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ABSTRACT
Bit-flip mutation is a common operation when a genetic al-
gorithm is applied to solve a problem with binary repre-
sentation. We use in this paper some results of landscapes
theory and Krawtchouk polynomials to exactly compute the
expected value of the fitness of a mutated solution. We prove
that this expectation is a polynomial in p, the probability of
flipping a single bit. We analyze these polynomials and pro-
pose some applications of the obtained theoretical results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
Fitness Landscapes, Elementary Landscapes, Bit-flip Muta-
tion

1. INTRODUCTION
Landscapes theory focuses on the analysis of the structure

of the search space that is induced by the combined influ-
ences of the objective function of the optimization problem
and the neighborhood operator [11]. This theory has appli-
cations not only in evolutionary computation [17] but also
in Chemistry [12], Biology [16], and Physics [5].

A landscape for a combinatorial optimization problem is
a triple (X, N, f), where f : X 7→ R defines the objective
function and the neighborhood operator function N(x) gen-
erates the set of points reachable from x ∈ X in a single
application of the neighborhood operator. If y ∈ N(x) then
y is a neighbor of x. Elementary landscapes are a type of
landscape which are of particular interest due to their spe-
cial properties [17]. They are characterized by the Grover’s
wave equation:
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avg{f(y)}
y∈N(x)

= f(x) +
λ

d

(

f̄ − f(x)
)

where d is the size of the neighborhood, |N(x)|, which we
assume is the same for all the solutions in the search space,
f̄ is the average solution evaluation over the entire search
space, and λ is a characteristic constant. The wave equa-
tion makes it possible to compute the average value of the
fitness function f evaluated over all of the neighbors of x
using only the value f(x); we denote this average by using
avg{f(y)}y∈N(x):

avg{f(y)}
y∈N(x)

=
1

|N(x)|
∑

y∈N(x)

f(y) (1)

The previous average can be interpreted as the expected
value of the objective function when a random neighbor of x
is selected using a uniform distribution. This point of view
can be used to design new search strategies. In fact, it has
been done in recent works like the one of Sutton et al. [13]
or Lu et al. [7]. One limitation of this approach is that only
a uniform distribution can be considered when a neighbor
solution is selected. However, in practice, this probability
is not always the same for all the neighbors. In particular,
the bit-flip mutation in genetic algorithms works on binary
strings and flips each bit with probability p. This means that
it is possible for the bit-flip mutation to reach any solution in
the search space with a non-uniform probability distribution.

In this work we focus on the bit-flip mutation and our
main goal is to find a closed-form formula for computing
the expected value of the fitness of the mutated individual.
That is, we want to generalize Grover’s wave equation to
the case of the bit-flip mutation operator. This generaliza-
tion has been recently proposed in [15], where an algorithm
is given for computing the mentioned expected value. How-
ever, we use here the Krawtchouk polynomials [4] to simplify
the expression. The new formula allows us to deepen in the
behavior of the mutation operator and suggests a more ef-
ficient algorithm to compute the expectation. We will also
discuss some practical applications of our findings that can
be used to improve the search process.

The remainder of the paper is organized as follows. In the
next section the mathematical tools required to understand
the rest of the paper are presented. In Section 3 we present
our main contribution of this work: the landscape analysis
of the bit-flip mutation. Section 4 discusses two practical
applications of our results. Finally, Section 5 presents the
conclusions and future work.
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2. BACKGROUND
In this section we present some fundamental results of

landscapes theory. We will only focus on the relevant infor-
mation required to understand the rest of the paper. The
interested reader can deepen on this topic in [10].

Let (X, N, f) be a landscape, where X is a finite set of
solutions, f : X → R is a real-valued function defined on X
and N : X → P(X) is the neighborhood operator. The pair
(X, N) is called configuration space and can be represented
using a graph G(X, E) in which X is the set of vertices and
a directed edge (x, y) exists in E if y ∈ N(x) [1]. We can
represent the neighborhood operator by its adjacency matrix

Axy =

{

1 if y ∈ N(x)
0 otherwise

(2)

The degree matrix D is defined as the diagonal matrix

Dxy =

{

|N(x)| if x = y
0 otherwise

(3)

The Laplacian matrix of a configuration space is defined
as:

∆ = A − D (4)

