 1.4(1) 1.4(1) 1.4(1) 1.4(1) 

CT 0.3(1) 0.3(1) 0.3(1) 0.3(1)    

CS 7.5(1)       

AFt  22.2(2) 16.5(2) 17.2(2) 14.5(2) 11.6(2) 13.6(3) 

Stratlingite  6.0(7) 13.4(5) 12.6(5) 10.2(6) 12.8(7) 11.5(7) 

AFm   2.9(1) 2.4(1) 5.2(1) 4.6(1) 5.3(1) 

Katoite   0.9(1) 2.1(2) 3.0(2) 3.2(2) 3.2(2) 

CAH10  0.3(1)      

Hemicarbo    0.5(1) 0.4(1) 0.6(1) 0.4(1) 

CC       1.5(1) 

ACn 19.1(7) 30.5(8) 33.9(7) 37.9(8) 43.5(8) 44.3(9) 46.2(1.0) 

FW 35.5(-) 14.1(-) 11.6(-) 9.4(-) 10.5(-) 9.8(-) 6.2(-) 
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Table 4.13. RQPA results for A10B2 cement paste, as a function of hydration time, 
including ACn calculated with G-method and free water content. Numbers between 

brackets are mathematical errors from Rietveld calculations. 

Phase t0 3d 7d 28d 120d 180d 365d 

αααα'H-C2S 19.2(4) 20.5(5) 17.1(5) 15.8(4) 6.6(6) 5.2(6) 5.9(6) 

ββββ-C2S 0.8(1) 1.1(2) 0.9(3) 1.2(3) 2.3(5) 2.2(5) 2.4(5) 

c- C4A3S 11.2(1) 0.1(1) 0.2(1)     

C4AF 5.9(2) 4.4(2) 3.8(2) 3.5(2) 1.3(2) 1.0(2) 0.9(2) 

CT 0.7(1) 0.6(1) 0.6(1) 0.7(1)    

C2AS 1.6(1) 2.2(1) 2.1(1) 2.4(1) 2.0(1) 1.8(1) 1.6(1) 

CS 6.8(1)       

AFt  24.1(2) 19.8(2) 25.0(2) 23.1(2) 22.3(2) 23.3(2) 

Stratlingite    8.5(3) 16.3(4) 17.1(3) 13.6(4) 

AFm    0.5(1) 1.2(1) 3.0(2) 1.1(1) 

Katoite     2.5(4) 2.9(5) 3.5(5) 

AH3  0.3(1) 0.2(1)     

CC       0.7(1) 

ACn 18.3(5) 32.3(6) 36.6(7) 27.5(7) 41.2(1.0) 39.5(1.0) 42.4(1.1) 

FW 35.5(-) 14.3(-) 18.4(-) 15.0(-) 3.5(-) 4.9(-) 4.8(-) 

 

Table 4.14. RQPA results for B10B0 cement paste, as a function of hydration time, 
including ACn calculated with G-method and free water content. Numbers between 

brackets are mathematical errors from Rietveld calculations. 

Phase t0 3d 7d 28d 120d 

ββββ-C2S 18.9(4) 14.1(3) 13.4(3) 10.2(3) 5.4(3) 

o- C4A3S 9.4(7) 2.2(1) 1.2(1)   

C4AF 5.0(2) 3.8(2) 3.6(2) 1.4(2) 0.9(2) 

C2AS 4.8(2) 3.9(1) 3.5(1) 3.6(1) 3.3(1) 

γγγγ-C2S 1.4(1) 1.7(1) 1.6(1) 2.0(1) 1.8(1) 

CT 0.4(1) 0.3(1) 0.2(1) 0.2(1) 0.2(1) 

CSH0.5 5.2(2)     

AFt  15.9(3) 14.9(3) 12.6(3) 13.3(3) 

Stratlingite  3.6(6) 4.2(6) 15.4(5) 12.1(5) 

AFm  0.8(1) 1.0(1) 4.8(1) 5.4(2) 

Katoite    3.3(4) 5.1(3) 

Hemicarbo    0.5(1)  

ACn 19.5(9) 32.5(8) 37.3(8) 31.3(8) 39.8(8) 

FW 35.5(-) 21.3(-) 19.1(-) 14.6(-) 12.8(-) 
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Table 4.15. RQPA results for B10B2 cement paste, as a function of hydration time, 
including ACn calculated with G-method and free water content. Numbers between 

brackets are mathematical errors from Rietveld calculations. 

