
New Techniques and Algorithms for
Multiobjective and Lexicographic

Goal-Based Shortest Path Problems

TESIS DOCTORAL

Francisco Javier Pulido Arrebola

Universidad de Málaga

7 de Julio de 2015

Documento maquetado con TEXiS v.1.0.

AUTOR: Francisco Javier Pulido Arrebola

 http://orcid.org/0000-0002-8446-0009

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está sujeta a una licencia Creative Commons:

Reconocimiento - No comercial - SinObraDerivada (cc-by-nc-nd):

Http://creativecommons.org/licences/by-nc-nd/3.0/es

Cualquier parte de esta obra se puede reproducir sin autorización

pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer
obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de

Málaga (RIUMA): riuma.uma.es

http://orcid.org/0000-0002-0176-9474
http://creativecommons.org/licences/by-nc-nd/3.0/es
http://creativecommons.org/licences/by-nc-nd/3.0/es

New Techniques and Algorithms for
Multiobjective and Lexicographic

Goal-Based Shortest Path Problems
Memoria que presenta el doctorando

Francisco Javier Pulido Arrebola

para optar al grado académico de Doctor

Dirigida por el Doctor

Lawrence Mandow Andaluz

Programa de Doctorado en Ingeniería del Software e
Inteligencia Artificial

Departamento de Lenguajes y Ciencias de la Computación
Escuela Técnica Superior de Ingeniería Informática

Universidad de Málaga

7 de Julio de 2015

Tribunal de la tesis / Thesis Committee

Dr. Rafael Morales Bueno - Universidad de Málaga
Dra. Amparo Ruíz Sepúlveda - Universidad de Málaga

Dr. Carlos Linares López - Universidad Carlos III de Madrid
Dra. Camino Rodríguez Vela - Universidad de Oviedo

Dra. Lucie Galand - Université Paris Dauphine

Evaluadores externos / External Reviewers

Dra. Andrea Raith - University of Auckland (New Zealand)
Dr. Antonio Iovanella - University of Rome Tor Vergata (Italy)

Copyright c© Francisco Javier Pulido Arrebola

E-mail: francis@lcc.uma.es
Web: http://www.lcc.uma.es/~francis

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs License: http://creativecommons.org/licenses/by-nc-nd/3.0/

This work was partially funded by / Este trabajo fue parcialmente financiado por:
Consejería de Economía, Innovación, Ciencia y Empresa.
Junta de Andalucía (España)
Referencia: P07-TIC-03018

http://www.lcc.uma.es/~francis
http://creativecommons.org/licenses/by-nc-nd/3.0/

El Dr. D. Lawrence Mandow Andaluz, Profesor Titular de Universidad, del Área
de Ciencias de la Computación e Inteligencia Artificial de la Escuela Técnica Superior
de Ingeniería Informática de la Universidad de Málaga,

Certifica que,

D. Francisco Javier Pulido Arrebola, Ingeniero en Informática, ha realizado en
el Departamento de Lenguajes y Ciencias de la Computación de la Universidad de
Málaga, bajo su dirección, el trabajo de investigación correspondiente a su Tesis Doc-
toral titulada:

New Techniques and Algorithms for Multiobjective and Lexicographic Goal-Based
Shortest Path Problems

Revisado el presente trabajo, estima que puede ser presentado al tribunal que ha
de juzgarlo, y autoriza la presentación de esta Tesis Doctoral en la Universidad de
Málaga.

Fdo.: Dr. Lawrence Mandow Andaluz

Málaga, 7 de Julio de 2015

Para mis padres,
por su amor, dedicación y sacrificios.

Agradecimientos

Gracias, en primer lugar y de todo corazón, a mi tutor, el doctor Lawrence Mandow. Su
paciencia, dedicación y guía me han hecho llegar hasta donde estoy. Él, como ninguna
otra persona, me ha enseñado la pasión por la investigación, el trabajo metódico y la
minuciosidad por los detalles. Ha sido un placer y un privilegio poder contar con su
dirección y ayuda.

Gracias a José Luis Pérez de la Cruz, catedrático de la Universidad de Málaga y
una de las mentes más brillantes que conozco, por su inestimable ayuda y colaboración.
Su visión crítica y experiencia han contribuido a enriquecer los resultados de esta tesis.

Thanks to everyone in the University of Maths in Belgrade and the Computer
Engineering and Informatics Department of the University of Patras. Dr. Dušan Tošic,
Dr. Vladimir Filipović, Dr. Christos Zaroliagis, Nikos Rousias, Dimitris Gkortsilas and
everyone else who made my PhD visits so enriching and enjoyable.

Gracias a mis compañeros de laboratorio: Javi, Dani, Martyna, Rafa y todos aque-
llos con los que he compartido alegrías y penas a lo largo de esta Tesis, y especialmente,
a los doctores Enrique Machuca y Jaime Gálvez, por su desinteresada ayuda y su eterna
disponibilidad. Esta Tesis Doctoral y mi tiempo en la Universidad no habrían sido lo
mismo sin ellos.

Gracias a la doctora Raquel Barco, por brindarme la oportunidad de dar un enfoque
más comercial a los resultados de esta tesis. Gracias a Nacho, Juan, y el resto de
mis compañeros del proyecto de tráfico inteligente por nuestras entretenidas reuniones
diarias de sincronización.

Y por encima de todo, y con todo mi amor, gracias a los míos por estar incondi-
cionalmente conmigo, por apoyarme siempre y sin restricciones. Gracias Mamá, Papá,
Mari, Lena y Runi. Os quiero mucho.

Francisco Javier Pulido Arrebola
Málaga, 7 de Julio de 2015

ix

Abstract

Shortest Path Problems (SPP) are one of the most extensively studied problems in
the fields of Artificial Intelligence (AI) and Operations Research (OR). It consists in
finding the shortest path between two given nodes in a graph such that the sum of
the weights of its constituent arcs is minimized. However, real life problems frequently
involve the consideration of multiple, and often conflicting, criteria. When multiple
objectives must be simultaneously optimized, the concept of a single optimal solution
is no longer valid. Instead, a set of efficient or Pareto-optimal solutions define the
optimal trade-off between the objectives under consideration.

The Multicriteria Search Problem (MSP), or Multiobjective Shortest Path Pro-
blem, is the natural extension to the SPP when more than one criterion are considered.
The MSP is computationally harder than the single objective one. The number of label
expansions can grow exponentially with solution depth, even for the two objective case
(Hansen, 1980). However, with the assumption of bounded integer costs and a fixed
number of objectives the problem becomes tractable for polynomially sized graphs (e.g.
see (Mandow & Pérez de la Cruz, 2009; Müller-Hannemann & Weihe, 2006)).

A wide variety of practical application in different fields can be identified for the
MSP, like robot path planning (Wu et al., 2011), hazardous material transportation
(Caramia et al., 2010), route planning (Jozefowiez et al., 2008), optimization of public
transportation (Raith, 2009), QoS in networks (Craveirinha et al., 2009), or routing in
multimedia networks (Climaco et al., 2003).

Goal programming is one of the most successful Multicriteria Decision Making
(MCDM) techniques used in Multicriteria Optimization. In this thesis we explore one
of its variants in the MSP. Thus, we aim to solve the Multicriteria Search Problem
with lexicographic goal-based preferences. To do so, we build on previous work on
algorithm NAMOA∗, a successful extension of the A∗ algorithm to the multiobjective
case. More precisely, we provide a new algorithm called LEXGO∗, an exact label-
setting algorithm that returns the subset of Pareto optimal paths that satisfy a set of
lexicographic goals, or the subset that minimizes deviation from goals if these cannot
be fully satisfied. Moreover, LEXGO∗ is proved to be admissible and expands only a
subset of the labels expanded by an optimal algorithm like NAMOA∗, which performs
a full Multiobjective Search.

Since time rather than memory is the limiting factor in the performance of mul-
ticriteria search algorithms, we also propose a new technique called t-discarding to

xi

xii Abstract

speed up dominance checks in the process of discarding new alternatives during the
search. The application of t-discarding to the algorithms studied previously, NAMOA∗
and LEXGO∗, leads to the introduction of two new time-efficient algorithms named
NAMOA∗dr and LEXGO∗dr, respectively.

All the algorithmic alternatives are tested in two scenarios, random grids and re-
alistic road maps problems. The experimental evaluation shows the effectiveness of
LEXGO∗ in both benchmarks, as well as the dramatic reductions of time requirements
experienced by the t-discarding versions of the algorithms, with respect to the ones
with traditional pruning.

Contents

I Motivation and Fundamentals 1

1 Introduction 3
1.1 Motivation . 4
1.2 Scope and Orientation . 5
1.3 Research Goals . 6
1.4 Contributions . 7
1.5 Related Publications . 8
1.6 Outline . 8

2 MultiCriteria Graph Search 11
2.1 Multicriteria Decision Making . 12
2.2 Multiobjective optimization . 13
2.3 Goal Programming . 17

2.3.1 Variants of goal-based preferences 17
2.3.2 Lexicographic goal-based preferences 18

2.4 The Shortest Path Problem . 21
2.5 The Multicriteria Search Problem . 24
2.6 Exact a posteriori algorithms . 26

2.6.1 Extensions of A∗ to the multiobjective case 28
2.6.2 Algorithm NAMOA∗ . 28
2.6.3 The ideal point as lower bound 29

2.7 Exact a priori algorithms . 32
2.7.1 Compromise Search . 32
2.7.2 Goal Programming . 33

2.8 Summary and motivation . 33

3 Benchmarks 37
3.1 Multiobjective Search benchmarks . 37
3.2 Benchmarks used in this thesis . 38

3.2.1 Random grids . 39

xiii

xiv Table of Contents

3.2.2 Road maps . 39
3.2.3 Significance of the test sets . 41
3.2.4 Evaluation of preferences based on goals 42

3.3 Evaluation of performance in Multicriteria Search 42

II Contributions 45

4 New techniques for multiobjective and goal-based search 47
4.1 Algorithm LEXGO∗ . 47

4.1.1 Pruning conditions . 50
4.1.2 Filtering conditions . 52
4.1.3 Example . 52

4.2 A dimensionality reduction technique for MSP 53
4.3 Algorithm NAMOA∗dr . 56
4.4 Algorithm LEXGO∗dr . 59

5 Formal Analysis of Multicriteria Algorithms 63
5.1 Formal characterization of NAMOA∗ . 64

5.1.1 Admissibility . 64
5.1.2 Efficiency of lower bounds and optimality 65

5.2 Formal characterization of LEXGO∗ . 66
5.2.1 Efficiency . 67
5.2.2 Admissibility . 69

5.3 Formal characterization of NAMOA∗dr 71
5.3.1 Admissibility . 71
5.3.2 Efficiency . 72

5.4 Formal characterization of LEXGO∗dr . 73
5.4.1 Admissibility . 73

5.5 Discussion . 74

6 Empirical Analysis on Grid Problems 75
6.1 Experimental setup . 76
6.2 LEXGO∗ vs NAMOA∗ . 77

6.2.1 Analysis on class I experiments 78
6.2.2 Analysis on class II experiments 80
6.2.3 Analysis on the pruning condition 88
6.2.4 Summary . 89

6.3 NAMOA∗dr vs NAMOA∗ . 89
6.3.1 Analysis . 90
6.3.2 Summary . 93

6.4 LEXGO∗dr vs LEXGO∗ . 94
6.4.1 Analysis on class I experiments 94
6.4.2 Analysis on class II experiments 94

Table of Contents xv

6.4.3 Summary . 96
6.5 LEXGO∗dr vs NAMOA∗dr . 98

6.5.1 Analysis on class I experiments 98
6.5.2 Analysis on class II experiments 98
6.5.3 Summary . 101

6.6 Summary on random grid experiments 101
6.6.1 Summary on class I experiments 101
6.6.2 Summary on class II experiments 101

7 Empirical Analysis On Road Map Problems 105
7.1 LEXGO∗ vs NAMOA∗ . 106

7.1.1 Analysis on class I experiments 107
7.1.2 Analysis on class II experiments 112
7.1.3 Summary . 116

7.2 NAMOA∗dr vs NAMOA∗ . 116
7.2.1 Analysis . 116
7.2.2 Summary . 120

7.3 LEXGO∗dr vs LEXGO∗ . 122
7.3.1 Analysis on class I experiments 122
7.3.2 Analysis on class II experiments 122
7.3.3 Summary . 124

7.4 LEXGO∗dr vs NAMOA∗dr . 124
7.4.1 Analysis on class I experiments 126
7.4.2 Analysis on class II experiments 128
7.4.3 Summary . 128

7.5 Summary on road map problems . 129

III Conclusions 133

8 Conclusions and Future Work 135
8.1 Conclusions . 136
8.2 Future Work . 138

IV Appendix 141

A Resumen 143
A.1 Objetivos . 144
A.2 Contribuciones . 145
A.3 Resumen de los capítulos de la Tesis . 146

A.3.1 Búsqueda Multicriterio en Grafos: Problemas y Algoritmos . . . 146
A.3.2 Bancos de pruebas para búsqueda multicriterio 147
A.3.3 Contribuciones . 147
A.3.4 Análisis formal de los algoritmos de búsqueda multicriterio . . . 148

xvi Table of Contents

A.3.5 Evaluación empírica en mallas aleatorias 149
A.3.6 Evaluación empírica en mapas de carreteras 150

A.4 Conclusiones . 150
A.5 Trabajo Futuro . 153

Bibliography 155

List of Figures

1.1 Screenshots from a sample route planning web application, showing al-
ternative routes from Málaga (Spain) to Valencia (Spain). c© www.viam
ichelin.com . 5

2.1 Types of solutions and relevant points in a biobjective cost space. 15

4.1 a) Graphic representation of slack variables for several scenarios where
(1) yi, y′i ≥ ti, (2) yi ≤ ti < y′i, (3) y′i ≤ ti < yi and (4) yi, y′i < ti, adding
εi to both yi and y′i. 48

4.2 Sample graph with satisfiable goals . 53
4.3 A set of vectors X = {~x, ~y, ~z} and its truncated vectors t(~x), t(~y), t(~z). . 56
4.4 Sample graph one with 3 objectives. 59
4.5 Sample graph two with 3 objectives. 61

5.1 A pruning rule prunes a path to n1 with cost (9,1) leading to the ex-
pansion of the dominated label (10,10) in n2. 67

5.2 Scenario where a dominated path P ′ is pruned either by P1P2 or P3P2. . 70

6.1 Three-dimensional Pareto frontier divided according to goal satisfiability
for a sample problem with solution depth d = 100. 79

6.2 Class I experiments on grids, average number of scanned (explored)
labels per solution depth for lexicographic selection order. 79

6.3 Class I experiments on grids, average runtime in seconds per solution
depth for NAMOA∗ and LEXGO∗. 81

6.4 Class II experiments on grids, average scanned labels per solution depth
for NAMOA∗ and LEXGO∗ with lexicographic selection order. 84

6.5 Class II experiments on grids, average runtime (in seconds) per solution
depth for LEXGO∗ and NAMOA∗ with lexicographic selection order. . 86

6.6 Class II experiments on grids, average runtime (in seconds) per solution
depth for LEXGO∗ and NAMOA∗ with linear aggregation selection or-
der. 87

6.7 Class I experiments on grids, average explored labels per solution depth
to LEXGO∗ (k1 = 0) with and without deviation pruning. 88

xvii

www.viamichelin.com
www.viamichelin.com

xviii List of Figures

6.8 Class I experiments on grids, average runtimes in seconds per solution
depth to LEXGO∗ (k1 = 0) with and without deviation pruning. 89

6.9 Percentage of pruned and filtered labels over the total number of dis-
carded labels by NAMOA∗dr per solution depth for q ∈ {3, 4, 5} objec-
tives in grid problems. 92

6.10 Average runtimes for q ∈ {3, 4, 5} objectives per solution depth in grid
problems. 93

6.11 Percentage of average runtime of NAMOA∗dr and NAMOA∗lin over NAMOA∗lex
for q = 3 grid problems. 94

6.12 Class I experiments on grids, relative runtime performance of LEXGO∗dr
over the best runtimes of standard LEXGO∗. 95

6.13 Class II experiments on grids, relative runtime performance (in seconds)
of LEXGO∗dr over the best previous runtimes of LEXGO∗ as a function
of solution depth. 97

6.14 Class I experiments on grids, average runtimes (in seconds) of NAMOA∗dr
and LEXGO∗dr per solution depth. 99

6.15 Class II experiments on grids, average runtimes in seconds of LEXGO∗dr
and NAMOA∗dr per solution depth. 100

7.1 Rendering of NY city map . 106
7.2 Cut of Vermont map (squared) . 106
7.3 Runtimes of NAMOA∗lin and NAMOA∗dr for the VTcut map problems

sorted by the number of labels expanded. 120
7.4 Percentage of pruned and filtered labels over the total number of dis-

carded labels by NAMOA∗dr per solution depth in road map experiments. 121

List of Tables

2.1 Goals and deviation variables (taken from (Romero, 1993). 13
2.2 [Adapted from (Mandow & Pérez de la Cruz, 2010)] Pseudocode of

NAMOA∗ algorithm. 30
2.3 Classification of some representative a priori and a posteriori multicri-

teria shortest path algorithms. 35

3.1 Average number of Pareto-optimal cost vectors relative to solution depth
and number of objectives (q) in our grid problems. 40

3.2 Average Pareto-optimal cost vectors for three sets of experiments. (+)
represents the average of the fourteen problems solved. 41

4.1 Pseudocode of LEXGO∗ algorithm . 51
4.2 Lower bounds table with distance estimates of an example of LEXGO∗

with satisfiable goals . 54
4.3 Execution trace of an example of LEXGO∗ with feasible goals (graph in

Figure 4.2). 54
4.4 New operations over truncated sets of vectors. 57
4.5 Pseudocode of NAMOA∗dr algorithm. 58
4.6 Pseudocode of LEXGO∗dr algorithm. 60

6.1 Class I experiments on grids, average percentage of goal-optimal solution
vectors returned by LEXGO∗ relative to average |C∗| as a function of
solution depth. An asterisk (∗) indicates that the goals could not be
satisfied. 78

6.2 Class I experiments on grids, summary of the relative space and runtime
performance of LEXGO∗ over NAMOA∗ for d = 100 experiments. . . . 82

6.3 Class II experiments on grids, LEXGO∗ average percentage of goal-
optimal solution costs relative to C∗. An asterisk (∗) indicates some of
the five instances could not satisfy all goals, and two asterisks (∗∗) that
none of the five instances could satisfy all goals. 83

6.4 Class II experiments on grids, LEXGO∗lex average percentage of scanned
labels (

∑
Gcl) compared to NAMOA∗lex. 83

xix

xx List of Tables

6.5 Class II experiments on grids, LEXGO∗ runtimes (in seconds) percent-
age relative to NAMOA∗. 85

6.6 Average size of relevant sets of labels for random grid problems solved
by NAMOA∗dr. 91

6.7 Average runtimes in seconds for random grid problems. 91
6.8 Class I experiments on grids, average runtimes in seconds of LEXGO∗lex,

LEXGO∗lin and LEXGO∗dr for d = 100. Speed-up of LEXGO∗dr over the
best standard version of LEXGO∗. 95

6.9 Class II experiments on grids, LEXGO∗dr runtimes in seconds. 96
6.10 Class I experiments on grids, runtimes of LEXGO∗dr and NAMOA∗dr for

d = 100. 98
6.11 Class II experiments on grids, LEXGO∗dr and NAMOA∗dr runtimes (in

seconds). Cases were LEXGO∗dr outperforms NAMOA∗dr are highlighted
in bold. 99

6.12 Runtime comparison - summary table for random grid experiments. . . 102
6.13 Class I experiments on grids, runtimes (in seconds) of all algorithms

studied in this thesis as a function of solution depth. 103
6.14 Class II experiments on grids, runtimes (in seconds) of all algorithms

studied in this thesis as a function of solution depth. 104

7.1 Maps employed in the road map experiments. (∗) corresponds to a cut
of the original map. 106

7.2 Class I experiments in road maps, percentage of goal-optimal solution
vectors relative to C∗ for solvable problems within the time limit by
LEXGO∗ and NAMOA∗. An asterisk (∗) indicates that the goals could
not be satisfied. 108

7.3 Class I experiments in road maps, relative percentage number of scanned
labels by LEXGO∗lin to NAMOA∗lin. 109

7.4 Class I experiments in road maps, relative percentage runtimes in sec-
onds for LEXGO∗lex and NAMOA∗lex. 110

7.5 Class I experiments in road maps, relative percentage runtimes in sec-
onds for LEXGO∗lin and NAMOA∗lin. 111

7.6 Class II experiments in road maps, LEXGO∗ percentage of goal-optimal
solution vectors relative to the size of C∗. An asterisk (∗) indicates that
the goals could not be satisfied. 112

7.7 Class II experiments in road maps, relative number of scanned labels by
LEXGO∗ and NAMOA∗ on lexicographic selection order. 113

7.8 Class II experiments in road maps, runtimes in seconds of NAMOA∗lex
and LEXGO∗lex percentage of runtime compared to NAMOA∗lex. 114

7.9 Class II experiments in road maps, runtimes in seconds of NAMOA∗lin
and LEXGO∗lin percentage of runtime compared to NAMOA∗lin. 115

7.10 Class I experiments in road maps, summary of the relative space and
time performance of LEXGO∗ over NAMOA∗. 117

List of Tables xxi

7.11 Class II experiments in road maps, summary of the relative space and
runtime performance of LEXGO∗ over NAMOA∗ for the Vermont map
experiments. 118

7.12 Size of relevant sets of labels for VTcut road map experiments solved by
NAMOA∗dr . 119

7.13 Results of NY city road map experiments with size of relevant sets of
labels of NAMOA∗dr and runtimes of NAMOA∗lin and NAMOA∗dr. 119

7.14 Summary of V Tcut map results. 121
7.15 Class I experiments in road maps, runtimes in seconds of LEXGO∗dr for

the experiments over Vermont and NY city maps. 123
7.16 Class I experiments in road maps, summary of Vermont problems run-

times in seconds of LEXGO∗lex, LEXGO∗lin and LEXGO∗dr. 123
7.17 Class I experiments in road maps, runtimes of LEXGO∗lex, LEXGO∗lin,

and LEXGO∗dr for two NY city problems. 124
7.18 Class II experiments in road maps, runtimes in seconds of LEXGO∗dr for

the experiments over Vermont and NY city maps. 125
7.19 Class II experiments in road maps, runtimes in seconds of LEXGO∗dr for

the experiments over Vermont and NY city maps. 125
7.20 Class II experiments in road maps, runtimes in seconds of LEXGO∗lex,

LEXGO∗lin, and LEXGO∗dr for two NY city problems. 126
7.21 Class I experiments in road maps, runtimes in seconds of NAMOA∗dr

and LEXGO∗dr for the experiments over Vermont and NY city maps. . . 127
7.22 Class I experiments in road maps, average runtimes in seconds of NAMOA∗dr

and LEXGO∗dr for the set of Vermont map experiments. 127
7.23 Class II experiments in road maps, runtimes in seconds of NAMOA∗dr

and LEXGO∗dr for the experiments over Vermont and NY city maps. . . 128
7.24 Class II experiments in road maps, average runtimes in seconds of

NAMOA∗dr and LEXGO∗dr for the set of Vermont map experiments. . . . 129
7.25 Runtime comparison - summary table for road map experiments. 131

Part I

Motivation and Fundamentals

This first part of this thesis is divided into three chapters. The first one is devoted to
introduce its field of study. We enumerate the goals of this dissertation and introduce
the contributions that we will develop further in the second part. The second chapter
describes our main subject of study and research, Multicriteria Search problems and
algorithms. The third chapter is dedicated to the benchmarks used to conduct the
experimental evaluation. Thus, in particular:

• Chapter 1 gives an overview of the motivation, scope and goals of this thesis,
and enumerates its contributions.