Any discrete function, f , defined over the set of candidate
solutions can be characterized as a vector in R

|X|. Any
|X| × |X| matrix can be interpreted as a linear map that

acts on vectors in R
|X|. For example, the adjacency matrix

A acts on function f as follows

A f =













∑

y∈N(x1) f(y)
∑

y∈N(x2) f(y)
...
∑

y∈N(x|X|)
f(y)













(5)

The component x of this matrix-vector product can thus
be written as:

(A f)(x) =
∑

y∈N(x)

f(y) (6)

which is the sum of the function value of all the neighbors
of x. In this paper, we will restrict our attention to regular
neighborhoods, where |N(x)| = d > 0 for a constant d, for
all x ∈ X. We also focus only on connected configuration
spaces (the underlying graph of the configuration space is
connected). When a neighborhood is regular, ∆ = A −
dI . Stadler defines the class of elementary landscapes where
the function f is an eigenvector (or eigenfunction) of the
Laplacian up to an additive constant [11]. Formally, we
have the following

Definition 1. Let (X, N, f) be a landscape and ∆ the
Laplacian matrix of the configuration space. The function f
is said to be elementary if there exists a constant b, which we
call offset, and an eigenvalue λ of −∆ such that (−∆)(f −
b) = λ(f − b). The landscape itself is elementary if f is
elementary.

According to the previous definition, every elementary
function, f , can be written as the sum of an eigenfunction of
−∆, denoted with g, and a constant b, i.e., f = g + b. The
eigenvalue λ is a feature of the landscape: it depends on the
objective function f and the configuration space (X, N). In
connected neighborhoods (the ones we consider here) the

offset b is the average value of the function over the whole
search space: b = f̄ . In elementary landscapes, the aver-
age value f̄ can be usually computed in a very efficient way
using the problem data. That is, it is not required to do a
complete enumeration over the search space.

Taking into account basic results of linear algebra, it is
not difficult to prove that if f is elementary with eigenvalue
λ, af + b is also elementary with the same eigenvalue λ.
Furthermore, in regular neighborhoods, if g is an eigenfunc-
tion of −∆ with eigenvalue λ then g is also an eigenvalue
of A, the adjacency matrix, with eigenvalue d − λ. The av-
erage value of the fitness function in the neighborhood of a
solution can be computed using the expression:

avg{f(y)}
y∈N(x)

=
1

d
(A f)(x) (7)

If f is an elementary function with eigenvalue λ, then the
average is computed as:

avg{f(y)}
y∈N(x)

= avg
y∈N(x)

{f(y) − f̄} + f̄

=
1

d
(A (f − f̄))(x) + f̄ =

d − λ

d
(f(x) − f̄) + f̄

= f(x) +
λ

d
(f̄ − f(x)) (8)

and we get Grover’s wave equation. In the previous expres-
sion we used the fact that f − f̄ is an eigenfunction of A
with eigenvalue d − λ.

A landscape (X, N, f) is not always elementary, but even
in this case it is possible to characterize the function f as
the sum of elementary landscapes [14], called elementary
components of the landscape. The interested reader can
find examples of elementary landscapes in [17, 18] and can
deepen on the elementary landscape decomposition in [2].

The previous definitions are general concepts of landscapes
theory. Let us focus now on the binary configuration spaces
with the one-change neighborhood, which are the configu-
ration spaces used by the bit-flip mutation. In these spaces
the solution set X is the set of all binary strings of size n.
Two solutions x and y are neighboring if one can be obtained
from the other by flipping a bit. That is, if the Hamming
distance between the solutions, denoted with H(x, y), is 1.
We define the sphere of radius k around a solution x as the
set of all solutions lying at Hamming distance k from x [13].
In analogy to the adjacency matrix we define the sphere
matrix of radius k as:

S(k)
xy =

{

1 if H(x, y) = k
0 otherwise

(9)

The sphere matrix of radius one is the adjacency matrix
of the one-change neighborhood, A, and the sphere matrix
of radius zero is the identity matrix, I . The definition given
in (9) is not useful for making computations with the sphere

matrices. However, in [15] more useful expressions for S(k)

can be found. Sutton et al. prove that the matrices S(k) can
be defined using the recurrence:

S(0) = I (10)

S(1) = A (11)

S(k+1) =
1

k + 1

(

A · S(k) − (n − k + 1)S(k−1)
)

(12)