Phase t0 3d 7d 28d 120d 

αααα'H-C2S 20.8(4) 19.9(4) 20.6(5) 17.4(3) 4.0(5) 

ββββ-C2S 0.4(1) 1.2(4) 1.1(3) 1.3(3) 2.1(3) 

c- C4A3S 11.9(1) 0.3(1) 0.3(1)   

C4AF 5.2(2) 4.2(2) 4.0(2) 3.5(2) 0.6(2) 

C2AS 2.2(1) 2.3(1) 2.1(1) 2.6(1) 1.9(1) 

CT 0.7(1) 0.7(1) 0.7(1) 0.7(1)  

CSH0.5 4.1(1)     

AFt  20.7(2) 19.7(2) 23.3(2) 19.5(2) 

Stratlingite    5.0(6) 9.6(6) 

AFm     1.1(2) 

Katoite    0.9(2) 4.6(3) 

AH3  0.4(1) 0.5(1) 0.4(1) 0.4(1) 

ACn 19.3(5) 34.9(7) 36.2(7) 30.4(8) 47.7(9) 

FW 35.5(-) 15.5(-) 14.9(-) 14.6(-) 8.6(-) 

 

 - Thermal analysis. DTA and TGA curves for G10B0 and G10B2 pastes 
(hydration stopped as described previously) at different curing ages were plotted as 
representative examples (Figure 4.22). G10B2 has a higher degree of reaction at 365 
hydration days with a higher overall weight loss (∼32 wt%) than the corresponding 
value for G10B0 (∼26 wt%). Therefore, FW is large (at same hydration ages) for 
G10B0 than for G10B2. Moreover, AFt, which is characterised by the weight loss at 
∼100°C, slightly increases with hydrating time for G10B2, see Figure 4.22.b, but it 
decreases with time for G10B0, see Figure 4.22.a. Two endothermic peaks at ∼165 
and ∼200°C, are attributed to the stratlingite formation (Winnefeld and Barlag, 2010; 
Winnefeld and Lothenbach, 2010; Pelletier-Chaignat et al., 2010; 1011), however the 
second signal overlaps with the AFm signals. The formation of stratlingite is much 
faster in G10B0 pastes (as reported in A#3), where is observed at 3 days of hydration, 
than in G10B2 pastes. The formation of stratlingite is delayed in G10B2, and its 
content is smaller than in the non-active paste. All these crystalline phases were 
quantified by powder diffraction and the results are fully consistent with those 
reported here. The same behaviour has been observed for the cements with 
bassanite and anhydrite. 

 The thermal characterisation is very suitable to identify poor crystalline 
phases that cannot be properly analysed by LXRPD, such as amorphous gibbsite or 
even AFm. The decomposition of AFm produces different peaks in the DTA-TGA 
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curves, where some are overlapped with other phases, so it is difficult to quantify; 
however, Figure 4.22.a shows how AFm appears in G10B0 paste just after 3 days of 
hydration. AH3 is detected in G10B2 pastes at 3 and 7, however, after 28 days, this 
signal disappears and the peak related to stratlingite develops, thus confirming that 
stratlingite is formed by consuming AH3, according to reaction 1.4. Similar 
conclusions can be drawn from the corresponding curves of X10B0 and X10B2 pastes. 
In addition, amorphous gibbsite signal is almost not evident in G10B0 traces, at any 
age. This is explained as it rapidly reacts to yield stratlingite which shows a strong 
signal at ages later than 3 days of hydration. 
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Figure 4.22. DTA-TGA curves for: (a) G10B0, and (b) G10B2 pastes after stopping 