• Chapter 2 defines the Multicriteria Search Problem, gives some examples of ap-
plication and classifies the approaches to deal with the problem. Formal proper-
ties of the lower bounds to apply to the multicriteria search algorithms are also
described. Finally, NAMOA∗ is introduced emphasizing its relevant features and
properties to our own work.

• Chapter 3 enumerates relevant benchmarks employed in the literature and de-
scribes the test beds used in this thesis, as well as the main parameters followed
in the experimental evaluation.

Chapter 1

Introduction

Research is what I’m doing when I don’t know
what I’m doing

Wernher von Braun (1912-1977)

This doctoral dissertation falls within the scope of the Artificial Intelligence (AI)
and Operations Research (OR) fields. Shortest Path Problems (SPP) are one of the
oldest and most extensively studied problems in both fields, which consists in finding
the shortest path between two given nodes in a graph such that the sum of the weights
of its constituent arcs is minimized. The SPP arises naturally in real life, e.g. planning
the route path in a road trip, or navigating a mobile robot to avoid obstacles, and can
be also used to solve optimally puzzle games like Rubik’s cube (Korf, 1997) or the
twenty-four puzzle (Korf & Taylor, 1996).

The Multicriteria Search Problem (MSP), or Multiobjective Shortest Path Pro-
blem, is the natural extension to the SPP whenever more than one criterion is consi-
dered. The MSP is computationally harder than the single objective one. The number
of label expansions can grow exponentially with solution depth, even for the two ob-
jective case (Hansen, 1980). With the assumption of bounded integer costs and a fixed
number of objectives the problem becomes tractable for polynomially sized graphs, but
still harder than single objective search (e.g. see (Mandow & Pérez de la Cruz, 2009;
Müller-Hannemann & Weihe, 2006)).

Recent experiments on problems like bicriteria route planning have revealed that
time, rather than space, is the practical limiting factor in the calculation of the full set
of efficient solutions in exact algorithms in Multicriteria Search (Machuca & Mandow,
2012; Machuca et al., 2009). In this thesis we address this problem from the point
of view of Goal Programming (GP), which has proven to be a very effective model
of decision maker’s preferences over multicriteria decision making (MCDM) problems.
Goal Programming is a general paradigm which claims that a decision problem can be
expressed through a set of goals defined by the decision maker, rather than through
the optimization of a set of objectives. Roughly speaking, a goal defines a degree of
satisfaction of a given criteria that is deemed satisfactory or acceptable by the decision
maker. One of the most commonly used schemes to express goal-based preferences is
the lexicographic method of grouping criteria by pre-emptive importance (Charnes &

3

4 Chapter 1. Introduction

Cooper, 1977; Romero, 1991).
Our starting hypothesis is that in those cases where user preferences can be initially

bounded by a set of goals, specially designed search algorithms could perform more
efficiently than searching for the full Pareto frontier. The main goals of this thesis are
to explore this hypothesis, and to improve the performance of current multiobjective
search algorithms. More precisely, we explore new algorithmic contributions to the
MSP with lexicographic goal-based preferences, and also a new technique to speed up
multicriteria search algorithms based on labeling techniques.

Section 1.1 introduces the motivation and significance of this work for the AI and
OR fields. Section 1.2 presents our scope and orientation. The goals and contributions
of this thesis are enumerated in Sections 1.3 and 1.4, respectively. Related publica-
tions of this research work are shown in Section 1.5. Finally, Section 1.6 outlines the
structure of this thesis.

1.1 Motivation

The Shortest Path Problem is a recurrent problem in the AI and OR literature. Di-
jkstra (1959) proposed the first algorithm to find the minimal cost route between two
nodes in a graph. The A∗ algorithm (Hart et al., 1968) is an important algorithmic ref-
erence that exploits specific problem knowledge (the so-called heuristic function in the
AI community) to guide the search and improve its efficiency. This problem knowledge
is in the form of a distance or cost estimate.

Real life decision problems frequently involve the consideration of multiple criteria
simultaneously. For example, Figure 1.1 shows three car routes from Málaga to Va-
lencia (both in Spain) suggested by a sample web application devoted to road route
planning. Assume we are concerned with the minimization of three different criteria
in this problem: travel cost, time and distance. Route 1.1(a) is the fastest and short-
est route and Route 1.1(c) is the cheapest. Whenever there are no other preferences
defined, we say that both routes are efficient solutions to this problem, i.e. these solu-
tions represent an optimal trade-off between the criteria. These are extreme efficient
solutions, but there might well be other interesting trade-offs. The set of all solutions
such that none of the objectives can be improved without worsening at least one of
the others, is called the Pareto set or Pareto frontier, and they are call efficient or
non-dominated solutions.

Among all feasible routes in our example only a subset can be considered non-
dominated in terms of all objectives. Thus, route 1.1(b) is called a dominated solution,
since there is another route, route 1.1(a), that is lower in all objectives. However,
the calculation of the Pareto set is typically a hard problem, hence, we consider the
application of Goal Programming (GP) to model the decision maker’s preferences and
establish a set of goals that restrict the set of solutions to those ones which satisfy those
goals, or which minimize the deviation from the goals if they can not be satisfied. Thus,
in our example, a user of the road route planner can define their expectations of the
maximum economic cost, time and distance for the trip.

In order to deal with the problem described above, two different alternatives can be
followed. In the first one, a full Multicriteria Search algorithm can return the full Pareto

1.2. Scope and Orientation 5

(a) Route 1 (b) Route 2 (c) Route 3

Figure 1.1. Screenshots from a sample route planning web application, showing
alternative routes from Málaga (Spain) to Valencia (Spain). c© www.viamichelin.com

set of solutions to the problem. This set can then be used to determine the subset
of solutions that satisfy the goals, or in case the goals can not be fully satisfied, the
subset which minimizes the deviation from those goals according to a given definition
of distance. For this alternative, we consider NAMOA∗, which is currently the most
efficient exact algorithm to calculate the Pareto frontier.

The second alternative to deal with the MSP with goal-based preferences concen-
trates the search effort on the subset of Pareto optimal solutions that satisfy the goals,
discarding those paths that will not lead to efficient solutions according to the goals.
Notice that we shall always seek for efficient or non-dominated solutions for the pro-
blem, regardless whether the goals can be satisfied or not. This is not the case of Goal
Programming in general, that allows non-dominated solutions to the problem.

For the second alternative, we introduce LEXGO∗, a best-first Multicriteria Search
algorithm that is also exact and efficient when provided with consistent lower bounds.

Finally, this thesis is also devoted to improve the time performance of exact mul-
ticriteria search algorithms with consistent lower bounds and to do so, a new dimen-
sionality reduction technique is introduced. This technique allows discarding non-
dominated paths with a dramatic decreased number of dominance checks against per-
manent labels. Its application to NAMOA∗ and LEXGO∗ leads to the introduction
of two new algorithms, NAMOA∗dr and LEXGO∗dr. Their effectiveness is also studied
from formal and empirical points of view against traditional pruning or discarding.

1.2 Scope and Orientation

We summarize the boundaries of this doctoral dissertation with the following terms:

www.viamichelin.com

6 Chapter 1. Introduction

Multicriteria Search with lower bounds. The Shortest Path Problem consists in
finding the shortest path between two nodes in a graph. The natural extension
when considering multiple conflicting criteria is the Multicriteria Search Problem.
We consider the A∗ algorithm as a reference in the solution of this problem
and, therefore, analyze multicriteria search algorithms whose performance can
improve with the use of lower bounds or distance estimates to restrict the number
of label expansions.

Additive costs. Arcs in the graph are labeled with a magnitude for each criterion,
or cost, under consideration. In the MSP, the arcs in the graph represent the
costs of navigating from the source to the destination node. The cost of the route
in the graph to be minimized corresponds to the sum of the costs vectors of its
component arcs.

Pareto optimality. When multiple criteria are considered, the concept of minimum
no longer applies, and is usually replaced by that of Pareto optimality. Pareto
optimal solutions are defined as those that cannot be improved according to one
objective without worsening at least one of the others.

Label-setting multicriteria search algorithms. Best-first algorithms are classi-
fied in the OR literature as label-setting or label-correcting. The former explores
only optimal paths in the graph, and therefore set permanent labels for each
scanned node. The latter may also explore suboptimal paths and therefore may
establish temporary labels for scanned nodes. When algorithms A∗ or NAMOA∗
use consistent lower bounds as cost estimates, they behave as label-setting algo-
rithms. That will also be the case for the algorithms analyzed in this thesis.

Pre-emptive and weighted preferences. Goal Programming models preferences
given by a decision maker for a multicriteria problem. We focus on the technique
where the criteria are grouped in priority levels sorted in order of decreasing
pre-emptive importance. Furthermore, a level comprises a set of one or more
attributes. We define targets for each attribute and weights to establish the
importance of the criteria within the level.

Theoretical proofs of correctness. We contribute in this thesis several new algo-
rithms. Formal proofs of their admissibility and efficiency are provided. These
are complemented with empirical analyses of the algorithms.

1.3 Research Goals

The main goals of this doctoral dissertation can be outlined as follows:

1. Address the Multicriteria Search Problem with goal-based preferences.
The first goal of this thesis is the description of the Multicriteria Search Problem
and specifically, the Multicriteria Search Problem with Preferences Based on
Goals. We will describe the two considered approaches to deal with such a
problem in detail.

1.4. Contributions 7

2. Devise a new algorithm to cope with lexicographic goal-based prefer-
ences. The principle of optimality holds for Multiobjective Shortest Path Pro-
blems, but regrettably does not hold for lexicographic goal-based preferences. In
order to approach the MSP with a specifically designed goal-based algorithm,
we concentrate our efforts to devise a new algorithm based on a label selection
policy.

3. Prove formally the correctness and efficiency of this new algorithm.
Another goal of this thesis is to complement the defined algorithm with formal
analyses of its correctness as well as its efficiency over an optimal algorithm that
performs a full Multiobjective Search (NAMOA∗).

4. Study possible improvements to multiobjective shortest path algo-
rithms. Our efforts will also be focused on the improvement of multiobjective
shortest path algorithms in general. More specifically, we aim to introduce a new
dimensionality reduction technique to improve the runtime performance of label-
setting multiobjective shortest path algorithms with consistent lower bounds.

5. Prove formally the correctness of the dimensionality reduction tech-
nique. We will formally develop the application of the dimensionality reduction
technique to the new defined algorithm based on goal preferences, as well as the
application to NAMOA∗. In particular, we will prove theoretically the correct-
ness of both algorithms when employing the dimensionality reduction technique.

6. Perform an empirical evaluation of all the algorithmic alternatives.
Finally, the last goal of this dissertation is to provide an extensive evaluation of
all the proposed algorithms. We will employ test beds over randomly generated
and realistic scenarios.

1.4 Contributions

The contributions of this thesis are enumerated as follows:

1. Description of the Goal-Based Multicriteria Graph Search Problem.
In the first place, we outline the Goal Programming technique within the Mul-
ticriteria Decision Making discipline. We also outline the Multicriteria Graph
Search within the Multiobjective Optimization Problem, and given that frame-
work, we will describe and define formally the Goal-Based Multicriteria Graph
Search problem and the different algorithmic approaches to deal with it.

2. A newMulticriteria Search algorithm for the MSP.We introduce LEXGO∗
(Lexicographic Goals A∗), a new exact label-setting algorithm for Multicriteria
Search problems with goal-based preferences. LEXGO∗ returns the subset of
non-dominated optimal paths that satisfy a set of lexicographic goals, or the
subset that minimizes deviation from goals if these cannot be fully satisfied.

3. Formal characterization of the admissibility and efficiency of LEXGO∗.
We prove theoretically the admissibility of LEXGO∗, i.e. the algorithm is exact

8 Chapter 1. Introduction

and returns the whole set of solutions to the problem, as well as its efficiency,
i.e. the number of labels scanned by the algorithm decreases with better (more
informed) lower bounds, over the full Multicriteria Search.

4. Introduction of t-discarding. We introduce a new dimensionality reduction
technique called t-discarding. This technique can be applied to the processes of
pruning and filtering in order to reduce in one dimension the size of the vectors
considered to discard new alternatives. Thus, we will reduce the amount of
time needed to check dominance against closed vectors and therefore, the time
requirements of the algorithms.

5. Formal characterization of the t-discarding technique. We apply t-
discarding to NAMOA∗ and LEXGO∗, introduce new algorithms NAMOA∗dr and
LEXGO∗dr, show their correctness, evaluate their effectiveness, and analyze their
performance.

6. Empirical evaluation of the new algorithmic contributions. Two main
scenarios are used to test the effectiveness of our devised algorithms, random grids
and realistic road maps problems. We present dramatic reduction in time require-
ments for three-objective, four-objective and five-objective search problems over
random grids. To the best of our knowledge, the results reported over road maps
problems represent the largest three-objective search problems solved to date.

1.5 Related Publications

Contributions of this thesis has been presented in international peer-reviewed journals
and conferences.

• Journals:
Pulido, F. J., Mandow, L., & Pérez de la Cruz, J. (2014). Multiobjective shortest
path problems with lexicographic goal-based preferences. European Journal of
Operational Research, 239(1), 89-101. doi:10.1016/j.ejor.2014.05.008
Pulido, F. J., Mandow, L., & Pérez de la Cruz, J. (2015). Dimensionality reduc-
tion in multiobjective shortest path search. Computers & Operations Research.
Volume 64, 60-70. doi:10.1016/j.cor.2015.05.007

• Conferences:
Mandow, L., Pulido, F. J., & Pérez de la Cruz, J. L. (2013). Searching Graphs
with Lexicographic Goal Preferences. In 22nd International Conference on Mul-
tiple Criteria Decision Making - MCDM 2013.

1.6 Outline

This doctoral dissertation is structured in eight chapters grouped in three parts. The
first part is devoted to present the motivation of this thesis, its foundations and pre-
vious work, and comprises this introductory chapter, and Chapters 2 and 3. Chapter

1.6. Outline 9

2 introduces the reader to the Multicriteria Search Problem with lexicographic goal-
based preferences. Relevant models of decision maker’s preferences are enumerated
and several practical applications are described. This chapter also introduces the fun-
damentals of Multicriteria Search Problems, reviews different kinds of multiobjective
search methods, and presents NAMOA∗, the reference algorithm we use to evaluate our
contributions under a common framework. Chapter 3 briefly reviews previous relevant
multiobjective benchmarks. A set of good practices in the experimental evaluation of
algorithms as well as the key concepts to measure the performance of Multicriteria
Search are also presented. Finally, benchmarks employed in this thesis are described
in detail.

The second part of this dissertation groups the main contributions of this thesis.
Chapter 4 presents the new algorithms LEXGO∗, NAMOA∗dr and LEXGO∗dr. Chapter
5 gives a formal analysis of the algorithms devised as a result of this thesis, and presents
the proofs for their properties of exactness and efficiency, i.e. it is formally proved for
each algorithm in this thesis that the full set of efficient solutions is returned and the
number of explored labels decreases with more informed lower bounds. Chapters 6
and 7 analyze the performance of all the algorithmic alternatives over random grids
and realistic road maps problems, respectively. These reveal the effectiveness of the
proposed techniques.

Finally, part three summarizes the conclusions of this thesis and introduces future
lines of work in Chapter 8.

Chapter 2

MultiCriteria Graph Search

It is not the task of the University to offer
what society asks for, but to give what society

needs.
Edsger Dijkstra (1930-2002)

This chapter has a twofold purpose, on one hand, provide an overview of two
opposite decision paradigms: optimization and satisfaction. On the other hand, deepen
insight into the Multicriteria Search Problem (MSP), present the state of the art in
algorithms to deal with such problems, and delimit the frame of the algorithms studied
in this thesis.

An optimization problem is the problem of finding the best solution from all fea-
sible solutions. This process is suitable for developing computational algorithms that
optimize the decision according to given criteria, although in certain cases cannot be
appropriate due to its greater computational requirements to solve problems. Humans,
however, do not pursue the optimization of their decisions in general. This is where
the concept of satisfaction emerges. A satisfactory solution from this perspective is
any feasible solution that fulfills the standards or goals of the decision maker. We will
further elaborate on both decision paradigms in this Chapter.

The Multicriteria Decision Making (MCDM) discipline is introduced in the first
place in Section 2.1. Both decision paradigms explained above are part of this disci-
pline. Then, the Multiobjective Optimization Problem (MOP) is presented in Section
2.2 along with a classification of the main methods to deal with it.

Goal Programming (GP), see Section 2.3, is a popular method for dealing with
multiple objective decision-making problems based on satisfying the goals of a decision
maker. GP is a branch of Multicriteria Decision Making that aims to “satisfice” instead
of optimize. The most popular variants of GP preference modeling are described in
Section 2.3.1. Among them, we focus on Lexicographic GP and introduce relevant
definitions concerning this modeling tool in Section 2.3.2.

This thesis tackles the Shortest Path Problem with multiple criteria. Prior to
defining the MSP, the Shortest Path Problem is defined in Section 2.4 along with the
most well known approaches to solve it. Right after, the MSP is presented in Section
2.5, as well as a wide range of fields where the MSP has been applied successfully.

11

12 Chapter 2. MultiCriteria Graph Search

Sections 2.6 and 2.7 analyze the two main algorithmic approaches to solve a MSP,
classified depending on the a priori or a posteriori character of the decision maker’s
preferences. In the first case, we will further study the class of best-first algorithms, and
in particular, the state-of-the-art algorithm NAMOA∗. In the second case, we review
research on multicriteria search algorithms that can provide compromise solutions or
solutions according to some targets.

Finally, Section 2.8, summarizes the key concepts of this given chapter, and intro-
duces the motivation and contributions of this research work.

2.1 Multicriteria Decision Making

Multicriteria Decision Making (MCDM), also called Multicriteria Decision Analy-
sis (MCDA), is a sub-discipline of the field of Operations Research. MCDM is a
paradigm that involves the consideration of multiple, and in general conflicting, crite-
ria in decision-making environments. In real life problems, there are typically multiple
conflicting criteria that need to be evaluated in making decisions. The purpose of
MCDM is to support decision makers (an individual or a group of individuals) to
make those decisions. Typically, there does not exist a unique optimal solution for
such problems and it is necessary to use the decision maker’s (DM) preferences to se-
lect between solutions. For instance, when buying a new computer, cost, performance
and design may be some of the main criteria a buyer considers. It is unusual to have
the cheapest computer to be the best designed and the most powerful.

Solving a MCDM problem can be interpreted in different ways. A decision maker
can seek the "most preferred" alternative, i.e. the best alternative from a set of available
alternatives. Another interpretation could be choosing a small set of good alternatives,
or grouping alternatives into different preference sets. Finally, the last interpretation
could be to find all efficient or non-dominated alternatives.

Let us first introduce some relevant concepts taken from (Romero, 1991, 1993):

Definition 2.1 Zeleny (Zeleny, 1982) and Romero define attributes as descriptors
of an objective reality to represent values of the DMs. These values are measurable
properties that can be expressed as a mathematical function g(~x) : X → R, where ~x
is the vector of the decision variables and X is the set of solutions to the decision
problem.

Definition 2.2 Objectives represent the desired improvement of an attribute, i.e.
the maximization or the minimization of the mathematical functions corresponding to
the attributes under consideration. In short, objectives take the form: max g(~x) or
min g(~x).