Using the recurrence it is easy to check that each S(k) is a
polynomial in A (the adjacency matrix). For example, the

matrices S(2) and S(3) are:

S(2) =
1

2
A2 − n

2
I (13)

S(3) =
1

6
A3 +

(

1

3
− n

2

)

A (14)

As we previously noted, eigenvectors of the Laplacian ma-
trix ∆ are, in regular neighborhoods, eigenvectors of the ad-
jacency matrix A, and this implies that they are also eigen-
vectors of the sphere matrices S(k). As a consequence, all
the functions that are elementary in the one-change configu-
ration space are eigenvectors (up to an additive constant) of

S(k) and their eigenvalues can be computed using the same
polynomial in A that gives the expression for S(k). For ex-
ample, let g be an eigenvector of A with eigenvalue λ, then
g is eigenvector of S(2) with eigenvalue:

λS(2) =
1

2
λ2 − n

2
(15)

We should notice that the previous polynomial is just the
one of (13) replacing A by λ. We can combine both expres-
sions into one defining the following series of polynomials:

S(0)(x) = 1 (16)

S(1)(x) = x (17)

S(k+1)(x) =
1

k + 1

(

x · S(k)(x) − (n − k + 1)S(k−1)(x)
)

(18)

We use the same name for the polynomials and the ma-
trices related to the spheres. This is because we are going
to focus on the polynomials and not on the matrices. The
reader should notice, however, that the polynomials will be
always presented with their argument and the matrices have
no argument. That is, S(k) is the matrix but S(k)(x) is the
polynomial.

Using the previous polynomials, the matrix S(k) can be
written as S(k)(A) (the polynomial S(k)(x) evaluated in the
matrix A) and any eigenvector g of A with eigenvalue λ is

also an eigenvector of S(k)(A) with eigenvalue S(k)(λ).
One relevant set of eigenvectors of the Laplacian in the

one-change configuration space is that of the Walsh func-
tions [14]. Furthermore, the Walsh functions form an or-
thogonal basis of eigenvectors in the configuration space.
Thus, they have been used to find the elementary landscape
decomposition of problems with a binary representation like
the MAX-k-SAT [9]. The eigenvalue of a Walsh function is
2j, where j is an integer number called order of the Walsh
function and ranges from 0 to n. Thus, in the one-change
configuration space there are n + 1 possible values for the
eigenvalues of the elementary landscapes. As a consequence,
any function can be decomposed in a sum of at most n el-
ementary landscapes. If we also take into account that the
size of the neighborhood, d, is n in the one-change configu-
ration space, we conclude that the only possible eigenvalues
for the spheres are S(k)(n− 2j) with j ∈ {0, 1, . . . , n}. With
the help of Eqs. (16) to (18) we can write the following re-
currence formula for the eigenvalues of the sphere matrices:

S(0)(n − 2j) = 1 (19)

S(1)(n − 2j) = n − 2j (20)

(k + 1)S(k+1)(n − 2j) = (n − 2j) · S(k)(n − 2j)

− (n − k + 1)S(k−1)(n − 2j) (21)

The previous recurrence formula is also satisfied by the
Krawtchouk polynomials [3] and the solution of the recur-
rence is given by the elements of the Krawtchouk matrices
K(n) [4]. The correspondence is as follows:

S(k)(n − 2j) = K
(n)
kj (22)

where the (k, j) element of the n-th order Krawtchouk ma-

trix, K
(n)
kj , is defined as:

K
(n)
kj =

min(k,j)
∑

l=0

(−1)l

(

n − j
k − l

) (

j
l

)

(23)

Equation (22) will be used in the next section to simplify
some expressions.

3. ANALYSIS OF BIT-FLIP MUTATION
Our main goal is to obtain a closed-form formula for the

expected fitness value of a solution after the bit-flip mutation
operator has been applied to it. First of all, let us define
the bit-flip mutation operator. Given a solution of size n
(binary string), the operator changes the value of each bit
with probability p. The parameter p is the only one of the
mutation. In the literature it is common to use the value
p = 1/n, which, on average, changes one bit in each solution.
However, if 0 < p < 1 the mutation operator can yield any
solution of the search space with a different probability.