hydration at 3, 7, 28, 120, 180 and 365 days (Figure 2 in A#5). 
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 - SEM-EDS characterisation. A SEM-EDS study was performed to better 
characterise the chemical composition of each phase in the X10B2 pastes, especially 
for amorphous/ill-crystalline phases (A#5). This type of study helped to estimate the 
elemental composition (especially Si, Al and Fe) of new crystalline or amorphous 
phases with time of hydration, since this may affect the mechanical properties. 
Figure 4.23 shows two representative micrographs of A10B2 stopped-hydration 
pastes at different hydration time, 7 and 120 days. 

(a) A10B2_7d

(b) A10B2_120d

 

Figure 4.23. SEM micrographs of A10B2 stopped-hydration paste at different 
hydration time: (a) 7 days and (b) 120 days. 
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 SEM-EDS analyses of these hydrated pastes reveal that the chemical 
composition of amorphous phase(s) in G10B2 and B10B2 at 120 days is very similar, 
but slightly richer in silicon and iron in A10B2. The chemical composition evolution 
with time may generate interesting information. Al/Ca vs. Si/Ca atomic ratios, for 
A10B2 paste at 7 and 120 days of hydration, were plotted in Figure 5 in A#5. 
Representative micrographs of the pastes are also provided in the figure. These 
results reveal that amorphous phases in A10B2 are rich in aluminium at 7 days, while 
they are enriched in silicon with time (120 days). The former is related to early 
hydration products (AFt and amorphous aluminium hydroxide) formed in these 
cements from the dissolution of ye'elimite and calcium sulphate; the latter, to the 
reactivity of belite. Moreover, hydration products which contain iron are difficult to 
be identified by LXRPD. Figure 6 in A#5, shows Al-Fe atomic ratio for A10B2 pastes at 
different ages (7 and 120 days). According to the results given in this figure, particles 
with a needle shape, which are identified as ettringite, contain some iron at both 
studied hydration ages, in agreement with previous reports (Möschner et al., 2009). 
In addition, A10B2 hydrated during 7 days shows some small bright particles with a 
chemical composition similar to that of stratlingite; the DTA thermograph of this 
sample showed a small shoulder at ∼170°C, which is related to stratlingite. However, 
these particles seem to have low crystallinity degree, and so they cannot be detected 
by LXRPD at that hydration age. The iron content in these bright particles increases 
from ∼0.05 Fe/Ca atomic ratio at 7 days, to ∼0.1 Fe/Ca atomic ratio at 120 days. 
These results yield us to propose two hypotheses: i) There is amorphous layers of FH3 
covering stratlingite particles, or ii) the following reaction [4.1] between belite and 
ferrite to give iron-bearing stratlingite is taking place: 

C2S + x C4AF + (1-2x) AH3 + (10x+5) H → C2A1-xFxSH8 + 4x CH                          [4.1] 

 If the second hypothesis is right, the study on iron evolution performed in 
A#3 (Figure 4a and 4b in article a#3) has to be considered as an aproximation, since 
in that study, stratlingite is considered as an iron-free phase. However, this need 
more research.  

 

4.4. MECHANICAL PROPERTIES OF BCSAF MORTARS. 

 Standard mortars were prepared with a cement/sand/water ratio of 1/3/0.55 
in order to study the mechanical properties. Figure 4.24 summarises the compressive 
strengths of mortars studied in this PhD Thesis. We highlight that larger mechanical 
strengths could have been attained by decreasing the w/c ratio (to, for example, 0.35 
or 0.40); however, following the chemical evolution may be tougher as local drying 
effects may start to appear. More studies are needed correlating variable w/c ratios 
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and curing conditions with phase evolutions and strength developments to 
understand the thorough hydrating behaviour for this emerging type of cements.  