Definition 2.3 A target or aspiration level, t ∈ R, is an acceptable level of achieve-
ment for any of the attributes considered by the DM. A goal is a combination of an
attribute with a target, stated by the decision maker to define their preference.

Definition 2.4 A deviation variable represents the distance between the i-th goal
and its associated aspiration level. A formulation model is defined as the minimization

2.2. Multiobjective optimization 13

Table 2.1. Goals and deviation variables (taken from (Romero, 1993).

Type of objective function Goal type Deviation to minimize
Minimization gi(~x) ≤ ti di
Maximization gi(~x) ≥ ti pi

Exact achievement gi(~x) = ti di + pi

of the deviation variables to achieve the goals. Three different kinds of goals are defined
in this context. In each of them we select different deviation variables to minimize.
Table 2.1 shows the concept of unwanted deviation variable, or variable to minimize,
depending on the kind of goal.

The distance between the i-th goal and its associated aspiration level may be negative
(represented by di) or positive (represented by pi). A negative value represents the
number of units in which the i-th goal falls below with respect to the target defined.
The positive value represents just the opposite, i.e. the number of units in which the
achievement of the i-th goal has been surpassed regarding the aspiration level proposed.
In general, the i-th goal expressed algebraically is,

gi(x) + di − pi = ti di, pi ≥ 0 (2.1)

Definition 2.5 The term criterion comprises attributes, objectives and goals of a
DM relevant to a particular decision-making problem.

Romero (1993) splits the MCDM framework into two scenarios. The first one
corresponds to a decision making situation with a discrete number of feasible solutions
to be ranked according to different attributes. In this case a multiattribute utility
function represents the preferences of the DM and is used to order the set of finite
feasible alternatives. This approach is called Multiattribute Decision Making (MADM)
(see for example (Tzeng & Huang, 2011)).

The second scenario corresponds to a decision making situation with an infinite
number of decision alternatives where the practical possibility of obtaining a reliable
representation of the DM’s utility function is very limited. In this case with multiple
objectives the Multiobjective Optimization, also known as Multiobjective Program-
ming (MOP), is the approach to consider. In general, a Multiobjective Optimization
problem assumes a simple preference structure, the so-called Pareto ordering (Pareto,
1897), to find the set of trade-offs between all objectives considered (Chankong &
Haimes, 1983).

Let us now revise a formal definition of the Multiobjective Optimization Problem,
introduce definitions relevant to this research work, and classify the most popular
techniques to deal with it.

2.2 Multiobjective optimization

Let us first introduce a mathematical formulation of the Multiobjective Optimization
Problem,

14 Chapter 2. MultiCriteria Graph Search

Definition 2.6 Let X be the set of feasible solutions to a problem and let fk : X → R
be k functions assigning a real value as image to a solution in X, being k ∈ {1, 2, . . . , q}
objectives. A multiobjective problem in X can be formulated as a minimization problem,

min ~f(~x) = (f1(~x), f2(~x), . . . , f q(~x)) (2.2)
s.t. ~x ∈ X

Note that there is no loss of generality in considering the objective function’s min-
imization, since the maximization case can be reduced to this one. The criteria to be
minimized are the so-called objectives. In general, there is not a single solution to
the multiobjective problem which is simultaneously optimal for all objective functions.
Hence, in this context the concept of optimality is replaced by the concept of Pareto
optimality, and the solutions to a multiobjective problem are called Pareto-optimal,
non-dominated or efficient solutions.

Definition 2.7 A particular solution to a Multiobjective Optimization Problem is said
to be Pareto-optimal or Pareto-efficient if no other solution to the problem can
improve according to one objective without worsening at least one of the others.

Definition 2.8 The set of solutions to a Multiobjective Optimization Problem, known
as efficient set, Pareto frontier or Pareto set, comprises all the feasible Pareto-
optimal solutions to the problem.

The main difference between a Multiobjective Optimization Problem and its scalar
counterpart is the use of cost vectors which induce only a partial order relation. We
will now reproduce some standard definitions regarding preference relations between
q-dimensional cost vectors ~y, ~y′ ∈ Rq.

Definition 2.9 A partial order relation ≺ denominated dominance or Pareto-optimal
preference is defined as follows:

~y ≺ ~y′ ⇔ ∀i (1 ≤ i ≤ q) yi ≤ y′i ∧ ~y 6= ~y′ (2.3)

and we define equivalently the preference relation � called dominance or equality

∀~y, ~y′ ∈ Rq ~y � ~y′ ⇔ ~y ≺ ~y′ ∨ ~y = ~y′ (2.4)

where yi denotes the i-th component of vector ~y.
Therefore, given two q-dimensional vectors ~y and ~y′ (where q > 1), it is not always

possible to say that one is preferred to the other. For instance, in a three-dimensional
cost space, vector (2, 3, 1) dominates (5, 6, 3) and (3, 6, 4) but no dominance relation
exists between (2, 3, 1) and (1, 7, 3) or (5, 2, 7). They are all said to be non-dominated.

The Pareto-optimal solutions to the minimization problem can be split into two
different types:

Supported They can be obtained as optimal solutions to a single-objective weighted
sum problem (WSP). For instance, for the biobjective case (i.e. q = 2), where

2.2. Multiobjective optimization 15

Figure 2.1. Types of solutions and relevant points in a biobjective cost space.

~x = (x1, x2), these include all optima of the following function, for all values of
the λ1 and λ2 parameters.

min
x∈X

λ1x1 + λ2x2 (2.5)

The set of all supported efficient solutions is denoted by XS , and the set of
non-dominated image values by FS .

Unsupported The remaining non-dominated solutions are called unsupported solu-
tions. They cannot be obtained as solutions to WSPs. Unsupported solutions are
located in the interior of triangles formed by two adjacent supported solutions.
These areas are denominated duality gaps by some authors.

Let us take a look at Figure 2.1, where a sample bidimensional image space is
depicted. Points A = (1, 7), B = (3, 4), C = (4, 3), and D = (7, 1) represent supported
solutions. The extreme non-dominated solutions are supported solutions that have the
minimum possible value in at least one of the objectives (points A and D). Points
E = (3, 5) and F = (6, 2) represent unsupported non-dominated solutions.

Definition 2.10 Given a set of vectors X, we shall define N (X) as the set of non-
dominated vectors in X in the following way:

N (X) = {~x ∈ X | @~y ∈ X ~y ≺ ~x} (2.6)

Definition 2.11 We say that a vector ~x is dominated by a set X when there exists
~x′ ∈ X such that ~x′ ≺ ~x. Thus, all points represented as crosses in Figure 2.1 are
dominated by N(X) = {(1, 7), (3, 4), (4, 3), (7, 1)}.

16 Chapter 2. MultiCriteria Graph Search

Definition 2.12 Let us denote αi = min~x∈N (X){xi}, and βi = max~x∈N (X){xi}. The
set N (X) is bounded by the ideal point ~α = (α1 . . . αq), and the anti-ideal or nadir
point ~β = (β1 . . . βq). The ideal point can be calculated optimizing each objective
separately. However, for q > 2 it is difficult to calculate the nadir point without
computing the whole set of non-dominated solutions.

In Figure 2.1 the ideal and nadir points are represented as a red star and a black tri-
angle, respectively. The set N (X) is bounded by the extreme non-dominated solutions
A and B, the ideal point (α) and the nadir point (β).

Since there usually exist multiple Pareto-optimal solutions for Multiobjective Op-
timization Problems, there are different approaches in the literature to the concept of
"solving a Multiobjective Optimization Problem". This concept is often understood
as approximating or obtaining all or a representative set of Pareto-optimal solutions
(Ehrgott, 2005). Approaches can be also divided into those methods providing ap-
proximate solutions, and those providing exact solutions.

There is a great variety of approximate techniques applied to the Multiobjective
Optimization Problem e.g. fuzzy, and metaheuristics. Within them we can find a large
amount of approaches like genetic algorithms, tabu search, or ant colony systems to
name a few. A classification of all types of approaches to solve MOP is out the scope of
this thesis. Some classifications can be found in (Ehrgott & Gandibleux, 2000; Ehrgott,
2005; Branke et al., 2008).

Some popular exact approaches combine multiple objectives into one single objec-
tive. The most used one is the weighted sum or scalarization method. This method
along with Multiobjective Linear Programming (MOLP) is often included within the
exact algorithms, although only the set of supported solutions can be found.

To classify exact algorithms that tackle the MOP we follow the general classification
of MCDM methods, which can also be extended to MOP, proposed and followed by
different authors over the years (Cohon, 1978; Clímaco & Pascoal, 2012). The following
categories distinguish the methods according to the role of the decision maker in the
resolution process:

1. A priori methods. The first category comprises those methods in which the
preferences of the DM have been provided a priori. These preferences might be
given for instance in the form of an utility function or goals to satisfy. Com-
promise Programming (CP) and Goal Programming (GP) are the most popular
techniques included in this category. Some authors also believe than GP could
be included in the next category (Jones & Tamiz, 2010), since it can be cor-
rectly used as a part of the interactive process to develop and refine the model
accurately to reflect the decision maker preferences.

2. Interactive decision process. The decision maker can also be involved directly
in the solution process. The methods which lie in this category establish a
dialogue between the DM and the algorithmic resolution. If the DM is satisfied
with the non-dominated solution provided, the algorithm finishes; otherwise, the
calculation phase continues and the DM may set new preferences.

3. A posteriori methods. The third category includes methods where a multi-
objective analysis is performed. There are no preferences given by the decision

2.3. Goal Programming 17

maker and therefore, the whole set of efficient solutions must be calculated. Af-
terwards, this set is analyzed by the decision maker. It is worth mentioning that
returning the whole Pareto frontier can be a computationally costly procedure.
Therefore, these methods may have prohibitive runtimes when they are applied
to large problems.

The two mentioned a priori approaches are MCDM distance function methods. Ac-
tually, both methodological approaches aim to minimize the distance, not in a geomet-
ric sense but in a preferential one, between a certain point and the actual achievement
for each of the objectives under consideration. This point is represented in GP as a set
of targets. Analogously, CP uses the ideal point (Definition 2.12) which corresponds
to the optimum value of each objective.

Let us now turn our attention to the Goal Programming methodology.

2.3 Goal Programming

Goal programming is one of the oldest and most successful multicriteria decision mak-
ing techniques (Chankong & Haimes, 1983). GP was born in the beginning of the
1960s thanks to the contributions of Charnes & Cooper (1961). Many variants and
an impressive number of applications followed, enumerating hundreds of papers deal-
ing with a wide range of problems and applications (Ignizio, 1976, 1978; Ignizio &
Thomas, 1984; Charnes & Cooper, 1977; Zeleny, 1981, 1982, 1984; Zanakis & Gupta,
1985; Romero, 1986, 1991; Schniederjans, 1995; Tamiz et al., 1998; Aouni & Kettani,
2001). Several surveys have also been recently presented to review the improvements
in the field (Caballero et al., 2009; Orumie & Ebong, 2014; Aouni et al., 2014).

Currently, GP has evolved from its original form into a powerful methodology
that may incorporate techniques from artificial intelligence, such as genetic algorithms
(Pal et al., 2012; Deb, 1999) or fuzzy logic (Bankian-Tabrizi et al., 2012; Shahnazari-
Shahrezaei et al., 2013; Sen & Pal, 2013; da Silva & Marins, 2014).

Two key concepts serve to distinguish GP from conventional methods of optimiza-
tion. First, the use of goals, or flexible constraints, as opposed to the rigid constraints
of single objective optimization in mathematical programming, and second, the phi-
losophy of “satisficing” as opposed to optimizing. The term satisfice was introduced
by Simon (1956) as a combination of the terms satisfy and suffice.

As a consequence of the principle of satisficing, any solution to a goal programming
problem is ranked by an achievement function which measures the degree of deviation
from the problem goals when these goals can not be satisfied. The specific way in which
this deviation is measured characterizes the particular model of the GP approach that
is employed.

It must be emphasized that, despite the popularity of the GP model, a weakness
have been pointed out from the DM point of view. In general, GP methods do not
guarantee that the obtained solution is Pareto-optimal, though some tests of Pareto
optimality can be found in Miettinen (1998); Larbani & Aouni (2007).

18 Chapter 2. MultiCriteria Graph Search

2.3.1 Variants of goal-based preferences

Section 2.1 introduced the concepts of attribute, objective, target and deviation vari-
ables. Following those concepts, we introduce below the most popular GP formulation
models. At this point, it is important to mention that inequalities have been tradition-
ally used in mathematical programming models to define the set of feasible solutions to
a problem. From a mathematical point of view, goals and constraints share the same
syntax. However, their semantics are quite different. Constraints must be satisfied by
candidate solutions to be acceptable. If all constraints cannot be simultaneously sat-
isfied, the problem is inconsistent and there is no solution. Goals, on the other hand,
are used to represent the decision maker’s preferences. They represent their desires
or aspirations. Hence, feasible solutions may or may not achieve all goals. A solution
to a goal problem is satisfactory when all the goals can be satisfied. If there are no
satisfactory solutions to a problem, GP seeks solutions that minimize deviation from
the targets.

Romero (1991) divides GP formulations in two categories. Both GP formulations
do not generate the same solution, neither is one method superior to the other, because
each variant is designed to satisfy certain decision makers’ preferences.

1. Weighted Goal Programming (WGP). The first approach, called weighted
goal programming (WGP), considers all goals simultaneously as they are all in
a composite objective function. This function aims to minimize the sum of all
the deviations between the goals and their aspirational levels. The deviations
are weighted according to the relative importance of each goal for the DM.

In WGP weights are associated to each of the goals to establish the relative
importance of deviations from their target. WGP handles several goals simulta-
neously by adding their relative deviations, hence, a normalization of constants
is generally required in this model. Popular choices to normalize deviations are
the goal target values (hence turning all deviations into percentages) or the range
of the corresponding attribute (between the best and the worst possible values,
hence mapping all deviations onto a zero-one range).

2. Lexicographic (or pre-emptive) Goal Programming (LGP). The second
approach, called pre-emptive or lexicographic goal programming (LGP), requires
ranking all the goals in order of importance. The different goals are divided into
several levels of pre-emptive priorities in such a way that if a specific priority
level Qi is preferred to another priority level Qi+1, then the fulfillment of the
goals in Qi is infinitely more important than the fulfillment of the goals in Qi+1.

This variant models a problem with a combination of both weighted and lexico-
graphic approaches. This model can suit the decision maker preferences when
the attributes can be categorized into groups where the attributes within a group
k are infinitely more important to satisfy than those of level k+1. Each level can
have one or more attributes and their importance within the level is established
by a certain weight also defined by the DM.

We further analyze lexicographic goal-based preferences in the next section.

2.3. Goal Programming 19

2.3.2 Lexicographic goal-based preferences

This section introduces a formal characterization of lexicographic goal-based prefer-
ences that will be later used in our formulation. Let us first recall that Goal Pro-
gramming is a distance function method, that is, it aims to minimize the distance or
deviation from the actual solution achievement to the point that represents the goals
established by the DM. Therefore, the way to define and measure this deviation is an
important component of the GP model. Let us now consider a problem, where goals
are always of the form gi(~x) ≤ ti. Let ~g = (g1, g2, ..., gq) be a vector of 1 ≤ i ≤ q
attributes (costs) of a given solution ~x ∈ X. Several methods have been proposed to
measure the deviation of a solution vector from a set of goals. The most frequent ones
are the following (Romero, 1991, 1993):

• minimization of the weighted sum of deviations:

d(~g) =
q∑
i=1

wi ×max(0, gi − ti), (2.7)

• minimization of the maximum weighted deviation, also called minmax strategy:

d(~g) = max
i

[wi ×max(0, gi − ti)]. (2.8)

Notice that this definition measures the deviation of the vector g with respect to
the set of targets defined by the DM, i.e. corresponds to the aggregation of the non-
achievement values of each individual goal gi − ti (see Definition 2.4). We do not
consider deviation when a goal is satisfied.

In the lexicographic goal-based model formulation we introduce below, we build
upon the deviation measured as the minimization of the weighted sum of deviations.
Let ~g = (g1, g2, ..., gq) be a vector of 1 ≤ i ≤ q attributes of a given solution ~x ∈
X, where gi : X → R, 1 ≤ i ≤ q grouped in l priority levels sorted in order of
decreasing preemptive importance. Each priority level k comprises a set Ik of one or
more attributes. Goals are defined by setting targets ti for each attribute, always in
the form gi(x) ≤ ti.

This model considers the minimization of the weighted sum of deviations for each
priority level, i.e. we measure the deviation of a solution vector from a set of goals
grouped in preemptive priority levels of importance. We can calculate a deviation
vector for ~g with one component for each priority level, ~d(~g) = (d1(~g), d2(~g), ..., dl(~g)).
For each level k, its deviation dk can be defined as:

dk(~g) =
∑
i∈Ik

wi ×max(0, gi − ti) (2.9)

where wi is the relative weight of goal i in level k.
Let us now introduce some more relevant preference relations between vectors that

will be employed throughout this research work.

Definition 2.13 Let us consider two q-dimensional vectors ~y, ~y′ ∈ Rq. A total order
relation ≺L denominated lexicographic order is defined as follows:

~y ≺L ~y′ ⇔ ∃j (1 ≤ i ≤ q) yj < y′j ∧ ∀i < j yi = y′i. (2.10)

20 Chapter 2. MultiCriteria Graph Search

and the preference relation �L:

∀~y, ~y′ ∈ Rq ~y �L ~y′ ⇔ ~y ≺L ~y′ ∨ ~y = ~y′ (2.11)

Definition 2.14 Let us consider two q-dimensional vectors ~y, ~y′ ∈ Rq. A total order
relation ≺lin denominated linear aggregation order is defined as follows:

~y ≺lin ~y′ ⇔
∑
i

yi <
∑
i

y′i , 1 ≤ i ≤ q (2.12)

where yi denotes the i-th component of vector ~y.

Definition 2.15 Let us consider two q-dimensional vectors ~y, ~y′ ∈ Rq. A total order
relation ≺wlin denominated weighted linear aggregation order is defined as follows:

~y ≺wlin ~y′ ⇔
∑
i

λiyi <
∑
i

λiy
′
i , 1 ≤ i ≤ q (2.13)

where ~λ stands for the vector of weights and yi, λi denote the i-th component of vectors
~y,~λ.

A useful property of the previously mentioned orders (lexicographic, linear aggre-
gation and weighted linear aggregation) is that their optimum in a set of vectors is
also a non-dominated vector. The order relations defined by ≺L, ≺lin or ≺wlin are
total orders. Then, given two different q-dimensional vectors ~y and ~y′ (where q > 1),
it is always possible to say that one is preferred to another. For instance, in a three-
dimensional cost space there is no dominance relation between (1, 2, 4) and (3, 2, 1).
However, (1, 2, 4) ≺L (3, 2, 1) and (3, 2, 1) ≺lin (1, 2, 4), since 3 + 2 + 1 < 1 + 2 + 4.

Definition 2.16 We define the optimum achievement vector ~d∗ = (d∗1, d∗2, ..., d∗l)
as the minimum lexicographic deviation vector among all solutions. Thus, the set of
satisfactory solutions consists of all feasible solutions with a deviation equal to ~d∗. If
there is at least a satisfactory solution, then the optimum achievement vector is equal
to ~0.

Let us now address the issue of optimality. In general, GP methods do not guaran-
tee that the obtained solution is Pareto-optimal or non-dominated. However, in this
thesis we are concerned with methods or algorithms able to ensure that the solution
to the GP model is also a non-dominated solution. Therefore, all the new algorithms
devised and presented in this thesis lie in this category, defining a solution to the GP
model as the set of all non-dominated solutions that satisfy the DM goals, or the set
of non-dominated solutions that minimize the deviation from goals if these cannot be
satisfied.

Let us now define an order relation based on lexicographic goal preferences to
guarantee our GP model only provides Pareto-optimal solutions,

Definition 2.17 We define lexicographic goal preferences (≺G) as a partial order
relation,

~y ≺G ~y′ ⇔ ~d(~y) ≺L ~d(~y′) ∨ (~d(~y) = ~d(~y′) ∧ ~y ≺ ~y′) (2.14)

It is easy to see that ≺G is a strict partial order (it is irreflexive and transitive).

2.4. The Shortest Path Problem 21

Definition 2.18 Given a set of vectors X, we shall define OG(X), the set of optimal
vectors in X according to lexicographic goal preferences (i.e. goal-optimal
vectors), as:

OG(X) = {~x ∈ X | @~y ∈ X ~y ≺G ~x} (2.15)
Notice that an optimal solution according to ≺G is also a non-dominated solution,

i.e. OG(X) ⊆ N (X).

One of the main motivations of this thesis is the application of the GP approach
to the Multicriteria Search Problem. In the next sections we introduce the Shortest
Path Problem and its variant considering multiple objectives or criteria.

2.4 The Shortest Path Problem

The Shortest Path Problem (SPP) has been extensively studied for many years by
the Artificial Intelligence (AI) and Operational Research (OR) communities, e.g. see
(Pearl, 1984; Gallo & Pallottino, 1988; Ahuja et al., 1990; Cherkassky et al., 1996).
In graph theory, the single-pair shortest path problem is the problem of finding a
feasible path between two nodes (or vertices) such that the sum of the weights of its
component arcs (or edges) is minimized. Finding the fastest route on a road map from
one location to another is an example of the shortest path problem. In this case, the
nodes represent locations and the arcs represent roads which are labeled with the cost
to traverse them.

Many real problems can be modeled as finding the shortest path between two nodes
in a graph. Let us see a formal description of the problem.

Let G = (N,A, c) be a locally finite labeled directed graph, defined by a set of N
nodes, and a set of A = {(ii, j1), ..., (im, jm)} ⊆ N × N arcs, where positive values
cij ∈ R+ are associated with each arc (i, j) ∈ A. Sometimes we will denote cij as
c(i, j).