Let us now define a probability matrix P where the ele-
ment Pxy is the probability of obtaining the solution y after
a mutation to the solution x. This probability matrix con-
tains all the information we need to compute the expectation
of the fitness value of a mutated solution. This expectation
for the solution x is:

E[f ]x =
∑

y∈X

Pxyf(y) (24)

or using a vector equation we can write:

E[f ] = Pf (25)

where we consider f and E[f ] as vectors. In this case, E[f ] is
the vector of expectations, that is, the component x contains
the expectation of the fitness value when the mutation is
performed over x.

Now we need to compute the probability matrix for the
bit-flip mutation. The probability of reaching the solution
y from the solution x after an application of the mutation
depends on the Hamming distance H(x, y). It is the prob-
ability of changing H(x, y) bits in the solution taking into
account that the probability of flipping one single bit, p, is
independent for each bit. Thus, we can compute the proba-
bility matrix P for the bit-flip mutation as follows:

Pxy = pH(x,y)(1 − p)n−H(x,y) (26)



The previous probability matrix can be expressed using
the sphere matrices S(k)(A) of the previous section. We
should notice here that all the solutions y that are at Ham-
ming distance k from x have the same probability of being
selected: pk(1 − p)n−k. Thus, we can write the probability
matrix in the following way:

P =

n
∑

k=0

pk(1 − p)n−kS(k)(A) (27)

The previous expression has an important implication:
the sphere matrices S(k)(A) and the probability matrix P
for the bit-flip mutation have the same eigenfunctions. We
previously saw that the eigenfunctions of the sphere matrices
are the eigenfunctions of the Laplacian matrix (elementary
functions). Thus, we reach an important result that is stated
in the following

Theorem 1. If f is an eigenfunction of the Laplacian
matrix for the one-change binary configuration space with
eigenvalue 2j, then f is also an eigenfunction of P , the prob-
ability matrix of the bit-flip mutation operator, with eigen-
value

Λ(p, j) = (1 − 2p)j (28)

where Λ(p, j) is a two-variable function (p and j), j is an
integer value in {0, 1, . . . , n} and p ∈ [0, 1] is the probability
of flipping one bit in the mutation.

Proof. We have previously claimed that if f is an eigen-
function of the Laplacian with eigenvalue 2j, then it is also
an eigenfunction of the sphere matrix S(k)(A) with eigen-

value S(k)(n−2j). According to (27) the probability matrix

P is a linear combination of the S(k)(A) matrices. Thus, f
is also an eigenfunction of P with eigenvalue:

Λ(n)(p, j) =

n
∑

k=0

pk(1 − p)n−kS(k)(n − 2j)

=
n

∑

k=0

pk(1 − p)n−kK
(n)
kj (29)

where we have used the equality (22). The previous equa-
tion can be simplified with the help of some properties of
the Krawtchouk matrices. In particular, the elements of a
Krawtchouk matrix satisfy the following equation [4]:

(1 + x)n−j(1 − x)j =

n
∑

k=0

xkK
(n)
kj (30)

Thus, we can write:

Λ(n)(p, j) =
n

∑

k=0

pk(1 − p)n−kK
(n)
kj

= (1 − p)n

n
∑

k=0

(

p

1 − p

)k

K
(n)
kj

= (1 − p)n

(

1 +
p

1 − p

)n−j (

1 − p

1 − p

)j

= (1 − p)n

(

1

1 − p

)n−j (

1 − 2p

1 − p

)j

= (1 − 2p)j (31)

where we can observe that Λ(n)(p, j) does not depend on n,
so we omit the superscript (n).

Now we can give an efficient formula for the vector of
expectations as defined in (25) for an elementary landscape.
This formula is presented in the following

Theorem 2. Let f be an elementary function in the one-
change binary configuration space with eigenvalue 2j, then
the vector of expectations after the application of the bit-flip
mutation operator to the solutions in the search space can be
computed as:

E[f ] = f̄ + (1 − 2p)j(f − f̄) (32)

where f̄ is the average value of f in the search space.

Proof. If f is an elementary function f − f̄ is an eigen-
function of the Laplacian (by definition). With the help of
Theorem 1 we can write:

E[f ] = f̄ + E[f − f̄ ]

= f̄ + P (f − f̄)

= f̄ + Λ(p, j)(f − f̄)

= f̄ + (1 − 2p)j(f − f̄)

and we get (32).