 The most important result is that all mortars prepared with the aBCSAF 
cement developed higher compressive strengths than non-active mortars, 
independently of the type and amount of sulphate source (Figure 4.24). 
Consequently, it can be stated that the higher hydration rate of β-C2S in BCSAF_B0 
pastes does not imply higher mechanical strengths. In addition, by increasing the 
gypsum content from 5 to 10 wt%, the compressive strength increased in both 
systems. Furthermore, the addition of 15 wt% gypsum produced a slight decrease in 
the compressive strength, probably due to the slowdown of belite hydration rate. It 
should be noted that the size of the mortar specimens prepared to measure 
compressive strengths (30 x 30 x 30 mm3) is smaller than that of the mortar 
specimens prepared for length change measurements. Therefore it was possible to 
measure the compressive strength for G15B0 as the mortar prisms were not  broken.  

 Setting times of mortars prepared with different amount of gypsum (see 
Table 4.16) were also measured. Gypsum mortars showed intermediate initial setting 
time values, comparing with values obtained for anhydrite and bassanite mortars 
(García-Maté, 2015). The different kinetic behaviours between BCSAF_B0 and 
BCSAF_B2 pastes, justify the differences in the measured initial and final setting 
times. For G10B0, these values are 2.8 and 5.5 h, respectively; whereas for G10B2, 
the values are 3.5 and 5.8 h, respectively. In general, GxB2 mortars presented higher 
initial setting time than that for GxB0 mortars, showing a higher plasticity which can 
better accommodate the precipitation of ettringite. However, G5Bx mortars showed 
the highest initial setting time, due probably to the small amount of gypsum added 
that cause at lowest ettringite formation. 

 Within the non-active mortars, A10B0 presented the highest values. This 
behaviour may be explained/justified by the higher amount of AFt present in that 
paste when compared to G10B0. In addition, García-Maté et al., (2015a) determined 
that, since the setting time of CSA pastes with anhydrite is longer than that for 
pastes/mortars with gypsum, anhydrite-mortars show higher plasticity that can 
better accommodate the precipitation of ettringite. Bassanite cement reacts very 
quickly with water showing a short setting time (García-Maté et al., 2015a) which 
leads to mortars with low degree of homogeneity. Due to this fact, the compressive 
strength values for B10B0 mortars were not measured. For B10B2, although the 
addition of a small amount of SP improved the workability of the mortar, the delay in 
the setting time was not enough to develop comparable mechanical strength values 
to gypsum and anhydrite mortars, see Figure 4.24.b. 
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Figure 4.24. Compressive strength development at different hydration times for 

(a) non-active, and (b) active BCSAF mortars. 

 

Table 4.16. Initial and final setting times of different G-mortars. 