Definition 2.19 A path P in G is any sequence of nodes P = (n1, n2,nk) such
that ni ∈ N and for all i < k, (ni, ni+1) ∈ A. The set of all possible paths in G is
denoted by P.

Definition 2.20 The cost of a path P is defined as the sum of the costs of its
component arcs,

c(P) =
∑

(i,j)∈P
c(i, j) (2.16)

Definition 2.21 The Shortest Path Problem over a graph consists in finding the
path P ∈ P in G with the minimum cost c(P) from a given a start node s ∈ N to a
destination 1 node t. 2

1Graph search literature often refers to this node as the goal node. However, in this research work
we refer to it as destination node to avoid overloading the meaning of the word “goal”.

2In the literature SPP algorithms can be split into one-to-one and one-to-all, depending if they
seek to find the optimal path to a given destination node or to all nodes in the graph. In this thesis,
we are concerned with the one-to-one shortest path problem.

22 Chapter 2. MultiCriteria Graph Search

Shortest path algorithms can be classified in terms of different properties like the
strategy used to explore the search graph, their admissibility, i.e. whether the returned
solution is exact or approximate, or the use of distance estimates, among others. A
complete classification and description of the different strategies can be found in Korf
(2010).

Most works on shortest path algorithms from the AI field distinguish two broad
kinds of solution strategies:

Best-first algorithms Best-first strategies are a general approach to solve graph
search problems. Their main feature is selecting the best alternative at each step
of the algorithm. Whenever several paths reach the same node, only the best
one is preserved whereas the rest are discarded (or pruned). Although they are
generally fast algorithms, their main drawback is that all promising alternatives
must be kept in memory, which can easily exhaust memory resources for difficult
problems.

Depth-first algorithms (Korf, 1985) These strategies only consider the best next al-
ternative, not keeping in memory other feasible alternatives which can be part of
the optimal path. This leads to backtrack whenever the currently explored path
cannot lead to a feasible solution. Depth-first strategies are specially suitable
for tree problems and generally applied when the available memory resources are
limited.

Best-first search (BFS) algorithms generally expand the fewer nodes among all
exact algorithms using the same cost function, but may require exponential space with
solution depth. Depth-first search algorithms need space only linear in the maximum
search depth, but generally expand more nodes than BFS.

Dijkstra’s algorithm (Dijkstra, 1959) is the most popular algorithm in this sense
for one-to-one shortest path problems, i.e. finding the shortest path from a source
node to a destination node in a graph. However, the reference algorithm in best-first
search is A∗ (Hart et al., 1968), which can be considered a generalization of Dijkstra’s
algorithm that uses heuristic knowledge, or distance estimates, to focus the search on
the most promising alternatives.

The term heuristic is employed by the AI community to denote techniques that
exploit knowledge about the problem to improve their efficiency. On the other hand,
the OR community uses the term heuristic to denote methods used to speed up the
process of finding good approximate solutions. In order to avoid confusion, algorithms
that may return exact solutions like A∗ are frequently categorized as “heuristic search”
in the AI literature. In this research work we refer to the terms “heuristic function”
or “heuristic estimates” used in the context of A∗-like algorithms simply as “distance
estimates”.

As stated above, the main feature of best-first algorithms is selecting at each step
of the algorithm the most promising node n according to a certain evaluation function.
Let g(n) denote the accrued cost of a path from s, the source node, to n. Dijkstra’s
algorithm uses g(n) as the evaluation function, i.e. it selects the node with the lowest
value of g(n) to scan next. The A∗ algorithm uses distance estimates to predict how

2.4. The Shortest Path Problem 23

close is the evaluated node to the destination node. This function is denoted by h(n).
Thus, the evaluation function employed by A∗ is f(n) = g(n) + h(n).

Best-first algorithms keep all the recorded alternative paths with source in s stored
in a search tree. Efficient selection of the current best candidate for expansion is
typically implemented using a priority queue ordered by the evaluation function. Each
alternative path is labeled with the cost of the path, and additionally a reference to
the parent node to recover the solution path at the end of the algorithm. The labels
still pending to be explored are typically stored in a queue of OPEN alternatives. A
distinct set of CLOSED nodes can be used to store already evaluated alternatives, in
order to perform duplicate detection.

Definition 2.22 A node label stands for the cost of a path found to a given node.
In single-objective algorithms each node n is labeled with a single value, that stands for
the cost of the current best known path to n.

At each step the label of some node ni is selected and scanned (or expanded), and
all the possible extensions via outgoing arcs of node ni are generated and compared
with actual stored labels in successor nodes. The stored cost for an adjacent node nj
is updated whenever the extension of the selected path through some outgoing arc of
ni represent a least cost path to the node nj .

In the OR literature, shortest path algorithms are frequently classified as label-
setting or label-correcting. For example, Dijkstra’s algorithm (Dijkstra, 1959) is
label-setting, since every extended path becomes permanent. This path represents
the least cost to the node, i.e. once an alternative is scanned and extended, it is
guaranteed that the least cost path to this node has already been found. In label-
correcting algorithms, e.g. see (Zhan & Noon, 2000), this is not guaranteed until all
nodes have been examined, since the label of an already explored node can be corrected
by a new better one.

Label-setting algorithms repeat an iterative node labeling process until the desti-
nation node is selected for extension3. Then, the optimal cost of the path is found
in the node label. The actual optimal path can be recovered tracing back pointers to
parents.

In Dijkstra’s algorithm, any permanent node label stands for the optimal shortest
path distance from s to the node. Therefore, a “closed” node will never be re-opened.
In the case of A∗, a permanent label may store the optimal path or not depending on
properties related to the distance estimate function h(n). Hence, let us now review
the formal properties of h(n) relevant to A∗.

Definition 2.23 Let h∗(n) be the actual optimal cost of a path from n to a destination
node t. A distance estimate function h(n) is optimistic when

h(n) ≤ h∗(n) ∀n ∈ N (2.17)

Definition 2.24 Let k(n, n′) denote the cost of an optimal path in G from a node n
to another node n′. A distance estimate function h(n) is consistent when

h(n) + k(n, n′) ≤ h(n′) ∀n, n′ ∈ N (2.18)
3We refer to the one-to-one version of Dijkstra’s algorithm. In the one-to-all version, the algorithm

will not finish until all nodes have been visited.

24 Chapter 2. MultiCriteria Graph Search

Definition 2.25 Equivalently, a distance estimate function h(n) is said to be mono-
tone when

h(n) + c(n, n′) ≤ h(n′) ∀(n, n′) ∈ A (2.19)

Definition 2.26 A distance estimate function h2(n) is said to be more informed
than another distance estimate function h1(n) when both are optimistic and

h2(n) > h1(n) ∀n ∈ N,n 6= t (2.20)

There is a strong relationship between the properties of h(n) and the efficiency and
quality of results produced by A∗ , e.g. see (Pearl, 1984).

Property 2.1 (Admissibility) On finite graphs, when h(n) is a lower bound of the
cost of an optimal path from n to t (i.e., it is optimistic) A∗ is admissible, i.e. it
is guaranteed to find an optimal solution if this solution exists, i.e. it is
an exact algorithm. A∗ is admissible even on infinite graphs with some additional
assumptions:

∀n ∈ N, h(n) ≥ 0 (2.21)
∀(n, n′) ∈ A, c(n, n′) ≥ ε > 0

Property 2.2 (Efficiency) When ∀n ∈ N, h(n) = 0, A∗ is equivalent to the one-to-
one version of Dijkstra’s algorithm. When h(n) is consistent or monotone, A∗ is
a label-setting algorithm, and requires, in the worst case O(|N |) iterations, storing
O(|N |) nodes in memory. If the cost of the optimal solution is denoted by c∗ = k(s, t),
A∗ will always expand for sure all labels with f(n) < c∗. For those with f(n) = c∗,
only those belonging to the returned optimal solution path will be necessarily expanded.
Given an optimistic distance estimate function, more actual suboptimal alternatives
can be pushed out the search frontier f(n) = c∗ with more informed functions, i.e.
bigger values of h(n), reducing search effort.

Property 2.3 (Optimality) When the distance estimate function h(n) is mono-
tone, A∗ is proven to be optimal among the class of admissible best-first algorithms4

(Dechter & Pearl, 1985), in the number of scanned nodes to find the solution. In other
words, any node scanned by A∗ must be also scanned by another algorithm in this
class to preserve admissibility.

2.5 The Multicriteria Search Problem

The problem of finding a shortest path from a source node to a destination node has
been considered, traditionally, as a single-objective optimization problem. However,
real decision problems frequently involve multiple conflicting criteria. Therefore, it
seems natural to extend the SPP to the multicriteria case. Multicriteria preferences
over paths in a graph can be expressed in the same ways already analyzed in the
previous sections. For example, the solution to the Multiobjective Search Problem

4Defined as the class of single-pair unidirectional search algorithms.

2.5. The Multicriteria Search Problem 25

is the set of the so-called Pareto-optimal solution paths. This was in fact the first
Multicriteria Search Problem to be analyzed by Hansen (1980). Multicriteria Search
Problems have a wide range of practical applications in different domains, arising
naturally in many fields, such as:

• Robot surveillance (Delle Fave et al., 2009). The problem consists in how to
automate surveillance tasks based on robotic platforms and fixed sensors. This
surveillance automation is a complex problem posing many technical challenges,
where robots must find a path to visit a set of locations equipped with alarms.

• Transportation of hazardous materials. The problem is concerned with
finding routes with minimum cost and minimum risk (Erkut et al., 2007; Caramia
et al., 2010; Machuca et al., 2011).

• Satellite scheduling. Gabrel & Vanderpooten (2002) proposed the problem of
scheduling an Earth Observing Satellite as a Multicriteria Search Problem. A
label-correcting was presented to take into consideration three objectives: de-
mand satisfaction of shots taken by the satellite, priority of those shots (related
to strategic importance), and satellite use (related to the number of instruments
on/off).

• Robot path planning. The problem consists in finding a navigation path for a
mobile robot that must consider multiple costs in navigation, such as the length
of the path, traversability of the area, time to travel to the destination location,
etc. (Fujimura, 1996). A similar problem deals with autonomous aerial vehicles
and involves the motion planning that consists of a sequence of connected linear
tracks (or trajectory segments) (Wu et al., 2011).

• Route planning in different contexts. In a road network problem several
parameters (such as time, distance, economical cost, etc.) can be considered
either the problem takes into account a single vehicle or a fleet (Jozefowiez et al.,
2008; Delling & Wagner, 2009; Machuca et al., 2012).

• Public transportation. Multicriteria problems over an urban transportation
network consider the minimization of the overall cost, time and users’ discomfort
(Modesti & Sciomachen, 1998). Raith (2009) presented the cyclist route choice
as a new application of the bi-objective shortest path problem where cyclists aim
to reach their destination in minimal travel time, but also along a safe route.
Multicriteria search on time dependent public transportation systems is another
application recently studied (Wu & Hartley, 2004; Müller-Hannemann & Schnee,
2004; Pyrga et al., 2008; Disser et al., 2008). These problems usually involve the
minimization of travel time, bus-train changes, walking distance, etc.

• QoS in networks. In these problems the criteria to minimize may be, for ex-
ample, number of lost packages, maximal delay time of packages, traffic crossing
by a link, route length, probability of route unreliability, etc. (Climaco et al.,
2003; Craveirinha et al., 2009).

26 Chapter 2. MultiCriteria Graph Search

We will introduce some useful definitions before presenting a formal definition of
the Multiobjective Shortest Path Problem. Let G = (N,A,~c) be a locally finite labeled
directed graph, defined by a set of N nodes, and a set A = {(ii, j1), ..., (im, jm)} ⊆
N ×N of arcs, where q positive costs ~cij = (c1

ij , ..., c
q
ij) ∈ Rq+ are associated with each

arc (i, j) ∈ A. Sometimes we will denote ~cij as ~c(i, j).
Let a path in G be any sequence of nodes P = (n1, n2,nk) such that for all i < k,

(ni, ni+1) ∈ A. A problem over a multicriteria graph is defined by a start node s ∈ N ,
and a destination node t. Each path in the graph of the form P = (s, ..., ni, ni+1, ..., t)
represents a feasible solution to the problem.

Definition 2.27 The cost of a path P in multiobjective shortest path problems is a
q-dimensional vector defined as the sum of the costs of its arcs,

~c(P) =
∑

(i,j)∈P
~c(i, j) (2.22)

Definition 2.28 Given a start node s ∈ N and a destination node t ∈ N , the Multi-
objective Shortest Path Problem consists in finding all the non-dominated paths from
s to t. More precisely, the problem can be formulated mathematically as the following
network flow problem [adapted from Raith & Ehrgott (2009)]

min ~f(x) =



f1(x) =
∑

(i,j)∈A
c1
ijxij ,

...

fq(x) =
∑

(i,j)∈A
cqijxij ,

(2.23)

s.t.
∑

(i,j)∈A
xij −

∑
(j,i)∈A

xji =


1 if i = s,
0 if i 6= s, t,
−1 if i = t

(2.24)

xij ∈ {0, 1}, for all (i, j) ∈ A. (2.25)

where x is a vector of flows on the arcs, and the constraints (2.24) represent flow
balance at the different nodes.

As stated above, many problems from a wide variety of fields can be formulated as
Multicriteria Search Problems. There are not less algorithmic approaches to cope with
these problems. As explained in Section 2.2, algorithmic approaches to this problem
can be divided into exact and approximate.

Multicriteria Search Problems are indeed a particular case of the MCDM problems,
hence, the classification presented in Section 2.2 for the MOP can also be extended to
them. A detailed description of all types of approaches to solve MSP is out the scope of
this thesis. Some classifications can be found in Ehrgott & Gandibleux (2000); Ehrgott
(2005); Tarapata (2007); Clímaco & Pascoal (2012).

2.6. Exact a posteriori algorithms 27

Let us now review some of the exact algorithms that have been proposed to deal
with MSP categorized according to the role of the decision maker. We omit the inter-
active methods described in Section 2.2, since they are out of the scope of this thesis.
Some proposed methods can be found in Current et al. (1990); Granat & Guerriero
(2003).

First, we will review with some detail exact algorithms with a posteriori prefer-
ences. These are used when no a priori preferential information is available. Basically,
these algorithms find the set of all Pareto-optimal solutions to the problem, so that
the most preferred ones can be selected a posteriori. We will pay special attention to
the NAMOA∗ search algorithm, which uses lower bound estimates to efficiently find
the set of all Pareto-optimal paths to a problem. On the contrary, a priori algorithms
have preferential information from the decision maker. These may be expressed, for
example, in the form of a set of goals. A basic approach to solve this problem is to
use a posteriori algorithms, and then select the preferred ones among them. However,
sometimes it is also possible to devise algorithms that find only the preferred alterna-
tives. In this thesis, we will analyze both approaches in the solution of the shortest
path problem with lexicographic goal preferences.

2.6 Exact a posteriori algorithms

Four categories of exact algorithms without a priori preferences from the DM have
been identified by different authors (Skriver & Andersen, 2000; Raith, 2009; Clímaco
& Pascoal, 2012; Machuca, 2012). Three of them are generalizations from single-
objective shortest path problems, these are label-setting, label-correcting and k-th
shortest paths; the last one is a two-phase approach.

A label (or node label) stands for the cost of a path found from the start to a given
node. In single-objective search, a node n is labeled with a single value that stands
for the cost of the current best known path to n. In multiobjective search algorithms,
multiple non-dominated paths can reach a node n, therefore, n is not labeled with
a single cost but with a set of node labels which stand for the non-dominated cost
vectors of known paths that reach node n.

Label-setting methods The most classical single-objective shortest path algorithms
follow a labeling method. Their name derives from the process of labeling each
node with the cost of the best path found so far to reach that node. The mul-
tiobjective label-setting algorithms follow the same strategy, with the necessary
adaptations to the multicriteria case. An iterative process scans alternatives and
generates new successors until the stopping criterion is fulfilled. Then, the labels
at the destination node represent efficient costs of solution paths. The first pro-
posals of multicriteria label-setting algorithms can be found in (Hansen, 1980;
Martins, 1984b).

Another interesting field of study for label-setting algorithms is to reduce space
requirements, e.g. frontier search algorithms (Korf et al., 2005), which have
also been extended to the multicriteria case (Mandow & Pérez de la Cruz, 2007,
2008a,b).

28 Chapter 2. MultiCriteria Graph Search

Label-correcting methods The main difference between label-correcting and label-
setting algorithms is the label selection policy. Label-setting algorithms employ a
best-first strategy whereas that label-correcting algorithms follow different strate-
gies, e.g. FIFO. This different strategy does not allow these algorithms to guar-
antee that any label selected for expansion is optimal, therefore if a better path to
some node is found the suboptimal labels will be “corrected” by the new one. An
analysis of multicriteria label-correcting methods can be found in (Brumbaugh-
Smith & Shier, 1989). Some analysis which compare label-correcting and label-
setting approaches appear in (Skriver & Andersen, 2000; Guerriero & Musmanno,
2001; Paixão & Santos, 2013).

Ranking methods In a similar manner to k-best single-objective algorithms, multi-
objective ranking algorithms employ a ranking method to list paths by a non-
decreasing total order. However, there exist two necessary adaptations in these
algorithms. First, an order must be imposed to rank solutions either using a
linear combination of the objectives, or a partial order (e.g. lexicographic or-
der). Second, the algorithm can not be stopped until all efficient solutions are
guaranteed to be found. Moreover, the value of k is unknown a priori.
A complete literature review of ranking algorithms applied to the MSP can be
found in (Martins et al., 2007; Clímaco & Pascoal, 2012). Some ranking algo-
rithms appear in (Martins, 1984c; Azevedo & Martins, 1991; Martins et al., 2007;
Paixão & Santos, 2008). Several recent studies, however, have found these algo-
rithms not competitive with label-setting and label-correcting methods (Huarng
et al., 1996; Skriver & Andersen, 2000; Raith, 2009).

Two-phase methods Algorithms from this category compute the extreme supported
efficient solutions in a first phase. In a second phase the remaining unsupported
efficient solutions are calculated with a labeling algorithm. Depending on the
method chosen for the first phase an initialization phase may be necessary. They
have been applied to the Bicriteria Search Problem (BSP) by Mote et al. (1991);
Raith & Ehrgott (2009); Raith (2009). However, they have been found to be
generally slower than the label-setting or label-correcting algorithms (Raith &
Ehrgott, 2009; Raith, 2009).

In labeling search algorithms two different successor generation strategies have been
applied, node-selection and label-selection. The node-selection strategy implies that all
labels belonging to a node are expanded simultaneously, on the contrary, if only one
label at a time is expanded it is called label-selection.

2.6.1 Extensions of A∗ to the multiobjective case

Several extensions of A∗ to the Multiobjective case have been proposed. The behavior
of these algorithms does not easily fit in the usual OR categories, and depends largely
on the properties of the distance estimate. Hansen (1980) presented a bi-objective
extension of Dijkstra’s label setting algorithm. Martins (1984a) proposed a general
label-setting algorithm for the multiobjective case. Stewart & White (1991) proposed
a multiobjective algorithm based on node-selection, called MOA∗(Multiobjective A∗).

2.6. Exact a posteriori algorithms 29

Tung & Chew (1992) proposed two multicriteria lower bound functions along with a
label-setting multicriteria algorithm. Mandow & Pérez de la Cruz (2010) presented
NAMOA∗(A New Approach to Multiobjective A∗), a multiobjective algorithm that
has been proven to be an exact algorithm when provided with lower bound estimates,
and to explore an optimal number of labels.

Recent works studied the influence of lower bounds on multicriteria search algo-
rithms. The thesis of Machuca (2012) evaluated the algorithms of Tung & Chew,
MOA∗, and NAMOA∗ with and without lower bound estimates. The main outcome
obtained was the improvement, in general, of NAMOA∗ when provided with lower
bounds, and its formal and empirical superiority over the other two algorithms when
provided with lower bounds (Machuca, 2012, 2.4.3). A formal explanation for the su-
periority of NAMOA∗ over MOA∗ was presented recently by Pérez de la Cruz et al.
(2013). This paper considers the performance of MOA∗ when provided with lower
bounds, and analyzes a pathological behavior observed in MOA∗, namely, that the ef-
ficiency of the algorithm decreases with more informed distance estimates. It is shown
that in certain cases uninformed search is more efficient for MOA∗ than perfectly in-
formed search, in terms of both node and label expansions. Thus, we consider MOA∗
obsolete and we will focus our attention in NAMOA∗.

We present NAMOA∗ below, and we will further analyze the use of the ideal point
as a multicriteria lower bound function. This was proposed by Tung and Chew and
we will apply it to NAMOA∗.

2.6.2 Algorithm NAMOA∗

NAMOA∗ (Mandow & Pérez de la Cruz, 2005; Mandow & Pérez de la Cruz, 2010) is
a successful generalization of A∗ to the multiobjective case. NAMOA∗ is defined to
accept a lower bound function H(n) that returns a set of cost estimates of all non-
dominated paths from node n to a node which belongs to a set of destination nodes.
Table 2.2 shows the pseudocode of NAMOA∗ simplified to use a single vector estimate
~h(n) and one destination node t.

NAMOA∗ is a best-first algorithm that uses a label-selection strategy and builds
a search graph SG rooted at the start node s to store all non-dominated paths found
to each node. The set COSTS stores all known non-dominated solution costs to the
destination node t. Each node n in the search graph has two sets of labels: Gop(n)
denotes the set of cost vectors of paths reaching n that can be further explored, while
Gcl(n) denotes the set of those that have already been expanded (in fact COSTS
is equivalent to Gcl(t)) and we refer to them as closed or permanent (when the lower
bound function satisfies certain conditions). Each cost vector in these sets labels one or
more arcs in the graph from n to its parents. NAMOA∗ uses extended labels (n,~g, ~f).
By abuse of language, we refer to them as labels when there is no ambiguity.