The previous theorem is the main contribution of this
work and it says that for elementary landscapes we can com-
pute the expectation using f̄ (which is a constant) and the
value of the objective function in the solution we are inter-
ested, f(x). Equation (32) is a vector equation, but we can
express it for a particular solution in the following way:

E[f ]x = f̄ + (1 − 2p)j(f(x) − f̄) (33)

Some conclusions can be obtained just analyzing the pre-
vious expression. Let us focus on the factor Λ(p, j) = (1 −
2p)j , since it is the only one that contains the probability p
of flipping a bit. If we make the variable change z = 1− 2p,
then the factor is written zj , which is a monomial in z, so
the shape of Λ(p, j) is that of a polynomial of degree j with
one only root in p = 1/2 (with multiplicity j). If j is even
then Λ(p, j) is symmetric with respect to p = 1/2 and the
function has a minimum in that value. If j is odd, then
Λ(p, j) is strictly decreasing. In Figures 1 and 2 we show
some Λ(p, j) functions for even and odd values of j, respec-
tively. Since the value of p is restricted to the interval [0, 1]
we conclude that if j is even Λ(p, j) has two maxima in p = 0
and p = 1 with value 1. Otherwise, if j is odd it has one
maximum in p = 0 with value 1 and one minimum in p = 1
with value −1.

With the help of (33), let us now translate these obser-
vations to an arbitrary solution x of the search space. We
distinguish three cases depending on the value f(x):

• Case f(x) > f̄ . The shape of the expectation curve,
E[f ]x, is similar to that of Λ(p, j) but it is scaled and
vertically moved by f̄ (see Figure 3). If p = 1/2 the
expected value is f̄ . This is common sense because in
this case the bit-flip mutation can reach any solution of
the search space with the same probability. If j is even
E[f ]x takes the same value for p = 0 (no mutation) and



Figure 1: Polynomial Λ(p, j) for j even.

Figure 2: Polynomial Λ(p, j) for j odd.

p = 1 (all bits flipped). This implies that any solution
x and its complement x̃ (built by flipping all the bits in
the solution) have the same fitness value: f(x) = f(x̃).
If j is odd then the polynomial is antisymmetric with
respect to p = 1/2 and the complement of any solution
have fitness value: f(x̃) = 2f̄ − f(x).

• Case f(x) < f̄ . The expectation curve is like Λ(p, j)
but inverted with respect to a horizontal line (see Fig-
ure 4). Thus, if j is even the expectation reaches a
maximum in p = 1/2 with value f̄ . As in the previ-
ous case, depending on the parity of j every solution
x satisfies f(x) = f(x̃) (j even) or f(x̃) = 2f̄ − f(x) (j
odd).

• Case f(x) = f̄ . In this case the factor Λ(p, j) is multi-
plied by 0 and the expectation does not depend on p,
it is E[f ]x = f̄ .

Once we have analyzed E[f ]x for the elementary land-
scapes we now generalize the results to arbitrary functions.
We mentioned in the previous section that it is always pos-
sible to express the objective function f as a sum of, at
most, n elementary landscapes with eigenvalues from 2 to
2n (at steps of 2). For each of these elementary landscapes
we can compute the expectation using (32), so we just have
to sum all the expectations of the components to get the
expectation of f itself. Let us formally present this idea in
the following

Theorem 3. Let f be an arbitrary function whose ele-
mentary decomposition in the one-change binary configura-

Figure 3: Expectation E[f ]x as a function of p when
f(x) > f̄ .

Figure 4: Expectation E[f ]x as a function of p when
f(x) < f̄ .

tion space is:

f =
n

∑

j=1

Ω2j (34)

where Ω2j denotes the elementary component with eigen-
value 2j. The vector of expectations after the application of
the bit-flip mutation operator to the solutions in the search
space is:

E[f ] = f +
n

∑

j=1

(1 − 2p)j(Ω2j − Ω2j) (35)

where Ω2j denotes the average value of the function Ω2j(x)
in the entire search space.

Proof. With the help of (32) we can write:

E[f ] = E

[

n
∑

j=1

Ω2j

]

=

n
∑

j=1

E[Ω2j ]

=

n
∑

j=1

(

Ω2j + Λ(p, j)(Ω2j − Ω2j)
)

= f +

n
∑

j=1

Λ(p, j)(Ω2j − Ω2j)

= f +
n

∑

j=1

(1 − 2p)j(Ω2j − Ω2j)

and we get (35).