Mortar Initial setting time Final setting time 

G5B0 350min 470min 

G10B0 170min 330min 

G15B0 160min 410min 

G5B2 250min 330min 

G10B2 210min 350min 

G15B2 215min 385min 
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 Within the active mortars, G10B2 and A10B2 present very similar 
compressive strengths values up to 7 days and their pastes also show similar 
ettringite contents. However, at 28 hydration days, A10B2 mortar shows slightly 
higher compressive strength values, which can be justified by a larger amount of 
ettringite (25 and 19 wt% for A and G-pastes, respectively). However, at 120 days, 
G10B2 mortar developed the highest mechanical strength value, even when the 
amount of ettringite in A-paste was slightly larger than that for G-paste (23 and 19 
wt%, respectively). Therefore, we are forced to conclude that the amorphous 
contents (and the microstructure of the paste) are playing a key role for the strength 
development at late ages. The reaction degree of α'H-C2S in G10B2 (74%) is slightly 
higher than that in A10B2 (65%), which could help in improving the mechanical 
strengths. At a constant porosity, the strength increases by increasing the amount of 
hydrates being formed and a declining amount of non-hydrated material (Older, 
2003). Since A and G-pastes contain similar ACn contents, the porosity of the pastes 
was measured. It is well known that the porosity of the paste has an adverse effect 
on strength development (Chen et al., 2012). The porosity of the three X10B2 cement 
pastes at 120 days of hydration was measured by mercury intrusion porosimetry 
(MIP), which could be extrapolated to the mortars. Bassanite-paste showed the 
highest percentage of porosity (16%), and the gypsum one showed the lowest value 
(10%) (see Figure 4.25); this behaviour helps to justify the measured mechanical 
strengths. Density/porosity can also be evaluated from the SEM micrographs of these 
three pastes (Figures 4.26.a, b, and c show the polished cross-section of gypsum, 
anhydrite and bassanite-pastes, respectively). Pores in the anhydrite paste are 
numerous and larger than those in the gypsum paste, and the bassanite paste shows 
large pores as can be appreciated in the inset of Figure 4.26.c, and some cracks. 
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Figure 4.25. Open porosity percentage of X10B2 pastes at 120 days, 

 In conclusion, the optimum amount and type of sulphate source in these 
systems seems to be quite close to 10 wt% of gypsum, as higher mechanical 
strengths are obtained. 
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G10B2_120d (a)

A10B2_120d (b)

(c)B10B2_0.05SP_120d

 

Figure 4.26. SEM micrographs of polished (a) G10B2, (b) A10B2 and (c) 
B10B2_0.05%SP pastes at 120 days of hydration time. The inset of figure (c) 

shows the B10B2 paste at a lower magnification. 
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 Finally, the expansion/shrinkage of the mortars was also measured at 
different hydration ages and the data are shown in Figure 4.27. This figure represents 
the percentage of length change, ΔL (%), with respect to the initial value, L0. The 
latter was the measured length taken just after demoulding the standard prismatic 
samples and prior to immersion in water (24 h hydration). The expansion (or 
shrinkage) experienced by mortars is mainly related to the nature of the pore 
structure (which affects the mobility of ions) and the amount of space for reaction 
products to be formed. The low expansion values obtained for these mortars agree 
with previous studies (Chen et al., 2012). 

 Firstly, our study has revealed the effect of gypsum content on dimensional 
stability of BCSA mortars. The addition of 15 wt% of gypsum caused the highest 
expansion values for both systems due to the larger amounts of AFt formed, 
comparable, as expected, to commercial CSA. The expansion in G15B0 was so severe 
that the mortar prism appeared cracked after 3 hydration days. A photograph of the 
broken prism is shown in the inset of Figure 4.27, where a significant amount of 
ettringite crystals (white powder) is appreciable inside the crevice. According to 
Figure 4.27, G5B0 and G10B0 experienced low expansion values and almost 
negligible dimensional changes with time, likely due to the lower amounts of AFt 
formed compared to GgB2 mortars. In addition, G5B2 and G10B2 mortars showed a 
length variation roughly from −0.01% to 0.04% within 180 days. 

 Secondly, the effect of the sulphate source on dimensional stability was also 
studied. Mortars prepared with anhydrite presented high expansion in early 
hydration ages, similar than that in CSA mortars. However, the B10B2 mortar showed 
very low expansion values, similar to mortars prepared with 5 wt% of gypsum; this is 
in agreement with the results obtained in the hydrating behaviour study, as bassanite 
is completely dissolved before the first 45 minutes of hydration and gypsum 
precipitates. Consequently, bassanite-mortars behave similar to those made with 
gypsum at very early ages. 
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 Figure 4.27. Length change measurements for mortars prepared with active and 
non-active BCSAF cement. Corresponding values for OPC and CSA mortars are also 

given for the sake of comparison. 
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5. CONCLUSIONS. 