Let ~g(Psn) be the cost of some path Psn reaching some node n from the start node.
Then, ~h(n) is a lower bound of the cost of any extension of such path to the destination
node and ~f(Psn) = ~g(Psn) + ~h(n) the evaluation function used.

At each iteration, a label with a non-dominated ~f in OPEN is selected for expan-
sion. If n is the destination node, then ~f is stored in COSTS, the set of non-dominated
solutions costs. Otherwise, the non-dominated label (n,~g, ~f) selected from OPEN is

30 Chapter 2. MultiCriteria Graph Search

Table 2.2. [Adapted from (Mandow & Pérez de la Cruz, 2010)] Pseudocode of
NAMOA∗ algorithm.

1. CREATE:
— An empty search graph SG, and place s as its root.
— Two sets Gcl(s) = ∅ and Gop(s) = {(~0)}.

— A list of alternatives, OPEN = {(s,~0,~h(s)}.
— An empty set, COSTS.

2. PATH SELECTION. If OPEN is not empty, then,
— Select a label (n,~gn, ~fn) from OPEN (“PATH SELECTION STRATEGY”)
such that @(n′, ~gn′ , ~fn′) ∈ OPEN | ~fn′ ≺ ~fn.
— Delete the selected label from OPEN, and move ~gn from Gop(n) to Gcl(n).

— If ∃~c∗ ∈ COSTS | ~c∗ ≺ ~fn, then repeat step 2 (lazy filtering)

3. CHECK TERMINATION. If OPEN is empty, then backtrack in SG from t and
return the set of solution paths with costs in COSTS.

4. SOLUTION RECORDING. If n is the destination node, then
— Include ~gn in COSTS.
— Go back to step 2.

5. PATH EXPANSION: If n is not the destination node, then for all successor nodes
m of n do:

(a) Calculate the cost of the new path found to m and its lower bound, ~gm =
~gn + ~c(n,m), ~fm = ~g(m) + ~h(m).

(b) If @~c∗ ∈ COSTS | ~c∗ ≺ ~fm, (“FILTERING”) then:
i. If m /∈ SG:
• Set Gop(m) = {(~gm)} and add (m,~gm, ~fm) to OPEN.
• Label with ~gm a pointer from n to m.

ii. else if ~gm equals some cost vector in Gop(m) ∪Gcl(m) then
• Label with ~gm a pointer from n to m.

iii. else if ~fm is not dominated by Gcl(m) ∪Gop(m) (“PRUNING”), then:
• Eliminate vectors ~gm′ ∈ Gop(m) | ~gm ≺ ~gm′ and its corresponding
label (m,~gm′ , ~fm′) from OPEN.

• Add (m,~gm, ~fm) to OPEN, ~gm to Gop(m) and label with ~gm a
pointer from n to m.

(c) Go back to step 2.

2.6. Exact a posteriori algorithms 31

made permanent (i.e., g is moved from Gop(n) to Gcl(n)). For each arc in the graph
(n, n′) with cost ~c(n, n′), a new label is generated for node n′ with cost ~g′ = ~g+~c(n, n′).
Several operations are carried out in NAMOA∗ for each such label:

1. The algorithm applies the optimality principle, i.e. only non-dominated labels
to each node are considered. Therefore, the new label has to be checked for
dominance against all labels in Gop(n) and Gcl(n). If the new label is dominated,
then it is discarded. This operation is called pruning.

2. For each new label, its cost estimate ~f ′ = ~g′ + ~h(n′) is tested for dominance
against vectors in COSTS. If the new estimate is dominated, it can never lead to
a new non-dominated solution and is discarded. This operation is called filtering.

These operations are computationally costly. For the case with two objectives the
label sets Gop(n), Gcl(n) and COSTS can be ordered lexicographically, allowing for
efficient dominance checks (Sanders & Mandow, 2013). However, for three or more
objectives there is no known efficient way to check the dominance of a vector against
a set.

A difference between the original pseudocode and this adaptation in Table 2.2 is
the application of lazy filtering, as described in (Sanders & Mandow, 2013), i.e. we do
not explicitly filter existing labels when a new solution is found. Labels are tested and,
if necessary, filtered only after selection. This prevents a costly update operation.

NAMOA∗ shares important properties with A∗. If the estimate function ~h(n) re-
turns an optimistic estimate (lower bound) of the cost of any path from n to the
destination, then it is guaranteed to terminate with the set of all non-dominated solu-
tion paths to the problem. If the lower bound function satisfies the so-called monotone
property, then it explores only non-dominated labels and is optimal in the class of
admissible algorithms, see Section 5.1 for further details.

2.6.3 The ideal point as lower bound

The use of lower bound functions has been studied for many years as a way to improve
the efficiency of combinatorial optimization problem solving. In graph search problems
a lower bound function estimates the cost of a solution path from node n to the
destination node t. In MSP there is more than one criterion, therefore, this function
does not return a single value but a cost vector estimate. Tung & Chew (1992) proposed
a multicriteria lower bound function along with a label-setting multicriteria algorithm.
The lower bound function represents the ideal point presented in Definition 2.12. This
is indeed the most informed and admissible estimate function that can be defined for
a MSP 5 and we will name it as ~hα.

The lower bound function is defined as ~hα(n) = (c∗1(n), c∗2(n), . . . c∗q(n)), where c∗i (n)
is the optimal scalar cost of a path from n to the destination node, considering only
the i-th cost component. These values are precalculated by reversing all arcs in the
graph, originally labeled with cost vector ~c(n, n′) = (c1, c2, . . . cq) the new labels will be
of the form ci(n′, n) = ci. Any single-objective one-to-all shortest path problem can be

5Tung & Chew (1992) called this lower bound ~q(n, n′).

32 Chapter 2. MultiCriteria Graph Search

applied to find the optimal cost from the destination node to all the other nodes in the
reversed graph. This process will be executed q times, once for each scalar cost. Ties
are broken by a lexicographic order, taking into account the other cost components.

The method proposed by Tung and Chew to calculate the ~hα function considered
originally the estimation for all nodes in the graph. In medium and difficult multi-
objective problems this precalculation time is minor in comparison with the runtime
of the multiobjective algorithm. However, this time can be proportionally significant
when the destination node is “close” to the source node. Machuca & Mandow (2012)
presented a bounded calculation procedure for this lower bound function in bicriteria
problems that avoids calculating the estimate for all nodes in the graph. They also
compared the performance of NAMOA∗ over road map problems with three different
lower bound functions, the corrected great circle distance, the distance estimate ~hα,
and bounded ~hα. The latter clearly outperformed the other two.

Let us now review the equivalent formal properties of multicriteria lower bound
functions H(n) to the single-valued function. These properties can be briefly review
in (Machuca, 2012, 2.1.2.1) or in-depth in (Pearl, 1984).

Definition 2.29 (Mandow & Pérez de la Cruz, 2005, p. 184) A distance estimate
function H(n) is said to be admissible when for all non-dominated solutions P ∗ =
(s = n0, n1, . . . , ni, ni+1, . . . , nl = t), and for all subpaths P ∗i = (n0, . . . , ni) of P ∗ the
following holds:

∃~h ∈ H(ni) | g(P ∗i) + ~h � g(P ∗) (2.26)

Definition 2.30 (Mandow & Pérez de la Cruz, 2010, Definition 5.6) A multicriteria
lower bound function H(n) is consistent if for all pairs of nodes n, n′ in the graph,
for all non-dominated path between them P = (n, . . . , n′), and for all lower bound cost
vectors ~h′ ∈ H(n′), the following condition holds:

∃~h ∈ H(n) | ~h � c(P) + ~h′ (2.27)

Definition 2.31 (Mandow & Pérez de la Cruz, 2010, Definition 5.7) Equivalently, a
multicriteria lower bound function H(n) is monotone when for all arcs (n, n′) in the
graph, the following condition holds:

∀~h′ ∈ H(n′) ∃~h ∈ H(n) | ~h � c(n, n′) + ~h′ (2.28)

Definition 2.32 (Mandow & Pérez de la Cruz, 2010, Definition 5.4) A multicriteria
lower bound function H2(n) is said to be at least as informed as other H1(n) when
both are admissible and for all nodes n,

∀~h2 ∈ H2(n) ∃~h1 ∈ H1(n) | ~h1 � ~h2 (2.29)

2.7 Exact a priori algorithms

Finally, we will review relevant exact multicriteria algorithms proposed for the case
where preferences between alternatives are provided a priori. More precisely, we review

2.7. Exact a priori algorithms 33

the cases where preferences are expressed in terms of compromise solutions, or a set of
goals. Both of these a priori techniques aim to minimize the distance between the DM
preferences and the actual achievement for each of the objectives under consideration.

2.7.1 Compromise Search

A well known approach in MSP is the compromise solution method (Yu, 1985) or best
compromise search. In this case, the preferences of the DM can be given as their
aspiration level on each criterion. Then, a function is defined to evaluate a solution
according to its distance to that preference, which is called the reference point. The
best compromise solution is then the closest one to the reference point. 6

Achievement scalarizing functions are employed in Compromise Search in order to
evaluate solutions. Let us take the following definition from (Machuca et al., 2013):

Definition 2.33 A scalarizing function s must have the following properties: (1) any
non-dominated solution can be optimal with respect to s (with an appropriate choice of
parameters); and (2) any optimal solution with respect to s has to be non-dominated.
These requirements ensure that, for any rational decision maker, the preferred solution
can be reached optimizing some scalarizing function.

The Tchebycheff norm, the Euclidean, Manhattan or Minkowski’s are examples
of distance functions to seek for the compromise search solution. However, there
does not exist any scalarizing function satisfying simultaneously the two requirements
(Wierzbicki, 1986). Even so, Compromise Search applied to MSP has been widely
studied, and compared to algorithms where the whole set of non-dominated solutions
is returned (Machuca et al., 2013).

Perny & Spanjaard (2005) introduced a general formalism for preference-based
combinatorial problems, and proposed several algorithms to obtain the set of preferred
solutions. Different measures are used in best compromise search to obtain the set of
compromise solutions. The ordered weighted averaging (OWA) operator is a natural
manner to express the preferences between solutions. Galand & Spanjaard (2007) pro-
posed a best compromise search algorithm based on OWA, called OWA∗. Galand et al.
(2010) used the Choquet integral, another preference model used in decision theory
for aggregating preferences, as a preference model. The Tchebycheff scalarizing func-
tion was employed by other recent studies as Perny & Weng (2010) and Galand et al.
(2013). The latter, presented the first bidirectional multiobjective search algorithm,
called bidirectional PBMOA∗.

Galand & Perny (2006) presented two algorithms to find the best compromise
solution paths, BCA∗ and kA∗. BCA∗ is a variant of NAMOA∗ with an upper bound
λ to store the value of the Tchebychev distance of the best compromise solution path
found. Additionally, the algorithm incorporates a specific stopping condition. In
the worst case, BCA∗ performs a similar enumeration of paths as NAMOA∗, and
finds the best compromise at the last step. On average, however, BCA∗ stops much
earlier than NAMOA∗. kA∗ enumerates the k best paths in a scalarized version of the

6The reference point does not need to be necessarily specified by the DM and it can also be defined
as the ideal solution point (Zeleny, 1982). In this case, this approach could be included in the a
posteriori category.

34 Chapter 2. MultiCriteria Graph Search

multiobjective graph. This algorithm relies on a modified version of A∗ that works on
labels attached to paths instead of labels attached to nodes.

Several differences between both algorithms can be pointed out. First, the use of
vectors versus scalar values in BCA∗ and kA∗, respectively. Second, BCA∗ prunes sub-
optimal paths reaching the same node as well as those paths that according to their ~f
value cannot lead to the best compromise solutions. kA∗, however, cannot prune sub-
optimal paths, since they should always be kept for future considerations. Finally, the
comparison between both algorithms revealed a better performance of kA∗ in certain
cases (Galand & Perny, 2006; Machuca et al., 2013). Nevertheless, kA∗ presents an
exponential worst case behavior, i.e. it can explicitly explore a combinatorially large
number of paths with the same cost vector.

Lastly, Sauvanet & Néron (2010) presented two improvements to speed-up the
search of BCA∗, applying that development to a bicycle routing application available
online and for smartphones 7.

2.7.2 Goal Programming

Goal Programming has also been applied to the MSP. Different approaches to model
a GP problem were presented in Section 2.3.1. One of them is Lexicographic Goal
Programming. METAL-A∗(Mandow & Pérez De La Cruz, 2001) was proposed as a
general algorithm for graph search problems with additive lexicographic goals. In a
way, it is an extension of A∗ to goal-based multicriteria preferences.

Section 2.6.1 analyzed the proposed extensions of A∗ to the multiobjective case.
As we stated there, MOA∗ is considered obsolete due to the formal and empirical
superiority of NAMOA∗ over MOA∗. METAL-A∗ is based on MOA∗, and subject also
to the same faults detected in the work of Pérez de la Cruz et al. (2013) for MOA∗,
namely, that the performance of the algorithm decreases with better informed distance
estimates. Therefore, this algorithm can also be considered deprecated, and will not be
further considered in this research work. To our knowledge, there have been no further
developments on MSP with Lexicographic Goals. This thesis addresses precisely this
question. In Chapter 4 we will present two new algorithms based on NAMOA∗ to deal
with lexicographic goals.

2.8 Summary and motivation

In this chapter we have reviewed the fundamental concepts of Multicriteria Decision
Theory, with special attention to goal-based preferences. We have also reviewed the
Multicriteria Shortest Path Problem and the main approaches proposed to date in the
literature to solve it. All methods developed in this chapter have been mainly divided
into approximate and exact techniques. In this thesis we focus on exact algorithmic
techniques, i.e. those techniques seeking only non-dominated solutions, either the full
set of the Pareto frontier, or the subset of Pareto-optimal solutions that satisfy the
DM preferences.

7Website: www.geovelo.fr,AndroidAPP:https://play.google.com/store/apps/details?id=fr
.geoveloparis

www.geovelo.fr, Android APP: https://play.google.com/store/apps/details?id=fr.geoveloparis
www.geovelo.fr, Android APP: https://play.google.com/store/apps/details?id=fr.geoveloparis

2.8. Summary and motivation 35

Four categories of exact a posteriori algorithms were identified in Section 2.6: la-
beling (label-setting and label-correcting), ranking, and two phases approaches. This
thesis focuses on label-setting algorithms using lower bound estimates. We pay special
attention to the Dijkstra and A∗ algorithmic extensions to the Multiobjective case. In
particular, we describe an improved dominance check method for NAMOA∗.

Among a priori methods, we reviewed contributions in Compromise Search and
Goal Based Search. Formulations for the WGP and the Lexicographic GP were pre-
sented. To our knowledge, the only previous work on goal-based preferences for SPP
was based on MOA∗, and there are no contributions in this sense based on NAMOA∗.
We will further describe in this thesis our contributions in the category of label-setting
algorithms with lower bounds that employ a label-selection policy, and lexicographic
goal programming algorithmic techniques. In particular, one of the main contributions
of this thesis relies on an extension of NAMOA∗ to deal with lexicographic goal tech-
niques. In those cases where the goals cannot be satisfied the distance to the goals
is measured with the definition stated in 2.7, which minimizes the weighted sum of
deviations. Table 2.3 displays a classification of representative a priori and a posteriori
multicriteria shortest path algorithms with additive metrics.

This thesis aims to provide a contribution to the Multicriteria Search Problems with
lexicographic goal-based preferences. In other words, the combination of the MSP with
GP techniques. We define two alternatives to deal with such a problem. The first al-
ternative approaches the problem from the perspective of an optimization problem. A
full search of the Pareto frontier is performed to obtain all the non-dominated solu-
tions, and afterwards extract the subset of satisfactory solutions for the provided goals.
The second alternative approaches the problem from the satisfaction perspective. An
algorithm which takes advantage of the preferences given by the DM is devised. Its
purpose is to restrict the search and discard sooner in the search those paths which will
not lead to satisfactory solutions. The first alternative is characterized as a posteriori
method, while the second corresponds to the category of a priori methods.

In addition to define a new specifically designed algorithm to cope with MSP with
lexicographic goal-based preferences (second alternative presented above), we aim to
improve the runtime performance of algorithms based on the extension of A∗ to the
multiobjective case (label-setting algorithms within the first alternative). More specif-
ically, we will apply the devised techniques to NAMOA∗.

Time requirements have been identified as the limiting factor in the size of problems
that can be practically solved by multiobjective shortest path algorithms (Machuca
et al., 2009, 2012; Mali et al., 2012). Thus, we enumerate below several fundamental
aspects to achieve better runtime performance in label-setting algorithms.

1. Use of lower bounds. In the same manner than A∗ outperforms Dijkstra’s
algorithm by using lower bounds, or estimates of the distance to the destination
node, the label-setting multicriteria search algorithms can also take advantage
of these bounds to discard sooner suboptimal paths and “guide” the search more
efficiently. Recent studies have demonstrated that node-selection algorithms as
MOA∗ does not share all the formal properties of A∗. However, NAMOA∗ follow-
ing a label-selection strategy does preserve all formal properties of A∗ (Mandow
& Pérez de la Cruz, 2010), see Section 5.1.

36 Chapter 2. MultiCriteria Graph Search

T
ab

le
2.
3.

C
la
ss
ifi
ca
tio

n
of

so
m
e
re
pr
es
en
ta
tiv

e
a
pr
io
ri

an
d
a
po

st
er
io
ri

m
ul
tic

rit
er
ia

sh
or
te
st

pa
th

al
go

rit
hm

s.

C
la
ss
ifi
ca
tio

n
So

m
e
re
pr
es
en
ta
tiv

e
al
go

rit
hm

s

Aposteriori

La
be

lin
g

La
be

l-s
et
tin

g
M
O

D
ijk

st
ra

H
an

se
n
(1
98
0)
;M

ar
tin

s
(1
98

4a
)

M
O
A
∗

N
od
e-
se
lec

tio
n

M
O
A
∗

La
be
l-s

el
ec
tio

n
Tu

ng
&

C
he

w
(1
99
2)
;N

A
M
O
A
∗ ;

Ve
ct
or

fr
on

tie
r
Se

ar
ch

La
be

lc
or
re
ct
in
g

B
ru
m
ba

ug
h-
Sm

ith
&

Sh
ie
r
(1
98

9)
;G

ue
rr
ie
ro

&
M
us
m
an

no
(2
00

1)
R
an

ki
ng

M
ar
tin

s
et

al
.(
20
07
);
Pa

ix
ão

&
Sa

nt
os

(2
00

8)
Tw

o
ph

as
es

M
ot
e
et

al
.(
19
91
);
R
ai
th

&
Eh

rg
ot
t
(2
00

9)

Apriori

C
P

Tc
he

by
ch
eff

no
rm

B
C
A
∗ ,

kA
∗ ;

Sa
uv

an
et

&
N
ér
on

(2
01

0)
O
W
A

op
er
at
or

O
W
A
∗ ,

B
id
ire

ct
io
na

lP
B
M
O
A
∗

C
ho

qu
et

in
te
gr
al

G
al
an

d
et

al
.(
20
10
)

G
P

LG
P

M
ET

A
L-
A
∗

2.8. Summary and motivation 37

2. More efficient dominance checks. Several adaptations are necessary to gen-
eralize algorithms to the multicriteria case. The most important factor to con-
sider is the fact that a set of non-dominated labels need to be kept at a node,
instead of a single label as in the single-objective case. Therefore, a great amount
of dominance checks will be necessary to check if a new generated path must
be discarded8. Thus, we propose in this thesis a new dimensionality reduction
technique to speed up dominance checks in label-setting multicriteria search al-
gorithms, see Section 4.2.

3. Label selection policy in best-first algorithms. Best-first algorithms em-
ploy a selection policy to choose between all non-dominated alternatives. We
presented several total order relations in Section 2.3.2 which can be used as label
selection policies, being the lexicographic and linear addition orders the most
commonly used. Different studies have been made to compare the performance
of label-setting algorithms employing these orders (Iori et al., 2010; Machuca
et al., 2012). In the experiments presented in this thesis, label selection policies
are also analyzed as an important parameter in the algorithm time performance.

4. Use of more efficient data structures. The use of efficient data structures for
the SPP has always been a hot topic (Ahuja et al., 1990; Zhan, 1997; Cherkassky
et al., 1999; Cazenave, 2006; Mehlhorn & Sanders, 2008). Nevertheless, the
use of different data structures to sort the list of open alternatives in best-first
MSP still deserves more research. We will further analyze this and other future
improvements in Chapter 8.

8For bi-objective cases labels can be totally ordered by using the lexicographic order, reducing time
requirements to determine whether a new label is non-dominated with existing labels, for instance, with
a lexicographic order all labels in the set are sorted by the first objective, hence, a single comparison
of the second objective of the new label and the best value for any label in the set will be enough to
check the dominance of the new label against the whole set. However, for the general MSP case, all
labels must be compared against the new one to check whether is dominated or not.

Chapter 3

Benchmarks

A goal is not always meant to be reached, it
often serves simply as something to aim at.

Bruce Lee (1940-1973)

This chapter introduces relevant literature on the experimental evaluation of mul-
tiobjective search algorithms and describes the test sets used to assess the performance
of the algorithms studied in this thesis. We survey some of the tools and test beds
proposed in the past to test algorithmic improvements in the field, review the impor-
tance of connecting the theoretical analysis with empirical evaluation, and enumerate
important factors to consider in the latter.