In particular for a solution x we have:

E[f ]x = f +
n

∑

j=1

(1 − 2p)j(Ω2j(x) − Ω2j) (36)

With this expression we can efficiently compute the ex-
pected value after the application of the bit-flip mutation
operator to solution x for an arbitrary function f . The com-
plexity of this operation is the sum of the complexities of
the evaluation of the elementary components. The average
value Ω2j is a constant that depends on the parameters of
the particular instance we are solving and can be efficiently
precomputed before the search process. It is our experience
that usually we can find an algorithm for computing the
component Ω2j and the value Ω2j that has the same com-
plexity as the original function f . If this is true for a prob-
lem the complexity of computing E[f ]x is at most n times
the complexity of computing a particular component Ω2j .
One interesting observation is that in many problems the
number of elementary components is a fixed number lower
than n, independently of the instance. For example, in the
MAX-k-SAT problem the objective function can be written
as a sum of k elementary landscapes [9]. In these cases the
computation of E[f ]x will have the same complexity as the
computation of the hardest elementary component Ω2j .

The curves of E[f ]x for general functions f are not so
easy to analyze like the ones of the elementary landscapes.
In general, the shape of such curves can be almost arbitrary.
The only limitations are that they must be a polynomial of
degree at most n and E[f ]x = f̄ at p = 1/2. We can state
that an elementary component with order j (and eigenvalue
2j) is related to a polynomial of degree j in the expectation
curve. As an example we show in Figure 5 the curve E[f ]x for
a function which can be decomposed into three elementary
landscapes. We show in the figure the expectation (solid
line) and the contribution of each elementary component
(dashed lines). We can observe in this case that the function
value f(x) is f̄ (see the value for p = 0). However, in spite
of this, the expectation does depend on p because we are
not dealing with an elementary landscape. Furthermore, it
has the maximum value at p = (4−

√
7)/6 ≈ 0.226. We can

observe that for p = 1/2 the expectation crosses f̄ again.

Figure 5: Expectation E[f ]x for a function with three
elementary components.

From a theoretical point of view, the results presented
in this section shed some light on the behavior of the bit-
flip mutation operator. This knowledge could be used, for
example, in the theoretical analysis of the runtime of search
algorithms in which this operator is used. However, these
results can also have practical applications. We devote the
next section to provide some examples of such applications.

4. FROM THEORY TO PRACTICE
In this section we discuss two possible applications of the

theoretical results obtained. The first one is related to the
selection operator in population-based metaheuristics whilst
the second one is related to the bit-flip mutation operator.

4.1 Selection operator
One of the main advantages of the landscape decompo-

sition of a problem is that we can efficiently compute the
average value of the fitness function in the neighborhood of
a solution. In a search algorithm this fact can be used to
select the solutions according to this average value instead
of basing the selection on the fitness value of the solution it-
self. This idea has been used to escape from plateaus in [13]
and to reduce the computational effort in [7].

Equation (32) allows us to compute the expected fitness
value after the bit-flip mutation with the same efficiency
as the average value in the neighborhood. Thus, if bit-flip
mutation is used in the search algorithm, it seems that using
the expected fitness value is a better alternative than using
the fitness value of the solution itself or the average in the
neighborhood.

However, the efficacy of this approach depends on the
number of times in which the proposed expectation-based
selection selects an individual that is different from the one
selected by a traditional fitness-based selection. Another
issue that could limit the success of this approach is the
change in the search strategy itself. An expectation-based
selection could speed up the improvement of the population.
This could guide the population to local optima.

4.2 Mutation operator
In Section 3 we saw that the expectation depends on the

probability p of flipping a bit. Furthermore, for a given
function and solution the expectation depends only on p. We
discuss here a strategy for deciding the value of p in order
to maximize the expectation of the fitness value of the new
solution. In this way we can provide a self-adaptive strategy
in which the parameter p is optimally selected according to
the individual.

The method consists in the following operation (we as-
sume maximization). Before mutating a solution, we use
equation (36) to obtain a polynomial in p that gives the
value of E[f ]x. This is always possible, since we assume
that we can evaluate the elementary components of f in the
solution x. After that, we find the maximum of p in the
interval p ∈ [0, 1]. In theory, we can do this analytically,
since we know the exact expression of the polynomial E[f ]x.
Finally, we select the value p for which E[f ]x is maximum
and apply the bit-flip mutation using this value of p.