 The synthesis and hydration mechanisms of BCSAF cements have been 

studied. The effect of the polymorphism of the main phases of the clinkers, and type 

and amount of the sulphate source was thoroughly studied on hydrated pastes, and 

consequently on the corresponding mortars. X-ray diffraction combined with the 

Rietveld method have been used for the identification and quantification of phases of 

cement (anhydrous and hydrated). Data from various diffraction sources including 

laboratory X-ray (Cu and Mo radiations) and synchrotron X-ray were used in the 

investigations. It was shown that the reliability of Rietveld method is directly linked 

to the quality of data in terms of counting statistics and resolution, and the ability of 

the structural models used to correctly describe the phases present in the sample. 

 Several specific conclusions arisen from this PhD Thesis, and are numbered 

below: 

 i) Two BCSAF clinkers active and non-active ones, have been prepared in the 

laboratory at "medium scale" (∼2 kg) using the same raw materials commonly used in 

cement plants. The non-active clinker contained β-C2S and orthorhombic ye'elimite 

as main phases, meanwhile α'H-C2S and pseudo-cubic ye'elimite were stabilized in the 

active clinker due to the addition of borax to the raw mixture. The optimum 

clinkering cycle for the two scaled-up clinkers was the following: 900°C/0.5 h -

1350°C/ 0.5 h, and forced air flow cooling. 

 ii) The crystalline phases present in the two BCSAF clinkers and other related 

materials (commercial CSA clinkers) were characterised and quantified through the 

combination of LXRPD and the Rietveld method. Moreover, the ACn content of these 

materials was measured by both external and internal standard methods. Overall, 

the analyses showed that commercial CSA clinkers have ACn contents quite similar to 

those of OPCs, ∼10 wt%. Conversely, the ACn content of the BCSAF clinkers were 

higher, ∼25 wt%.  

 iii) A reproducible methodology of processing and characterisation of 

hydrated BCSAF cement pastes has been established, including the quantification of 

ACn content and FW that enable to understand and control the behaviour of these 

cement pastes during hydration. Moreover, an initial characterisation of ACn has 

been performed to estimate its elemental composition and correlate it with the 

hydration behaviour and mechanical properties. The highest amount of dissolved 

sulphate groups incorporated into ACn phase(s) was found in non-active BCSAF 

cement pastes. However, aBCSAF cement pastes show the highest amounts of 

silicate and aluminate contents in their amorphous phase(s). 
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 iv) Orthorhombic ye'elimite phase in non-active BCSAF cement dissolves at a 

higher pace than pseudo-cubic ye'elimite in active BCSAF cement for the same 

gypsum content (10 wt%). Different amounts of gypsum did not strongly affect the 

ye'elimite reactivity rate. Moreover, non-active cements showed larger amounts of 

AFm and consequently, lower quantities of ettringite during hydration when 

compared to active cements. In active cements, the formation of AFm from the 

reaction of ye'elimite with water was not observed. 

 v) The hydration behaviour of belite resulted more dependent on the 

chemical environment than on its polymorphism. In our hydration conditions, β-C2S 

in non-active BCSAF reacted faster than α′H-C2S in active cement, independently of 

the amount and type of sulphate source to give stratlingite. The increase of gypsum 

addition to BCSAF cements caused a slowdown in hydration rate of belite 

(independently of the polymorphism). The sulphate source added (gypsum, bassanite 

or anhydrite) does not strongly affect the belite dissolution. 

 vi) Mortars prepared with active BCSAF cement developed higher 

compressive strengths than non-active ones, independently of the type and amount 

of sulphate source; it implies that the higher hydration rate of β-C2S in BCSAF_B0 

pastes does not mean higher mechanical strengths. By increasing the gypsum 

content from 5 to 10 wt%, the compressive strength increases in both systems, but 

the addition of 15 wt% gypsum produced a slight decrease in the compressive 

strengths. 