The chapter is organized as follows. First, a summary of related benchmarks and
previous test sets used by authors on Multiobjective Search can be found in Section 3.1.
Section 3.2 describes artificial and realistic scenarios employed to test the algorithms
presented in this thesis. Section 3.3 addresses the different factors involved in the
evaluation of performance from two points of view: what variables must be measured
and what implementation and external factors are desirable to control.

3.1 Multiobjective Search benchmarks

The empirical evaluation of algorithms is a main tool of research in Computer Science
(Johnson, 2002). Theoretical studies can provide formal proofs of correctness and
indicate the superiority of one algorithm over another, however, the point of research
is, and has always been, applying those algorithms to real life problems. To do so, an
empirical evaluation, either on simulated or realistic scenarios, is needed to confirm
the results already provided in a theoretical manner. Wherever formal studies can not
be provided, an empirical evaluation is the best way to approach the problem.

An empirical evaluation is based on two principles. First, reproducibility, i.e. guar-
anteeing that other researchers may obtain equivalent results when they use the same
parameters to reproduce the experiments; and second, fairness, i.e. algorithms should
share as much code as possible, define clearly implementation and execution parame-
ters, as well as employ benchmarks or problems available online, see for example the
9th DIMACS Implementation challenge described below.

39

40 Chapter 3. Benchmarks

In this thesis we tackle the Multicriteria Search Problem and consider goals pro-
vided by a decision maker that define the subset of Pareto optimal solutions to be
returned. On one hand, Multicriteria Search performance can be related to a number
of distinct factors relative to the benchmark, such as graph size and shape, number of
arcs, solution depth, costs range, number of criteria or correlation between objectives.
On the other hand, Goal Programming is also concerned with the efficiency, which
can be attributed to the form that the preferences are given, as well as the amount
of solutions that satisfy them. Therefore, we define our empirical evaluation based on
parameters relative to the graph, problem, and preferences given by the DM.

Many test beds have been proposed over the years for Multiobjective Search pro-
blems, for instance, randomly generated graphs, grids or road maps, see Section 3.1
(Machuca, 2012) for a recent survey of the literature in Multiobjective Search bench-
marks. For instance, Klingman et al. (1974) published NETGEN, a random graph gen-
erator that first generates a connected skeleton and then adds arcs randomly. Skriver
& Andersen (2000) used this tool in their research, however, they presented a new ran-
dom graph generator, NETMAKER, arguing that graphs generated with NETGEN
only had a small number of efficient solutions, even for large scale graphs.

In order to generate graphs, NETMAKER needs two input parameters: the branch-
ing factor and the interval length. The latter specifies which nodes are allowed to be
reached from a particular node. Other random graphs have been proposed over the
years (Hansen, 1980; Climaco & Martins, 1982; Nance et al., 1987; Brumbaugh-Smith
& Shier, 1989; Mote et al., 1991; Gandibleux et al., 2006; Martins et al., 2007; Iori
et al., 2010; Caramia et al., 2010; Galand et al., 2010).

Euclidean, rectangular, and square grids are another alternative to test multiob-
jective search algorithms performance. They have also been extensively used in the
literature, e.g. (Mote et al., 1991; Guerriero & Musmanno, 2001; Guerriero et al., 2001;
Martins et al., 2007; Caramia et al., 2010).

Several road maps scenarios have been provided for experimentation purposes, like
the 9th DIMACS implementation challenge, see Section 3.2.2 for further details, maps
obtained from OpenStreetMap 1 (Raith & Ehrgott, 2009; Raith, 2009), road networks
from the Italian region of Lazio (Caramia et al., 2010), or small maps of Auckland
(New Zealand) (Raith, 2009) for the bi-objective cyclist route problem.

To our knowledge, there are no specific benchmarks developed to test goal-based
graph search algorithms.

3.2 Benchmarks used in this thesis

A combination of artificial and realistic scenarios are used in this thesis to assess
the performance of the proposed algorithms. Artificially generated environments, like
random grids, allow to control different parameters, such as number of nodes, branching
factor, correlation between objectives or solution depth. Therefore, these are suitable
to analyze tendencies over increasingly difficult problem instances.

On the other hand, realistic scenarios come with a fixed set of parameters, which
can not be modified at will. However, these provide first-hand information on the

1http://www.openstreetmap.org/

http://www.openstreetmap.org/

3.2. Benchmarks used in this thesis 41

applicability of the proposed algorithms.
The evaluation strategy in this thesis combines both artificial and realistic scenar-

ios. First, we test the performance over artificially designed environments, and then
over realistic scenarios.

In addition to these scenarios, we aim to evaluate the performance of Multicriteria
Search Problems according to different preferences, or sets of goals grouped in priority
levels. Thus, we propose several classes of targets that emulate the possible preferences
of a decision maker. These targets split the experiments into two classes of problems
(see Section 6.1 for a detailed description of the experimental setup). Thus, we analyze
the efficiency: (1) according to the satisfiability of the goals (whether they can be
satisfied or not) (2) when goals can be satisfied; the size of the set of efficient solutions
with respect to the size of the Pareto set. Let us now review the benchmarks.

3.2.1 Random grids

Artificially generated graphs and grids are the most extensively test sets used in the
literature. In order to adequate the problem difficulty in graphs, several parameters
have to be defined, such as branching factor, number of arcs, and mainly, the topology
of the graph. Square grids have a fixed vicinity, are easy to create, and their size can
be gradually increased.

Grids can also be considered a realistic scenario compatible with real-file applica-
tions, e.g. pathfinding in computer games (Bayili & Polat, 2011). Moreover, a recent
study from Paixão & Santos (2008) revealed that problems defined over randomly ge-
nerated graphs have a number of non-dominated solutions larger than graphs with
similar configurations.

The random grids used in this thesis are designed to allow the controlled evaluation
of performance with respect to solution depth. In particular, we have generated square
bi-dimensional grids of 100 × 100, bidirectional arcs and a vicinity of four neighbors,
i.e. grids with 10,000 nodes and 39,800 arcs. The start node is placed at the grid
center (50, 50) and a single destination node is placed in the diagonal from the center
to the bottom right corner.

Different solution depths are considered, varying from 20 to 100, i.e. for solution
depth d, the destination node is at coordinates (50 + d/2, 50 + d/2). A set of five
different problems is generated for each solution depth. For each arc q integer scalar
costs ~c(i, j) = (c1, c2, ..., cq) are randomly generated in the range [1,10] using an uniform
distribution, i.e. leading to uncorrelated objectives. Table 3.1 shows the average
number of Pareto-optimal solutions for each solution depth and number of objectives
considered in our random grids experiments.

3.2.2 Road maps

Among the multiple realistic domains where Multicriteria Search arises (see Section 2.5
for a detailed classification of several application domains for MSP) we have selected
route planing. Route planing is currently a hot research topic driven partly by the
boom of GPS navigation devices and on-line route planners.

Single-objective search on road maps has been intensively studied over the last

42 Chapter 3. Benchmarks

Table 3.1. Average number of Pareto-optimal cost vectors relative to solution depth
and number of objectives (q) in our grid problems.

q Sol. depth Avg. |C∗|
3 20 122
3 30 302
3 40 694
3 50 1,599
3 60 2,007
3 70 2,561
3 80 5,423
3 90 5,912
3 100 8,307
4 20 493
4 30 2,230
4 40 7,826
4 50 24,942
5 20 1,819
5 30 10,830
5 40 49,634

decades (Pearl, 1984; Zhan & Noon, 1998; Klunder & Post, 2006; Geisberger et al.,
2008; Schultes, 2008; Delling et al., 2009). However, research on multiobjective route
planning is a recent area of interest (Delling & Wagner, 2009; Raith & Ehrgott, 2009;
Machuca & Mandow, 2011, 2012; Mali et al., 2012) and it is expected to become even
more popular with the progressive introduction of electrical vehicles (Baum et al., 2014;
Goodrich & Pszona, 2014) to optimize the trade-off between attributes like energy
consumption or travel time.

The experiments presented in this thesis involve the use of realistic road maps from
the 9th DIMACS Implementation Challenge: Shortest Path. Road maps are defined
as graphs where arcs represent roads and nodes represent road junctions. Coordinates
(longitude and latitude) are also provided for each node. The test bed comprises a
set of twelve road maps of increasing size2. These data were provided by the 2000
U.S. Census Bureau’s TIGER/Line R database (Topologically Integrated Geographic
Encoding and Referencing system).

The original DIMACS maps provide two different criteria: physical distance and
travel time. An additional criterion was introduced in Machuca & Mandow (2011) by
estimating economic cost. This was obtained combining certain values for tolls and
fuel consumption according to road category. The resulting values are not linearly
correlated to those of the other cost values. The experiments reported in Chapter
7 consider the simultaneous minimization of these three attributes, physical distance
(c1), travel time (c2), and economic cost (c3).

Machuca & Mandow (2012) generated fifty problem instances for each of the four

2http://www.dis.uniroma1.it/challenge9/

http://www.dis.uniroma1.it/challenge9/

3.2. Benchmarks used in this thesis 43

smallest maps from the DIMACS Challenge: New York, San Francisco Bay Area,
Colorado and Florida, to minimize simultaneously attributes (c1) and (c2). Given that
our experimental evaluation considers the minimization of three attributes instead of
two, our problems have much higher difficulty and therefore, we only selected the
first twenty problems of the New York city map. Additionally, due to the fact that
only fourteen out of the twenty problems of New York could be solved within the
runtime limit, we employed a second road map from the Vermont State 3 and generated
twenty random problems in a similar way. The Vermont State road map represents
an interesting benchmark to observe performance trends, since all algorithms solve all
problem instances within the runtime limit.

3.2.3 Significance of the test sets

Regarding random grid problems, the majority of past studies focus on the bi-criterion
case (Raith, 2009; Machuca, 2012). Among those considering the multicriteria case,
Caramia et al. (2010) use grids of 20 × 20 nodes and 167.5 efficient paths in average,
Martins et al. (2007); Paixão & Santos (2013) also use grids with 20× 20 nodes but a
greater number of efficient paths, since they generated arcs cost in the range [1,1000]).
Our experimental test on Multicriteria Search consider in general larger instances than
those studies.

Regarding road map experiments, Machuca (2012) presented recent experiments
over two sets of problems:

1. A first set of problems minimizes distance (c1) and time (c2) values provided by
the DIMACS challenge maps.

2. A second set of problems minimizes time (c2) and economic cost (c3).

Table 3.2 illustrates the average number of Pareto-optimal solutions for each set of
our problems. Pearson’s correlation coefficient for costs c1 and c2 is 0.96 while that for
c2 and c3 is 0.16, i.e. there is a strong linear correlation between time and distance,
while there is no such a correlation between travel time and economic cost.

The sets of experiments with two objectives proposed by Machuca (2012) were
composed by 50 problem instances, while our test set with three objectives comprises
only twenty instances. We decided to reduce the number of problems in the test set
due to the greater difficulty of the three objectives search compared to the bi-objective.
Table 3.2 shows the average number of Pareto-optimal solution vectors for experiments
with (c1,c2), (c2,c3), and (c1, c2, c3) cost functions. For New York city road map, the
average number of Pareto-optimal solution vectors of (c1, c2, c3) experiments shows
an asterisk. This indicates that 47,738.8 represents the average considering only the
fourteen solvable problems of the set. Yet this number is approximately 240 and 22
times greater than the average Pareto-optimal solution vectors in experiments with
(c1,c2) and (c2,c3) cost functions, respectively. In consequence, we expect our test sets
to be in line with the hardest ones proposed to date for multiobjective search.

3Available on http://www.dis.uniroma1.it/challenge9/data/tiger/

http://www.dis.uniroma1.it/challenge9/data/tiger/

44 Chapter 3. Benchmarks

Table 3.2. Average Pareto-optimal cost vectors for three sets of experiments. (+)
represents the average of the fourteen problems solved.

New York city road map
Set of problems Average |C∗|
(c1, c2) 198.6
(c2, c3) 2,086.6
(c1, c2, c3) +47,738.8

Vermont road map
Set of problems Average |C∗|
(c1, c2) 81.6
(c2, c3) 247.1
(c1, c2, c3) 3,334.6

3.2.4 Evaluation of preferences based on goals

In order to assess the impact of the goals satisfiability on the efficiency of the goal-
based algorithms, we employ a lexicographic goal programming model that considers
three goals grouped in two priority levels:

Level 1 g1 ≤ t1, w1 = 0.5
g2 ≤ t2, w2 = 0.5

Level 2 g3 ≤ t3, w3 = 1

Sets of target values for each problem are defined in terms of the ideal ~α =
(α1, α2, α3), and nadir points ~β = (β1, β2, β3). These were previously calculated from
the full Pareto sets obtained with NAMOA∗. The nadir point is generally unknown
in practice, but we take advantage of it in these experiments to obtain targets with
different degrees of satisfaction for the purpose of experimentation. In a practical sit-
uation the ideal point is known thanks to the lower bound precalculations (Tung &
Chew, 1992). These also provide the nadir point for two objectives, and at least an
approximation for three or more objectives.

Two different classes of experiments were carried out. For the first class, five
different target sets were calculated as follows:

ti = αi + (βi − αi)× k1, k1 ∈ {0, 0.25, 0.5, 0.75, 1} (3.1)

For example, for k1 = 1 all Pareto-optimal solutions will satisfy all goals, and for
k1 = 0 no Pareto solution will likely satisfy them.

For the second class, targets of the first level were fixed for k1 = 0.75 and k1 = 0.5,
which were found to provide satisfactory solutions. We then measured efficiency setting
stricter targets for the third goal:

t3 = α3 + (β3 − α3)× k2 k2 = k1 × k′, where k′ ∈ {0.25, 0.5, 0.75, 1} (3.2)

.
These values of t3 allow us to evaluate the performance when some goals are satisfied

and some not.

3.3. Evaluation of performance in Multicriteria Search 45

3.3 Evaluation of performance in Multicriteria Search

In the following chapters we introduce three new algorithms. The first one, called
LEXGO∗, is a goal-based algorithm; the second one, NAMOA∗dr, represents an im-
provement of NAMOA∗, and the last, LEXGO∗dr, is devised as an improvement of
LEXGO∗. We use these algorithms to evaluate two alternatives to deal with MSP with
goal preferences. In the first one, NAMOA∗ and NAMOA∗dr return the full Pareto set
of non-dominated solutions to the problem and determine the subset of solutions that
satisfy the goals from that set. In the second one, LEXGO∗ and LEXGO∗dr are used
to search only for goal-optimal solutions.

Our purpose with these new algorithms can be summarized with two statements.
In the first place, improve the performance of both alternatives, and in the second
place, assess their performance.

This evaluation of the performance is usually characterized with respect to solution
depth, explored labels, correlation between objectives (Brumbaugh-Smith & Shier,
1989; Mote et al., 1991; Machuca et al., 2010) or the presence/absence of lower bounds.

All proposed algorithms are based on NAMOA∗. It has been proved that the
more informed a consistent lower bound function is, the smaller the number of labels
explored by NAMOA∗ with this function (Mandow & Pérez de la Cruz, 2010). The
impact on efficiency has also been empirically confirmed by several studies (Machuca
et al., 2012; Machuca, 2012). Hence, we will employ a lower bound as informed as
possible in all analyzed algorithms regardless they find the full Pareto set or only the
solutions to the problem that satisfy the goals.

Traditionally experimental evaluation of algorithms, e.g. see (Raith, 2009; Sauvanet
& Néron, 2010), considers both space and time performance. Space requirements can
be measured by the number of expanded or permanent labels, while the number of
dominance checks has been pointed out as an important limiting factor in the time
performance, e.g. see (Iori et al., 2010; Machuca & Mandow, 2011).

Once the variables to measure algorithm performance are identified, we turn our
attention to the factors concerning the implementation of the algorithms. In Multicri-
teria Search two aspects must be specified whenever an algorithm is evaluated. Firstly,
the label selection policy is used to choose non-dominated labels from OPEN. Lexico-
graphic order is a frequent choice (e.g. see (Martins, 1984a)). A recent study showed
the linear aggregation order can have better performance than the lexicographic one
(Iori et al., 2010). NAMOA∗ will be tested with lexicographic and linear selection
orders. In this thesis, we will show that the lexicographic order combined with the
t-discarding technique can clearly outperform the linear aggregation order for the case
with three objectives. The second aspect in the implementation of a multicriteria
search algorithm (similarly in SPP) is the data structure to keep sorted the OPEN
queue of alternatives (Paixão & Santos, 2013). Our algorithms are implemented using
a binary heap.

Some other implementation details which can influence time performance are as
follows:

• The particular machine where the experimental evaluation is run, e.g. architec-
ture, number or processors, processor speed, physical memory available, etc.

46 Chapter 3. Benchmarks

• Process execution, e.g. number of simultaneous thread executions, amount of
memory available to the process, Operative System, programming language used,
compiler version, compiler optimization level, etc.

• In the OPEN queue two policies can be employed, depending on whether only
the current best cost estimate of each node is kept in OPEN at each iteration
Mandow & Pérez de la Cruz (2005), or all alternatives are stored in OPEN (Mali
et al., 2012).

• Implementation of the Gop (and Gcl) sets of non-dominated labels, e.g. whether
these sets are ordered (or not) according to the label selection policy employed
by the algorithm, and the data structure used to sort them.

• An optimized graph structure to store nodes and arcs in memory. This struc-
ture provides dynamic memory management of the graph and can optimize the
expansion of consecutive nodes and edges (Mali et al., 2013).

• The implementation of “merge” and “prune” operations, i.e. the strategies used
for the comparison of new alternatives against known labels of the node (Skriver
& Andersen, 2000; Raith, 2009; Iori et al., 2010)

In particular, the decisions taken in the practical implementation of algorithms in
this thesis are as follows:

• All the algorithms were run on an Intel Core i7 3612QM at 2.1 Ghz, 4GB of
DDR3 RAM under Windows 7 (64-bit), and on a Sun Fire X4140 server with 2
six-core AMD Opteron 2435 at 2.6 GHz processors and 64 Gb of DDR2 RAM
under Windows Server 2008 R2 (64-bit).

• The algorithms NAMOA∗, NAMOA∗dr, LEXGO∗ and LEXGO∗dr were imple-
mented to share as much code as possible. The programming language used
was ANSI Common Lisp. Each problem instance was solved using an individual
process with a single thread.

• The lexicographic and linear selection orders were used to choose among non-
dominated open alternatives in NAMOA∗ and LEXGO∗. NAMOA∗dr and LEXGO∗dr
use only the lexicographic order.

• The OPEN queue was implemented as a binary heap but only the current best
label of each node is kept in OPEN at each iteration.

• The Gop and Gcl sets were ordered according to the label selection policy em-
ployed by the algorithm.

Part II

Contributions

The second part of this thesis describes our contributions to the field of multiobjective
graph search algorithms with preferences based on goals. This comprises the formal
and empirical analyses performed through this research work. This part is organized
as follows:

• Chapter 4 introduces some of the contributions of this dissertation. Prior to
presenting LEXGO∗, our new label-setting multicriteria search algorithm with
goal-based preferences, we introduce new definitions concerning lexicographic
preferences and a new pruning rule devised for lexicographic preferences. These
are presented along with LEXGO∗ in Section 4.1.
A new dimensionality reduction technique that speeds up the time performance
of exact multicriteria search algorithms is described in Section 4.2. The new
algorithms, NAMOA∗dr and LEXGO∗dr, based on the application of this technique,
are presented in Section 4.3 and 4.4, respectively.

• Chapter 5 gives a formal analysis of the multiobjective algorithms considered in
this thesis. Section 5.1 reminds the formal properties of NAMOA∗. The formal
properties of LEXGO∗ are introduced in Section 5.2 and it is formally proved
that labels expanded by LEXGO∗ are always a subset of the labels expanded by
NAMOA∗. The t-discarding method is proved to be theoretically correct and that
any admissible multiobjective search algorithm will remain to be admissible when
this technique is applied. More precisely, the formal properties of NAMOA∗dr
and LEXGO∗dr, the versions of NAMOA∗ and LEXGO∗ applying t-discarding,
are presented in Sections 5.3 and 5.4, respectively.

• Chapters 6 and 7 describe the empirical evaluation of the algorithms introduced
in this thesis. These are conducted over random grids and realistic road map
problems, respectively. First, the space and runtime performance of LEXGO∗
over NAMOA∗ is evaluated, and second, the time requirements of algorithms
with t-discarding, i.e. NAMOA∗dr and LEXGO∗dr over their counterparts which
use the standard dominance checks. Finally, a summary for each experiment
analyzes the relative performance of all tested algorithms.

Chapter 4

New techniques for
multiobjective and goal-based

search

An algorithm must be seen to be believed.
Donald Knuth (1938-)

This chapter describes the algorithmic contributions of this thesis. These are
broadly aimed at an efficient solution of goal-based search problems. In the first place,
we introduce a new algorithm that specifically searches for lexicographic goal solutions
in Section 4.1. The algorithm is called LEXGO∗. We start noting that the optimality
principle does not hold in general for lexicographic goal based preferences, and develop
a specific pruning criterion for them. In the second place, we introduce in Section 4.2
a dimensionality reduction technique that speeds up the time performance of Label-
setting multicriteria search algorithms. We review the application of this technique
to NAMOA∗ and LEXGO∗, in Sections 4.3 and 4.4, respectively. These algorithmic
contributions are the base for the different alternatives to goal-based search analyzed
later in this thesis.