In general, the previous method can be computationally
expensive because we need to solve an optimization problem
to decide p. It is supposed that the new optimization prob-
lem is much easier to solve than the one we are interested
in. It is a continuous problem with one single variable: p.



There is a special case in which the problem of deciding p
can be simplified. This happens when we are optimizing an
elementary landscape.

In elementary landscapes we can use (33) and we really
do not need to take into account the value of f(x) in the
computations. We only need to know whether f(x) > f̄
or not. The suggested values for p depends on the relative
position of f(x) and f̄ . If f(x) > f̄ then we have two cases:

• If j is odd, then the maximum is in p = 0 and the
expected value of the mutated individual will be lower
if p > 0. Strictly applying the strategy would mean to
stop the search. Perhaps a better solution is to use a
low value of p (say, the traditional p = 1/n).

• If j is even, then the maxima are in p = 0 or p = 1,
which means that the best option is to keep the same
solution or to go to the complementary solution. As
in the previous case, it is possible that the search is
stopped if we strictly apply the strategy so we should
use a low (or high) value for p.

If f(x) < f̄ in an elementary landscape, then we need
to find a value of p that minimizes (1 − 2p)j . We can also
distinguish two cases:

• If j is odd, the minimum is in p = 1, so we should go
to the complementary solution.

• If j is even, then the minimum is in p = 1/2, which
means start from a new random solution.

Third, if f(x) = f̄ the expectation is f̄ and the value of p
is irrelevant.

If the landscape is not elementary we have to deal in gen-
eral with Eq. (36). In order to find the optima we need
to compute the derivative of (36) and find the roots of the
derivative polynomial. We can use numerical methods, like
the Newton method, for finding these roots. Furthermore,
we can use exact methods to solve the derivative polynomi-
als up to degree four (Ferrari method). This means that it
is always possible to provide closed-form values for p in the
case of functions composed of up to five elementary land-
scapes (with eigenvalues up to 10).

In the rest of this section we are going to analyze the
case in which at most the three lower order elementary land-
scapes are present. Some important combinatorial optimiza-
tion problems fulfill this requirement. Some examples are
the MAX-3-SAT [14] and the Unconstrained Quadratic Op-
timization [6]. In this case, (36) can be written as:

E[f ]x = f+(1−2p)∆Ω2+(1−2p)2∆Ω4+(1−2p)3∆Ω6 (37)

where we introduced the notation ∆Ω2j = Ω2j(x) − Ω2j to
simplify the following expansions. The derivative is:

dE[f ]x
dp

= −2∆Ω2 − 4(1 − 2p)∆Ω4 − 6(1 − 2p)2∆Ω6 (38)

Now we have to distinguish three cases:

• If ∆Ω6 6= 0, then the previous equation is a second
order formula and the roots are:

p =
3∆Ω6 + ∆Ω4 ±

√

(∆Ω4)2 − 3∆Ω2∆Ω6

6∆Ω6
(39)

If (∆Ω4)
2 −3∆Ω2∆Ω6 ≥ 0 then the previous equation

will have one or two real values. However, these values
could be out of the interval [0, 1]. The solutions in the
interval [0, 1] must be compared with the limits of the
interval in order to select the optimum value.

• If ∆Ω6 = 0 but ∆Ω4 6= 0 then Eq. (38) is a linear
function whose root is:

p =
2∆Ω4 + ∆Ω2

4∆Ω4
(40)

As in the previous case we must check that this value
is in the interval [0, 1] before comparing it with the
limits.

• If ∆Ω6 = ∆Ω4 = 0 then the expectation is monotone
(if ∆Ω2 6= 0) or constant (if ∆Ω2 = 0). In any case
the optimum value is in the limits of the interval [0, 1]
(p = 0 or p = 1).

The complexity of this strategy is the same as evaluating
the elementary components Ω2j of the objective function. It
is our experience that these evaluations do not take longer
than the evaluation of f itself. Thus, in the case of a function
composed of three elementary landscapes, the complexity is
usually the same as the function evaluation.