 In the case of non-active mortars, those prepared with anhydrite (A10B0) 

presented the highest compressive strength values (e.g. 32±1 MPa at 120 days). For 

B10B2, the addition of a small amount of SP improved the workability of the mortar, 

but it was not enough to develop comparable mechanical strength values to gypsum 

and anhydrite mortars. 

 In the case of active-mortars, those with gypsum or anhydrite (G10B2 and 

A10B2, respectively) showed very similar compressive strength values up to 7 days of 

hydration (∼25±1 MPa). However, at 120 days, the G10B2 mortar developed the 

highest mechanical strengths (68±1 MPa), even when its amount of AFt was slightly 

lower than that for the A-sample. This is related to the highest BET area value of 

G10B2 and the porosity of these pastes (10 and 15 vol% for G and A-pastes, 

respectively).  

 Finally, active mortars with 10 wt% of gypsum resulted as the best option 

due to their higher mechanical strengths (68+1 MPa at 120 days). 
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 vii) More researches varying w/c ratios and using supplementary 

cementitious materials (SCMs) are needed for a better characterisation of these 

emerging new eco-cements. 
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5. CONCLUSIONES. 

 En esta tesis doctoral se ha llevado a cabo el estudio de la síntesis y los 

mecanismos de hidratación de cementos BSACF. El efecto de los distintos polimorfos 

de las fases principales de los clínkeres, así como la influencia de la cantidad y el tipo 

de fuente se sulfato utilizados también han sido estudiados en las pastas de cemento 

y en consecuencia en los correspondientes morteros preparados. La difracción de 

rayos X combinada con el método de Rietveld se han utilizado como herramientas 

para la identificación y cuantificación de las fases del cemento (anhidro e hidratado). 

Para llevar a cabo esta investigación se han usado datos de diversas fuentes de 

radiación, incluyendo la difracción de rayos X de laboratorio (de Cu y Mo) y de rayos 

X sincrotrón. Se ha demostrado que la fiabilidad del método de Rietveld está 

directamente relacionada con la calidad de los datos, en términos de estadísticas de 

conteo y resolución, y con la capacidad de los modelos estructurales utilizados para 

describir correctamente las fases presentes en la muestra. 

 A continuación se enumeran varias conclusiones específicas surgidas de esta 

tesis doctoral: 

 i) Se han preparado dos clínkeres BSACF, uno activado y otro no, a "media 

escala" (∼2 kg) en el laboratorio, utilizando las mismas materias primas utilizadas en 

las cementeras. El clinker no activado contiene β-C2S y ye'elimita ortorrómbica como 

fases principales, mientras que la α'H-C2S y la ye'elimita pseudo-cúbica se 

estabilizaron en el clinker activado debido a la adición de borax en las materias 

primas del crudo. El proceso de clinkerización óptimo para la síntesis de los dos 

clínkeres  ha sido 900°C/0.5 h -1350°C/ 0.5 h, y enfriamiento con una corriente de 

aire. 

 ii) Las fases cristalinas presentes en los dos clínkeres sintetizados y en otros 

materiales relacionados (clínkeres de CSA comerciales) han sido caracterizados y 

cuantificados mediante DRXPL y el método de Rietveld. Además, el contenido de ACn 

de estos materiales se ha determinado usando métodos de estándar interno y 

externo. En general, los análisis mostraron que los clínkeres comerciales de CSA 

presentan contenidos de ACn bastante similares a los de los OPC, ∼10% en peso. Por 

el contrario, los contenidos de ACn presentes en los clínkeres BSACF fueron mayores, 

∼25% en peso. 