4.1 Algorithm LEXGO∗

This section introduces LEXGO∗, an algorithm for lexicographic goal-based search pro-
blems. More precisely, we will address goal-based search according to the preferences
already introduced in Section 2.3.2, and that will be used throughout this chapter.
Multiobjective search algorithms benefit from the principle of optimality, i.e. an opti-
mal path is made up of optimal subpaths. This property allows to drastically reduce
the number of paths to be explored during search, pruning dominated alternatives at
each node. Regrettably, the principle of optimality does not hold for lexicographic
goal-based preferences. Let us see this by way of a simple example.

Example 1 Let us consider a search problem in a multicriteria graph with start node
s, a destination node t, and the following preferences over three different attributes:

49

50 Chapter 4. New techniques for multiobjective and goal-based search

Level 1: g1 ≤ 20, w1 = 1.0
Level 2: g2 ≤ 20, w2 = 0.5

g3 ≤ 20, w3 = 0.5
(4.1)

Let us further assume the graph has two different paths P1 and P2 reaching some
node n, where ∀n ~h(n) = (0, 0, 0), and the following costs and associated deviations:

~g(P1) = ~f(P1) = (15, 16, 22) ⇒ ~d(P1) = (0, 1)
~g(P2) = ~f(P2) = (20, 12, 16) ⇒ ~d(P2) = (0, 0)

We observe that ~f(P2) ≺G ~f(P1), since ~d(P2) ≺L ~d(P1). However, we cannot
discard P1 in favor of P2. Let us now consider there is only one additional path
P3 = (n, . . . , t) from n to the destination node with cost ~g(P3) = (4, 4, 4). It is easy to
show now that the concatenation P1P3 is the only goal-optimal solution:

~g(P1P3) = (19, 20, 26) ⇒ ~d(P1P3) = (0, 3)
~g(P2P3) = (24, 16, 20) ⇒ ~d(P2P3) = (4, 0)

This is the main difficulty in the development of a specific goal-based search algo-
rithm. According to our definition of goal-based preferences, goal optima are among
Pareto optima. Therefore, pruning dominated paths will lead to a correct algorithm,
although the number of explored paths is likely to be very similar to that of full Pareto
search. Our aim is to introduce a specific pruning condition that allows us to reduce
the number of paths explored in goal-based search and, more specifically, that guar-
antees that the set of paths explored in such search is a subset of the set of paths
explored by a full Pareto search. Let us start introducing the fundamentals of this
pruning preference.

Figure 4.1. a) Graphic representation of slack variables for several scenarios where
(1) yi, y′i ≥ ti, (2) yi ≤ ti < y′i, (3) y′i ≤ ti < yi and (4) yi, y′i < ti, adding εi to both yi
and y′i.

Definition 4.1 Let us consider a goal yk ≤ tk over some measurable attribute yk. The
slack variable sk for this goal is defined as

sk = max(0, tk − yk) (4.2)

4.1. Algorithm LEXGO∗ 51

Let us assume two vectors ~y, ~y′ ∈ Rq and a level j such that dj(~y) < dj(~y′). Let us
denote ∆j(~y,~ε) = dj(~y + ~ε) − dj(~y). Obviously, if ~ε � ~0, ∆j(~y,~ε) ≥ 0. We define
the cross-slack δj(~y, ~y′) = max~ε∈R+q (∆j(~y,~ε) − ∆j(~y′,~ε)), i.e. the greatest relative
increment of the deviations of ~y and ~y′ at level j when adding any ~ε ∈ R+q. Notice
that δj(~y, ~y′) ≥ 0 and generally δj(~y, ~y′) 6= δj(~y′, ~y).

Each priority level j comprises a set Ij of one or more attributes i. Figure 4.1 shows
that for each i ∈ Ij four different cases can arise: (1) y′i, yi ≥ ti; (2) y′i ≥ ti and yi < ti;
(3) y′i < ti and yi ≥ ti; (4) y′i, yi < ti. It is straightforward that the greatest relative
increment in cases 1 and 2 is 0, since the slack variable s′i equals 0, while in cases 3 and
4, the greatest relative increment is wi×(s′i−si) = wi×(ti−y′i−(ti−yi)) = wi×(yi−y′i).
Therefore, an operative way of calculating the cross-slack δj(~y, ~y′) of ~y, ~y′ at level j is

δj(~y, ~y′) =
∑
k∈Ij

wk ×max(0, s′k − sk) (4.3)

Definition 4.2 We define the pruning preference ≺P by imposing on the lexico-
graphical goal preference additional conditions concerning cross-slacks:

~y ≺P ~y′ ⇔ ∃j (dj(~y) < dj(~y′) ∧ δj(~y, ~y′) < dj(~y′)− dj(~y)
∧ ∀i < j (di(~y) = di(~y′) ∧ δi(~y, ~y′) = 0)) (4.4)

i.e., ~y ≺P ~y′ when (i) ~y ≺G ~y′; (ii) the cross-slacks of ~y and ~y′ are zero for the first lev-
els (where deviations are the same); and (iii) for the first level where deviations differ,
the cross-slack of ~y and ~y′ is strictly smaller than the difference between deviations.

It can be easily checked that ≺P is irreflexive and transitive. Therefore ≺P is a
partial order relation. We read ~y ≺P ~y′ as «~y allows to prune ~y′».

Table 4.1 introduces LEXGO∗, an exact label-setting multicriteria search algorithm
for lexicographic goal preferences with lower bound estimates. The inputs are a multi-
objective graph G, a start node s, a destination node t, a set of weighted goals grouped
in pre-emptive priority levels, and a monotone distance estimate function. LEXGO∗
outputs the solution subgraph with the set of all goal-optimal solution paths between s
and t. In a similar manner than most of the multicriteria search algorithms presented
in Section 2.5, the following data structures are managed by the algorithm:

• SG: A search graph that records partial solution paths emanating from s and
their costs. Each node n in SG stores the following information:

– Gop(n): Set of cost vectors (labels) ~gn of paths reaching node n which have
not been explored yet.

– Gcl(n): Set of labels reaching node n which have already been explored.

• OPEN: A priority queue of unexplored labels. For each node n in SG and each
cost vector ~gn ∈ Gop(n), there is a label (n, ~gn) in OPEN. In fact, labels are
extended to include also evaluation vectors and their deviation from goals. Each
extended label (n, ~dn, ~fn, ~gn) denotes that node n is reached by a path with cost
~gn, deviation vector ~dn, and evaluation vector ~fn. We define ~fn = ~gn + ~h(n).

52 Chapter 4. New techniques for multiobjective and goal-based search

For the sake of simplicity, we will denote ~d(~fn) as ~dn. Initially, (s, ~ds, ~fs, ~gs) is
the only label in OPEN. Labels in OPEN are sorted lexicographically according
to deviation vectors. In case of ties they are ordered lexicographically according
to evaluation vectors ~f . This ensures that the first element in the queue has a
goal-optimal evaluation among all fn in OPEN.

• COSTS: The set of cost vectors of solution paths found to the destination node.

• Best achievement vector ~dB among all solutions already found.

The structure of LEXGO∗ is similar to previous label-setting multicriteria algo-
rithms with label expansion, but incorporating elements of lexicographic goal prefer-
ences to guarantee that only a subset of the labels explored by a full multicriteria
search will need to be explored.

The algorithm has five main steps. The first one is devoted to data structure
initialization. The second one is devoted to label selection from OPEN. At each it-
eration, the algorithm selects the first label (n, ~dn, ~fn, ~gn) from OPEN, which has a
goal-optimal evaluation vector fn. The label is removed from OPEN, and moved from
Gop(n) to Gcl(n). The third step recovers and returns the solution subgraph whenever
some termination condition is satisfied. The fourth step records the solution whenever
a destination node is selected. COSTS and ~dB are updated accordingly. Finally, the
selected label is expanded in step 5, i.e. all the extensions of the selected label are
considered for inclusion in the search graph and the OPEN set.

The algorithm iterates over steps 2, 3 , 4 and 5 until OPEN is empty, or ~dB ≺L ~dn,
i.e. all potential goal-optimal solutions have been examined. In such case, the algo-
rithm terminates returning a solution subgraph, made up of all goal-optimal solution
paths. COSTS stores the set of distinct goal-optimal costs.

During path expansion two different conditions may prevent an extension from
consideration: filtering and pruning. These are described in detail below.

4.1.1 Pruning conditions

As already explained in Example 1, the optimality principle does not hold for lexico-
graphic goal preferences. Therefore, pruning and filtering using goal preferences would
not yield an admissible label setting algorithm in this case. Nevertheless, LEXGO∗
includes two pruning conditions that improve search efficiency and, at the same time,
guarantee that no goal-optimal solution will be pruned, (see Theorem 5.8 in Section
5.2.2):

• Pareto pruning. As in other Pareto search algorithms like NAMOA∗, we prune
any dominated path to any node. A new label (m, ~dm, ~fm, ~gm) to node m is
pruned whenever

∃~g ∈ Gop(m) ∪Gcl(m) | ~g ≺ ~gm (4.5)

• Deviation-based pruning. We propose an additional specific pruning condition
based in the pruning preference defined by equation 4.4. We prune a new label
(m, ~dm, ~fm, ~gm) to node m whenever

4.1. Algorithm LEXGO∗ 53

Table 4.1. Pseudocode of LEXGO∗ algorithm

1. CREATE:
—An empty search graph SG, and set s as its root.
—Two sets Gcl(s) = ∅ and Gop(s) = {~0}.

—A list of alternatives, OPEN = {(s, ~d(~h(s)),~h(s),~0}.
—An empty set, COSTS.
—~dB = ~∞, optimum achievement vector for solutions found.

2. PATH SELECTION. If OPEN is not empty, then,
—Select a label (n, ~dn, ~fn, ~gn) from OPEN such that
@(n′, ~dn′ , ~fn′ , ~gn′) ∈ OPEN such that ~fn′ ≺G ~fn.
—Delete the selected label from OPEN, and move ~gn from Gop(n) to Gcl(n).

—If ∃~c∗ ∈ COSTS such that ~c∗ ≺ ~fn, then repeat step 2 (lazy filtering)

3. CHECK TERMINATION. If OPEN is empty, or ~dB ≺L ~dn, then backtrack in
SG from t and return the set of solution paths with costs in COSTS.

4. SOLUTION RECORDING. If n is a destination node, then
—Include ~gn in COSTS.
—~dB ←− ~dn

—Go back to step 2.

5. PATH EXPANSION: If n is not a destination node, then for all successor nodes
m of n do:

(a) Calculate the cost of the new path found to m, its evaluation vector and
deviation, ~gm = ~gn + ~c(n,m), ~fm = ~gm + ~h(m), ~dm = ~d(~fm).

(b) If no Pareto or deviation filtering (equations 4.7 and 4.8), then:
• If m /∈ SG:

– Add (m, ~dm, ~fm, ~gm) to OPEN
– Set Gop(m) = {(~gm)}.
– Label with ~gm a pointer from m to n.

• else if ~gm equals some cost vector in Gop(m) ∪Gcl(m) then
– Label with ~gm a pointer from m to n.

• else if no Pareto or deviation pruning (equations 4.5 and 4.6), then:
i. Eliminate vectors ~g′m ∈ Gop(m) such that ~gm ≺ ~g′m ∨ ~fm ≺P
~g′m + ~h(m), and their corresponding labels (m, ~d′m, ~f ′m, ~g′m) from
OPEN.

ii. Add (m, ~dm, ~fm, ~gm) to OPEN, ~gm to Gop(m) and label with ~gm a
pointer from m to n.

(c) Go back to step 2.

54 Chapter 4. New techniques for multiobjective and goal-based search

∃~g ∈ Gop(m) ∪Gcl(m) | ~g + ~h(m) ≺P ~fm (4.6)

Example 2 Let us assume the same preference as in Example 1 and two paths P and
P ′ reaching the same node n from s with the following evaluation vectors:

~f = ~f(P) = (22, 22, 12)⇒ ~d(P) = (2, 1)
~f ′ = ~f(P ′) = (22, 18, 26)⇒ ~d(P ′) = (2, 3)

We observe that ~d(P) ≺L ~d(P ′). We can also easily check that the extra conditions
for pruning, δ1(~f, ~f ′) = 0 and δ2(~f, ~f ′) = 1 < 3− 1 = 2, also hold,

δ1(~f, ~f ′) = 1×max(0, s′1 − s1) = max(0, 0− 0) = 0
δ2(~f, ~f ′) = 0.5×max(0, s′2 − s2) + 0.5×max(0, s′3 − s3)

= 0.5×max(0, 2− 0) + 0.5×max(0, 0− 8)
= 1

Therefore, path P ′ will never lead to a better solution than P and can be safely
pruned.

4.1.2 Filtering conditions

Filtering is the process of discarding labels that will never lead to a solution better
than one already found. Two different conditions allow a label (n, ~dn, ~fn, ~gn) to be
filtered:

• Pareto filtering. This is the standard dominance filtering in Pareto search algo-
rithms:

∃~c∗ ∈ COSTS | ~c∗ ≺ ~fn (4.7)

• Deviation based filtering. We introduce a specific filtering condition for goal-
based preferences when a known solution has better goal satisfaction:

~dB ≺L ~dn (4.8)

When a new solution is found, or the best achievement vector is updated, no
new label satisfying the above conditions will be allowed to enter OPEN, however,
those labels already in OPEN will not be straightforwardly discarded. This is due to
LEXGO∗ applies lazy filtering.

4.1.3 Example

Let us now illustrate the algorithm with a simple example. Let us assume that the
decision maker’s preference involves two levels of goals:

Level 1 cost1(P) ≤ 10, w1 = 0.5
cost2(P) ≤ 10, w2 = 0.5

4.2. A dimensionality reduction technique for MSP 55

Level 2 cost3(P) ≤ 10, w3 = 1

Let us consider the sample graph in Figure 4.2, where s is the start node, and t the
destination node. A lower bound function ~h(n) has been calculated using the method
proposed by Tung and Chew (Tung & Chew, 1992) and is presented in Table 4.2. A
trace of the OPEN list is shown in Table 4.3. At each iteration the selected label is
indicated with an arrow and pruned labels are crossed out.

Figure 4.2. Sample graph with satisfiable goals

At iteration 1, SG has only node s as its root and its corresponding label is se-
lected from OPEN. Labels for the three descendants n1, n2 and n3 of s are added to
OPEN. At iteration 2, two labels in OPEN have the same deviation vector, so the best
lexicographic ~f is used to break the tie. Hence, the label to n1 is selected. Its two
successors n3 and t are added to OPEN. Addition of n3 to Gop(n3) prunes the alterna-
tive already stored for n3, since (10, 9, 7) ≺P (12, 10, 4). Notice that both evaluation
vectors are non-dominated, however, the pruning condition presented in equation 4.6
is applied, since δ1((10, 9, 7), (12, 10, 4)) < d1(12, 10, 4) − d1(10, 9, 7) ⇒ 0 < 1 − 0.
At iteration 3, the label to n2 is selected and expanded, generating new paths to the
successors n3 and t. The extension to n3 is pruned, since the cost vector (5, 5, 8) from
path (s, n2, n3) is dominated by the cost (5, 5, 5) from path (s, n1, n3). The second
successor, t, is also pruned due to the existence of another label in Gop(t) such that
(10, 8, 10) ≺P (12, 8, 8). At iteration 4, the first path to a destination node is selected,
the corresponding cost vector is added to COSTS = {(10, 8, 10)} and ~dB is updated to
(0, 0). This means that there is at least one path which satisfies all the goals provided.

At iteration 5, n3 is selected, and a new path to t is generated and added to OPEN.
At iteration 6, the only label in OPEN is selected. The cost vector (10, 9, 7) represents
another solution since t is the destination node, its cost is not dominated by any vector
in COSTS and it can also satisfy all goals. Finally, in the next iteration OPEN is empty
and the algorithm would search backward from t returning the solution subgraph with
the two paths with costs (10,8,10) and (10,9,7).

4.2 A dimensionality reduction technique for MSP

This section describes a dimensionality reduction technique that speeds up the time
performance of exact multicriteria search algorithms. Dimensionality reduction was

56 Chapter 4. New techniques for multiobjective and goal-based search

Table 4.2. Lower bounds table with distance estimates of an example of LEXGO∗
with satisfiable goals

n ~h(n)
s (10,8,4)
n1 (8,6,5)
n2 (7,5,2)
n3 (5,4,2)
t (0,0,0)

Table 4.3. Execution trace of an example of LEXGO∗ with feasible goals (graph in
Figure 4.2).

It OPEN (n, ~d, ~f,~g)
1 (s, (0, 0), (10, 8, 4), (0, 0, 0)) ←−

2
(n1, (0, 0), (10, 8, 7), (2, 2, 2)) ←−
(n2, (0, 0), (10, 8, 8), (3, 3, 6))
(n3, (1, 0), (12, 10, 4), (7, 6, 2))

3

(n2, (0, 0), (10, 8, 8), (3, 3, 6)) ←−
(t, (0, 0), (10, 8, 10), (10, 8, 10))
(n3, (0, 0), (10, 9, 7), (5, 5, 5))
(n3, (1, 0), (12, 10, 4), (7, 6, 2))

4

(t, (0, 0), (10, 8, 10), (10, 8, 10)) ←−
(n3, (0, 0), (10, 9, 7), (5, 5, 5))
(n3, (0, 0), (10, 9, 10), (5, 5, 8))
(t, (1, 0), (12, 8, 8), (12, 8, 8))

5 (n3, (0, 0), (10, 9, 7), (5, 5, 5)) ←−
6 (t, (0, 0), (10, 9, 7), (10, 9, 7)) ←−
7 EMPTY SET

4.2. A dimensionality reduction technique for MSP 57

first proposed as a space saving technique in the development of vector frontier search
(Mandow & Pérez de la Cruz, 2008a, 2009), a blind multiobjective search algorithm
that achieved impressive reductions in space requirements at the expense of increasing
time requirements. This technique is used in this thesis showing that it can also be
applied under reasonable assumptions to exact multicriteria search (and to NAMOA∗
and LEXGO∗ in particular) to achieve important improvements in time performance.

The key idea in dimensionality reduction is that, under a lexicographic order of
expansion, dominance checks performed during filtering and certain pruning operations
can be greatly simplified. We will start introducing the following useful terminology.
We will say that a vector v is dominated by a set X when there exists v′ ∈ X such
that v′ ≺ v. Dominance checks performed on labels by NAMOA∗(see Table 2.2) can
be stated as follows:

• Filtering. Discard (n,~g, ~f) if f is dominated by COSTS.

• Op-pruning. Discard (n,~g, ~f) if ~g is dominated by Gop(n).

• Cl-pruning. Discard (n,~g, ~f) if ~g is dominated by Gcl(n).

First we reproduce two definitions from Mandow & Pérez de la Cruz (2009):

Definition 4.3 Given a vector ~v = (v1, v2, . . . vn), its truncated vector t(~v) is that
vector v without its first component, i.e. t(~v) = (v2, . . . vn).

Definition 4.4 Given a set of vectors X, its associated set of truncated vectors is
T (X) = N (X)({t(~x)| ~x ∈ X}).

We call our reduction technique “t-discarding” (or truncated discarding), since it is
based on discarding cost vectors by their truncated cost vectors.

Definition 4.5 Let X be a set of vectors. A vector ~v is t-discarded by X when for all
~v′ ∈ X v′1 ≤ v1 and there is ~v′′ ∈ X such that t(~v′′) ∈ T (X) and one of the following
conditions holds:

a) v′′1 < v1 and t(~v′′) � t(~v); or
b) v′′1 = v1 and t(~v′′) ≺ t(~v).

Example 3 Figure 4.3 displays three cost vectors ~x = (6, 2, 4), ~y = (4, 4, 5), and
~z = (2, 3, 6), and shows also their truncated vectors t(~x), t(~y), and t(~z). Notice that
none of ~x, ~y, ~z dominates any of the others; so N (X) = {~x, ~y, ~z}. On the other hand
the truncated vectors are t(~x) = (2, 4), t(~y) = (4, 5) and t(~z) = (3, 6). Since t(~y) and
t(~z) are dominated by t(~x) we have T (X) = {(2, 4)}.

Let us consider now a vector ~w = (7, 2, 4). The standard dominance test would
imply three vector comparisons in the worst case, namely those of ~w against ~x, ~y and
~z. However, t-discarding implies just one vector comparison, that of t(~w) against t(~x).
Since t(~x) � t(~w) and x1 < w1, w will be t-discarded by X.

Let us consider now vector w′ = (6, 2, 4). Let us check if ~w′ is t-discarded by X. We
have t(~x) � t(~w′), but x1 6< w′1, so condition (a) does not hold. Again, t(~x) 6≺ t(~w′),
so condition (b) does not hold either, and in consequence ~w′ is not t-discarded by X.

58 Chapter 4. New techniques for multiobjective and goal-based search

Figure 4.3. A set of vectors X = {~x, ~y, ~z} and its truncated vectors t(~x), t(~y), t(~z).

We propose a modification of filtering and/or cl-pruning checks and prove that the
new version of the checks is equivalent to the original one, given some assumptions, see
the formal proof in Section 5.3.1. An example concerning the impossibility of applying
t-discarding to the op-pruning is shown in Section 4.3, while the relative ratio of op-
pruning, cl-pruning and filtering operations over the total number of discarded labels
in our experiments over random grids and road maps can be seen in Figures 6.9 and
7.4, respectively.

We present below the application of the t-discarding technique to NAMOA∗. More-
over, let us emphasize that not only a priori multicriteria algorithms may benefit from
this technique, we also review the application to LEXGO∗ in Section 4.4.