The efficacy of the proposed method depends on several
issues. First, the strategy could be really useful for the solu-
tions in which the maximum expectation is not in the limits
of the interval [0, 1]. In this case we gain information from
the landscape decomposition. One necessary condition for
this to happen is that at least one of the elementary compo-
nents has a value that is below its average Ω2j . We can easily
check this from Eq. (36). If it happens that Ω2j(x) > Ω2j

for all the elementary components, then those components
with odd order are all decreasing and those with even order
reach their maximum at p = 0 and p = 1. This means, that
no value p ∈ (0, 1) exists such that the expectation is higher
than in p = 0.

In order to study how often does our proposed strategy
give a useful value for the probability p we have selected
a problem, we have generated random solutions for that
problem and we have counted the number of solutions for
which the probability is in the open interval (0, 1). The
problem is the 0-1 Unconstrained Quadratic Optimization
(UQO) [6], which can be decomposed as a sum of two ele-
mentary landscapes with order j = 1 and j = 2. We have
randomly generated 30 instances of UQO using the genera-
tor by Palubeckis [8]. The size of the instances ranges from
n = 500 to n = 3000. The density δ of the instances is
taken from the set {10, 30, 50, 70, 90}. The number of gen-
erated random solutions is 10000. In Table 1 we show for
each instance the number of solutions for which the maxi-
mum expectation is found when p ∈ (0, 1). We can observe
that all the numbers are around 3000, which means that
30% of the search space is composed of solutions that could
profit from the proposed adaptive mutation.

A second important issue for the success of this approach
is the appearance during the search process of solutions for
which the strategy is useful. During the search process, the
solutions in the population will improve their fitness value
and, thus, the probability of finding a solution for which the
strategy is useful decreases as the search progresses. Fol-
lowing with the UQO example, we have solved the instance



Table 1: Number of solutions (from a total of 10000)
for which the maximum expectation is in p ∈ (0, 1).

δ
n 10 30 50 70 90

500 2975 2932 3010 3125 3041
1000 3024 3003 3070 2984 3095
1500 3050 3154 3088 3024 2978
2000 2939 3048 3074 3055 3083
2500 3079 3014 3084 3025 3051
3000 3107 3062 3052 3022 3001

with n = 500 and density δ = 10 using a genetic algorithm
equipped with our proposed strategy and only for a 1% of
the solutions found during the search the maximum expec-
tation happened for a value p ∈ (0, 1).

5. CONCLUSIONS AND FUTURE WORK
In this paper we have used some results of landscapes the-

ory to provide a closed-form formula for the expectation of
the fitness value of a solution that has changed using the
bit-flip mutation. The formula uses the elementary com-
ponents of the objective function and can be computed in
polynomial time if the components can also be computed in
polynomial time. We have also discussed some applications
of the expectation formula.

The findings of this paper can be extended in multiple di-
rections. First, it is possible to provide closed-form formulas
not only for the expectation of the fitness function but also
for the variance or higher order moments. In this sense, the
work by Sutton et al. [15] is a guide to follow on this topic.

Second, using a methodology similar to that presented in
this paper we can extend the results to other configuration
spaces and operators. For example, the permutation space
with the swap mutation, the sequence space with the one-
change mutation, etc.

Third, an interesting question that remains open is whether
we can apply landscapes theory to analyze combinations of
operators. For example, crossover followed by mutation. If
this analysis were possible and provided a simple formula for
the expectation, we could consider the entire search process
as an operator and we would have a closed-form formula for
the expected performance of an algorithm. This last idea
would connect the theoretical runtime analysis with land-
scapes theory.

6. ACKNOWLEDGMENTS
This research has been partially funded by the Spanish

Ministry of Science and Innovation and FEDER under con-
tract TIN2008-06491-C04-01 (the M∗ project) and the An-
dalusian Government under contract P07-TIC-03044 (DIRI-
COM project).

7. REFERENCES
[1] T. Biyikoglu, J. Leyold, and P. F. Stadler. Laplacian

Eigenvectors of Graphs. Lecture Notes in
Mathematics. Springer-Verlag, 2007.

[2] F. Chicano, L. D. Whitley, and E. Alba. A
methodology to find the elementary landscape
decomposition of combinatorial optimization

problems. Evolutionary Computation, 2011. DOI:
10.1162/EVCO a 00039.

[3] R. Coleman. On krawtchouk polynomials.
http://arxiv.org/abs/1101.1798, January 2011.

[4] P. Feinsilver and J. Kocik. Krawtchouk polynomials
and krawtchouk matrices. In R. Baeza-Yates, J. Glaz,
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