 iii) Se ha establecido una metodología reproducible para el procesado y la  

caracterización de las pastas de cemento BSACF hidratado, incluyendo la 

cuantificación del ACn y el FW, lo que permite comprender y controlar el 

comportamiento de estas pastas de cemento durante su hidratación. Además se ha 
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llevado a cabo una caracterización inicial del ACn mediante la estimación de su 

composición elemental para correlacionarlo con el comportamiento hidráulico de los 

cementos y las propiedades mecánicas de los morteros. Se ha encontrado que las 

pastas de cementos BSACF no activos presentan una mayor cantidad de grupos 

sulfatos en la fase(s) amorfa(s). Mientras que las pastas de cementos BSACF activos 

presentan una mayor cantidad de grupos silicatos y aluminatos disueltos en el ACn.  

 iv) La ye'elimita ortorrómbica presente en el cemento BSACF no activo se 

disuelve a una mayor velocidad que la ye'elimita pseudo-cúbica que se encuentra en 

el cemento BSACF activo para el mismo contenido de yeso (10% en peso). Diferentes 

cantidades de yeso no afectan a la reactividad de la ye'elimita. Por otro lado, los 

cementos no activos mostraron mayores cantidades de AFm y en consecuencia 

menores cantidades de etringita durante su hidratación, si los comparamos con los 

cementos activos. En los cementos activos no se observa la reacción de la ye'elimita 

con agua para formar AFm, como principal fase hidratada. 

 v) El comportamiento de la belita durante la hidratación depende más del 

ambiente químico que la rodea que de su polimorfismo. En nuestras condiciones de 

hidratación, la β-C2S, presente en los cementos no activados, reacciona más 

rápidamente que la α'H-C2S, presente en los cementos activados 

independientemente de la cantidad y el tipo de fuente de sulfato añadida, para dar 

stratlingita. El aumento de la cantidad de yeso añadida a los cementos provoca una 

disminución de la velocidad de hidratación de belita (independientemente del 

polimorfismo). La fuente de sulfato añadida (yeso, anhidrita o basanita) no afectan 

demasiado a la disolución de la belita. 

 vi) Los correspondientes morteros preparados con los cementos aBSACF 

desarrollan mayores resistencias a la compresión que los morteros no activados, 

independientemente del tipo y de la cantidad de fuente de sulfato, lo que demuestra 

que la mayor velocidad de disolución de la β-C2S en las pastas de BSACF_B0 no 

significa resistencias mecánicas más altas. El aumento del contenido de yeso del 5 al 

10% en peso, produce un aumento en la resistencia en ambos sistemas, pero la 

adición de 15% en peso de yeso produce una ligera disminución de la resistencia. 

 Dentro de los morteros de cementos no activados, los preparados con 

anhidrita (A10B0) presentaron los valores más altos de resistencia (32 ± 1 MPa a 120 

días). Para B10B2, la adición de una pequeña cantidad de aditivo superplastificante 

(SP) mejoró la trabajabilidad del mortero, pero no fue suficiente para desarrollar 

valores de resistencias comparables a los obtenidos para los morteros preparados 

con yeso y anhidrita. 
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 En el caso de los morteros preparados con cementos activados, los morteros 

de yeso y anhidrita (G10B2 and A10B2, respectivamente) mostraron resistencias a la 

compresión muy similares a 7 días (∼25 ± 1 MPa). Sin embargo, a los 120 días, el 

mortero G10B2 desarrolló el valor de resistencia más elevado (68 ± 1 MPa), aun 

cuando la cantidad de AFt fue ligeramente inferior a la de la muestra con anhidrita. 

Esto está relacionado con el mayor valor de área específica del cemento G10B2 y la 

porosidad de las pastas (10 y 15% en volumen para la pasta de yeso y anhidrita, 

respectivamente). 

 En conclusión, se ha determinado que los morteros preparados con 

cementos BSACF y un 10% en peso de yeso, han resultado ser la mejor opción 

porque son los que desarrollaron mayores resistencias mecánicas (68+1 MPa a 120 

días). 

 vii) Se necesita más investigación utilizando distintas relaciones a/c y usando 

materiales cementantes suplementarios para caracterizar mejor estos nuevos eco-

cementos. 
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