4.3 Algorithm NAMOA∗dr
Table 4.5 shows a slightly modified pseudocode of NAMOA∗ combined with the di-
mensionality reduction technique, i.e. NAMOA∗dr. The newly added or modified pseu-
docode lines have been emphasized with a right arrow. Although NAMOA∗ uses a
general lower bound function H(n) that returns a set of vector estimates, NAMOA∗dr
employs a lower bound function h(n), limited to a single vector estimate per node and
that satisfies the monotone property (see Definition 2.31). NAMOA∗dr uses the same
data structures employed by NAMOA∗, with the only addition of the sets T(COSTS)
and T (Gcl(n)).

The new cl-pruning and filtering operations in NAMOA∗dr employ the truncated set
of vectors, instead of the original ones, to discard new labels. In addition, the truncated
sets must be updated after each insertion of a new truncated vector. The equations
corresponding to these operations are shown in Table 4.4. The update operation will
be relatively costly depending on the size of the sets of truncated vectors. On the other
hand, the size of the sets of truncated vectors over the size of the original ones defines
the savings that can be achieved. This along with the frequency that op-pruning occurs
shall define the efficiency of NAMOA∗dr. We will analyze empirically the performance
of NAMOA∗dr in Sections 6.3 and 7.2.

4.3. Algorithm NAMOA∗dr 59

Table 4.4. New operations over truncated sets of vectors.

1. Pareto pruning (dr). A label (m, ~fm, ~gm) is pruned whenever

∃~v ∈ T (Gcl(m)) | v ≺ t(~gm) ∨ ∃~g ∈ Gop(m) | ~g ≺ ~gm (4.9)

2. Pareto filtering (dr). A label (m, ~fm, ~gm) is filtered whenever

∃~v ∈ T (COSTS) | ~v ≺ t(~fm) (4.10)

3. Update set of truncated solution cost vectors. After inserting vector ~v in
T(COSTS) do

Remove ~v′ ∈ T (COSTS) | ~v ≺ ~v′ (4.11)

4. Update set of truncated permanent vectors. After inserting vector ~v in T (Gcl(m))
do

Remove ~v′ ∈ T (Gcl(m)) | ~v ≺ ~v′ (4.12)

Two important changes in the adaptation of NAMOA∗ should be noted. First,
the lexicographic order is the mandatory label selection policy in NAMOA∗dr to select
between all non-dominated alternatives in OPEN, whilst NAMOA∗ can work out with
any policy that assures the selected label is non-dominated. Moreover, NAMOA∗ has
been previously reported to perform better under a linear aggregation policy than
under a lexicographic one (Machuca & Mandow, 2011). Second, in step 5(b)iii, the
original pseudocode of NAMOA∗ does not establish which pruning operation should be
performed in the first place, over open or permanent labels, however, we plainly define
the cl-pruning as the first operation to be made, since its efficiency is superior to the
efficiency of the op-pruning. Concerning to op-pruning, let us now present an example
to show why the new technique cannot be applied to the op-pruning operation.

Example 4 Figure 4.4 displays a sample graph with three objectives. Let us assume
for the sake of clarity that ~h(n) = ~0. At iteration 1, s is expanded and its two extended
paths s → n1 and s → n2 stored in OPEN. At iteration 2, label (n1, (1, 1, 1), (1, 1, 1))
is expanded and label (n3, (4, 4, 4), (4, 4, 4)) recorded in Gop(n3). In case t-discarding
were applied to op-pruning, T (Gop(n3)) = {(4, 4)}. At the next iteration label (n2,
(2, 2, 2), (2, 2, 2)) is expanded according to the lexicographic selection order.

The new generated path, s → n2 → n3, with label (n3, (3, 5, 5), (3, 5, 5)) is non-
dominated with respect to (n3, (4, 4, 4), (4, 4, 4)), however, if we apply op-pruning the
truncated vector (5, 5) corresponding to label (n3, (3, 5, 5), (3, 5, 5)) would be t-discarded
by truncated vector (4, 4) corresponding to label (n3, (4, 4, 4), (4, 4, 4)). Logically, the
first component of the new generated label does not necessary have its first compo-
nent equal or greater than all the open labels reaching the node (on the contrary, a
lexicographic order and a consistent lower bound function can guarantee that for the
permanent labels), therefore, t-discarding cannot be applied to op-pruning.

60 Chapter 4. New techniques for multiobjective and goal-based search

Table 4.5. Pseudocode of NAMOA∗dr algorithm.

1. CREATE:
— An empty search graph SG, and place s as its root.
— Two sets Gcl(s) = ∅ and Gop(s) = {(~0)}.

— A list of alternatives, OPEN = {(s,~0,~h(s)}.
— An empty set, COSTS.
→ Two empty sets of truncated vectors T (Gcl(s)) and T(COSTS).

2. PATH SELECTION. If OPEN is not empty, then,
→ Select a label (n,~gn, ~fn) from OPEN such that @(n′, ~gn′ , ~fn′) ∈ OPEN such
that ~fn′ ≺L ~fn.
— Delete the selected label from OPEN, and move ~gn from Gop(n) to Gcl(n).
→ Add t(~gn) to T (Gcl(n)) and update T (Gcl(n)) (equation 4.12).
→ If Pareto filtering (dr) ~fn (equation 4.10), then repeat step 2

3. CHECK TERMINATION. If OPEN is empty, then backtrack in SG from γ and
return the set of solution paths with costs in COSTS.

4. SOLUTION RECORDING. If n is a destination node, then
Include ~gn in COSTS and
→ Add t(~gn) to T(COSTS) and update T(COSTS) (equation 4.11).
— Go back to step 2.

5. PATH EXPANSION: If n is not a destination node, then for all successor nodes
m of n do:

(a) Calculate the cost of the new path found to m and its lower bound,
~gm = ~gn + ~c(n,m) and ~fm = ~g(m) + ~h(m).

(b) → Unless Pareto filtering (dr) ~fm (equation 4.10):
i. If m /∈ SG:
• Set Gop(m) = {(~gm)} and add (m,~gm, ~fm) to OPEN.
• Label with ~gm a pointer from n to m.

ii. else if ~gm equals some cost vector in Gop(m) ∪Gcl(m) then
• Label with ~gm a pointer from n to m.

iii. → else unless Pareto pruning (dr) (eq 4.11):
• Eliminate vectors ~gm′ ∈ Gop(m) such that gm ≺ ~gm′ and its corre-
sponding label (m,~gm′ , ~fm′) from OPEN.

• Add (m,~gm, ~fm) to OPEN, ~gm to Gop(m) and label with ~gm a
pointer from n to m.

(c) Go back to step 2.

4.4. Algorithm LEXGO∗dr 61

Figure 4.4. Sample graph one with 3 objectives.

4.4 Algorithm LEXGO∗dr
Table 4.6 displays the pseudocode of LEXGO∗ adapted to incorporate the t-discarding
procedure, i.e. the version that employs the dimensionality reduction technique, called
LEXGO∗dr. A right arrow emphasizes the added or modified lines. The algorithm
also uses the same monotone lower bound function ~h(n) and data structures employed
by LEXGO∗, with the addition of T(COSTS) and T (Gcl(n)). An example of use of
LEXGO∗ was presented in Section 4.1.3 (the behavior of LEXGO∗dr does not differ
from the behavior of LEXGO∗).

LEXGO∗, like NAMOA∗, can use any label selection policy as long as the selected
labels are always guaranteed to be non-dominated. Nevertheless, LEXGO∗dr must
employ the lexicographic order. This restricts the scenarios where cl-pruning and
filtering operations can be applied to those where all permanent paths reaching a node
have zero deviation for all priority levels, i.e. we define the scenario where t-discarding
technique can be applied to LEXGO∗dr as follows:

∀n ∀ln = (n, ~dn, ~fn, ~gn) ∈ (Gcl(n)) ~dn = ~0 ∧ ∀~c∗ ∈ COSTS ~d(~c∗) = ~0 (4.13)

It is obvious that in this case the set of labels expanded by LEXGO∗ and LEXGO∗dr
will be equivalent and they will be expanded exactly in the same order. Therefore,
we will apply t-discarding to filtering or cl-pruning whenever all the labels in the set
satisfy the condition to have a null deviation from goals. Since labels are expanded
in lexicographic order, as soon as the first label with a positive deviation is selected,
LEXGO∗dr will change its filtering and cl-pruning to the regular one. We present an
example of this phenomenon below. The analyses concerning the time performance of
LEXGO∗dr over the other presented algorithms will be further studied empirically and
formally in Section 5.4.

Example 5 Figure 4.5 displays a sample partial graph with three objectives. Let us
assume that ~h(n) = ~0 and the lexicographic goals are the ones presented in Section
4.1.3. At iteration 1, s is expanded and its two extended paths s→ n1 and s→ n2 stored
in OPEN and labels (n1, (0,0), (3,3,3), (3,3,3)) and (n2, (0,0), (10,4,4), (10,4,4)),
stored in Gop(n1) and Gop(n2), respectively.

At iteration 2, label (n1, (0,0), (3,3,3), (3,3,3)) is expanded and label (n2, (0,0),
(6,6,6), (6,6,6)) recorded in Gop(n3). Thus, At iteration 3, label (n3, (0,0), (6,6,6),
(6,6,6)) is expanded, since the concatenation of its deviation and evaluation vectors (~d ·

62 Chapter 4. New techniques for multiobjective and goal-based search

Table 4.6. Pseudocode of LEXGO∗dr algorithm.

1. CREATE:
—An empty search graph SG, and set s as its root.
—Two empty sets Gcl(s) and COSTS, and Gop(s) = {~0}.

—A list of alternatives, OPEN = {(s, ~d(~h(s)),~h(s),~0}.
→ Two empty sets of truncated vectors T (Gcl(s)) and T(COSTS).
—~dB = ~∞, optimum achievement vector for solutions found.
→ A variable sat = TRUE to record whether goals are satisfied or not.

2. PATH SELECTION. If OPEN is not empty, then,
Select a label (n, ~dn, ~fn, ~gn) from OPEN s.t.
@(n′, ~dn′ , ~fn′ , ~gn′) ∈ OPEN | ~fn′ ≺G ~fn.
—Delete the selected label from OPEN, and move ~gn from Gop(n) to Gcl(n).

→ If ~d 6= ~0 then sat = FALSE.
If sat == TRUE then t(~gn) to T (Gcl(n)) and update T (Gcl(n)) (equation 4.12).

• If Pareto filtering (dr) fn (equation 4.10), then repeat step 2

→ Else if Pareto filtering (equation 4.7) then repeat step 2

3. CHECK TERMINATION. If OPEN is empty, or ~dB ≺L ~dn, then backtrack in
SG from t and return the set of solution paths with costs in COSTS.

4. SOLUTION RECORDING. If n is a destination node, then
→ Include ~gn in COSTS and ~dB ←− ~dn

→ If sat is TRUE add t(~gn) to T(COSTS) and update it (equation 4.11).
—Go back to step 2.

5. PATH EXPANSION: If n is not a destination node, then for all successor nodes
m of n do:

(a) Calculate the cost of the new path found to m, its evaluation vector and
deviation, ~gm = ~gn + ~c(n,m), ~fm = ~gm + ~h(m), ~dm = ~d(~fm).

(b) If no Pareto or deviation filtering (equations 4.7 (or 4.10 when sat ==
TRUE) and 4.8), then:
• If m /∈ SG:

– Add (m, ~dm, ~fm, ~gm) to OPEN
– Set Gop(m) = {(~gm)}.
– Label with ~gm a pointer from m to n.

• else if ~gm equals some cost vector in Gop(m) ∪Gcl(m) then
– Label with ~gm a pointer from m to n.

• else if no Pareto or deviation pruning (equations 4.5 (or 4.10 when sat
== TRUE) and 4.6), then:
i. Eliminate vectors ~g′m ∈ Gop(m) | ~gm ≺ ~g′m ∨ ~fm ≺P ~g′m+~h(m),

and their corresponding labels (m, ~d′m, ~f ′m, ~g′m) from OPEN.
ii. Add (m, ~dm, ~fm, ~gm) to OPEN, ~gm to Gop(m) and label with ~gm a

pointer from m to n.
(c) Go back to step 2.

4.4. Algorithm LEXGO∗dr 63

Figure 4.5. Sample graph two with 3 objectives.

~f) is lexicographically better than the other alternative in OPEN, (n2, (0,0), (10,4,4),
(10,4,4)), and added to Gcl(n3).

At iteration 4, label (n2, (0,0), (10,4,4), (10,4,4)) is expanded and its extension
(n2, (0.5,0), (11,5,5), (11,5,5)) is checked for a cl-pruning operation against Gcl(n3) =
{((0, 0), (6, 6, 6), (6, 6, 6))}. If we do not pay attention to the fact that not all deviation
vectors of labels in n3 are zero, the condition to t-discard this path applies, i.e. (5, 5) ≺
(6, 6), but it is obvious that (11, 5, 5) ⊀ (6, 6, 6).

Chapter 5

Formal Analysis of Multicriteria
Algorithms

Make everything as simple as possible, but not
simpler.

Albert Einstein (1879-1955)

In this chapter we aim to give a formal analysis of the multiobjective algorithms
introduced in Chapter 4. We look for the best algorithmic alternative when goal-based
preferences are given by an user to characterize the optimal solution subset. Two
possibilities arise here. The first, obvious one, is to calculate the whole Pareto set using
a multiobjective search algorithm like NAMOA∗ and extract a posteriori the subset
of Pareto solutions which satisfy the goals. A second alternative is to concentrate the
search effort only in the goal-optimal solutions, i.e. discard from the first stages of the
search those paths which will not lead to satisfy the goals or minimize the deviation
from them. This thesis has introduced one such algorithm, called LEXGO∗.

Both algorithms, NAMOA∗ and LEXGO∗ may share the same label selection pro-
cedure and filtering/pruning processes, though LEXGO∗ introduces extra processes
of pruning and filtering considering the deviation from goals, which will be formally
studied further in this section.

Another algorithmic contribution introduced in Chapter 4 is the introduction of
a new method, t-discarding, to speed up dominance checks. This method can be
applied to the pruning and filtering checks keeping the admissibility of the algorithm.
This technique has been applied to multiobjective and goal-based search, yielding two
new algorithms: NAMOA∗dr and LEXGO∗dr. Their properties are also analyzed in this
section.

We organize the relevant formal properties for a multicriteria search algorithm as
follows:

Admissibility All algorithms introduced in this thesis are theoretically proven to be
admissible. The formal proofs on the admissibility of NAMOA∗ were presented in
(Mandow & Pérez de la Cruz, 2005; Mandow & Pérez de la Cruz, 2010). LEXGO∗

65

66 Chapter 5. Formal Analysis of Multicriteria Algorithms

properties of admissibility will be presented further in Section 5.2. Finally, the t-
discarding technique which is employed in NAMOA∗dr and LEXGO∗dr is analyzed
in Section 5.3.

Efficiency A standard in formal analyses to measure the efficiency of multicriteria
search algorithms is the number of explored labels. A recent study showed that
NAMOA∗ is optimal according to this measure when used with consistent lower
bounds (Mandow & Pérez de la Cruz, 2010). NAMOA∗ has been shown to expand
an equal or smaller number of labels when using more informed consistent lower
bound functions (Mandow & Pérez de la Cruz, 2010). LEXGO∗, in particular,
always expands a subset of the labels expanded by NAMOA∗, see Section 5.2.1
for further details.
The number of explored labels can be a good measure of the space requirements
of the algorithms. However, in multicriteria search the time requirements are
influenced by other factors as well. The algorithms that use t-discarding expand
the same set of labels as the traditional ones. However, the experimental evalu-
ation reveals that the time performance is greatly improved. Therefore, we also
analyze another important measures for the time performance of multicriteria
search, the number of dominance comparisons and the cardinality of the non-
dominated sets used to check dominance. These are the key of the impressive
performance of the t-discarding technique.

This chapter is organized as follows. Section 5.1 summarizes formal properties
of NAMOA∗. The same aspects are comparatively analyzed for LEXGO∗ in Section
5.2. Finally, the t-discarding technique is formally proved to be time efficient and
characterized employing NAMOA∗dr and LEXGO∗dr as examples of use. Finally, a brief
discussion is presented.

5.1 Formal characterization of NAMOA∗

The formal properties of NAMOA∗ have been recently introduced by Mandow & Pérez
de la Cruz (2010) and further studied by Machuca (2012). In this section, we briefly
review previous theoretical properties of NAMOA∗, since it is the basis on which
LEXGO∗ has been devised. This will allow us to analyze only the new features brought
by LEXGO∗, the t-discarding technique and their implications on the admissibility and
efficiency.

5.1.1 Admissibility

The results that follows are taken from Mandow & Pérez de la Cruz (2010) and
Machuca (2012).

Property 5.1 (Admissibility) When the graph G = (N,A) is locally finite and
H(n) is a lower bound (admissible) the search is considered admissible, i.e. it is
guaranteed to find all non-dominated optimal solutions, or does not terminate if
there are infinite solutions. NAMOA∗ is admissible even on infinite graphs with some
additional assumptions:

5.1. Formal characterization of NAMOA∗ 67

a) ∀n ∈ N ∧ ∀~h = (h1, . . . , hq) ∈ H(n), ∀k ∈ [1, q], hk(n) ≥ 0

b) ∀(n, n′) ∈ A,∧∀~c(n, n′) ∈ ~c, ∀k ∈ [1, q], ck(n, n′) ≥ ε > 0

Several important properties of NAMOA∗ follow. These are analogous to those of
the single objective A∗ algorithm.

Theorem 5.1 (Mandow & Pérez de la Cruz, 2010, Theorem 4.2) For each non-
dominated solution path P ∗ = (s, n1, . . . , ni, ni+1 . . . γ) with cost ~g(P ∗) = ~c ∗, there
is always before its discovery a subpath P ∗i = (s, n1, . . . , ni) of P ∗ such that:

a) P ∗i is recorded in SG

b) ~g(P ∗i) ∈ Gop(ni)

c) ∃~f ∈ F (P ∗i) | ~f � ~c ∗

That is to say the algorithm never discards Pareto optimal solutions.

Theorem 5.2 (Mandow & Pérez de la Cruz, 2010, Theorem 4.3) If there is at least
a solution path P ∗, the algorithm terminates even on infinite graphs.

Corolary 5.1 (Mandow & Pérez de la Cruz, 2010, Corollary 4.4) Whenever there is
at least a solution path P ∗, the set of non-dominated solution costs C∗ is finite.

Lemma 5.1 (Mandow & Pérez de la Cruz, 2010, Lemma 4.5) Each path P ∈ Psn
selected from OPEN for expansion satisfies upon selection that,

∃~h ∈ H(n) | @~c ∗ ∈ C∗, ~c ∗ ≺ ~g(P) + ~h (5.1)

Theorem 5.3 (Mandow & Pérez de la Cruz, 2010, Theorem 4.6) A dominated solu-
tion can never be selected for expansion.

Corolary 5.2 (Mandow & Pérez de la Cruz, 2010, Corollary 4.7) The set of found
solution vectors, COSTS, is at any time a subset of the set of all non-dominated
solution cost vectors, i.e. COSTS ⊆ C∗.

Theorem 5.4 (Mandow & Pérez de la Cruz, 2010, Theorem 4.9) Since NAMOA∗
satisfies all the above conditions, NAMOA∗ is admissible.

Admissibility (i.e. the algorithm is exact and returns the whole set of solutions to
the problem) is an important property. However, it is also important to prove that the
efficiency of the algorithm improves with more precise lower bounds.

5.1.2 Efficiency of lower bounds and optimality

Pathological behavior has been observed in another multiobjective search algorithm
called MOA∗ (Stewart & White, 1991). Although MOA∗ is admissible, it has been
proven to decrease performance in certain cases with more informed lower bounds
(Pérez de la Cruz et al., 2013). Fortunately, NAMOA∗ has been proven to enjoy
efficiency properties analogous to those of A∗.

68 Chapter 5. Formal Analysis of Multicriteria Algorithms

Definition 5.1 (Mandow & Pérez de la Cruz, 2010, Definition 5.1) A path P = (s =
n0, n1, n2, . . . , nk) is said to be C-bounded with respect to H(n) (or C(H)-bounded) if
for all subpaths Pi = (n0, n1, . . . , ni) of P it holds that:

∃~h ∈ H(ni) | @~c ∈ C, ~c ≺ ~g(Pi) + ~h (5.2)

By definition, a C∗-bounded path will never be filtered (see Lemma 5.1 and Theo-
rem 5.3). Therefore, such paths will be either selected for expansion or pruned.

Theorem 5.5 (Mandow & Pérez de la Cruz, 2010, Theorem 5.9) If H(n) is consis-
tent, then a necessary and sufficient condition for NAMOA∗ to select some path
P = (s, . . . , n) for expansion is that:

a) P be a non-dominated path from s to n

b) P be C∗-bounded

Theorem 5.6 (Mandow & Pérez de la Cruz, 2010, Theorem 5.10) Let H1(n) and
H2(n) be two admissible lower bounds for the same problem. Let H2(n) be addition-
ally monotone. Let NAMOA∗1 and NAMOA∗2 be two versions of NAMOA∗ that
differ only in the use of different lower bound functions H1(n) and H2(n) respectively.
If H2(n) is at least as informed as H1(n), then all paths selected for expansion by
NAMOA∗2 will also be selected for expansion by NAMOA∗1.

Property 5.2 (Efficiency) When ∀n ∈ N, H(n) = {~0}, NAMOA∗ is analogous to
the blind algorithm of Martins (1984a) or Raith (2009). When H(n) is consistent
or monotone, only the strictly necessary C∗-bounded paths will be expanded, and the
pruning of those C∗-bounded paths not belonging to non-dominated solutions will be
maximal, analogously to the single-objective case. If the costs of some optimal solution
is denoted by vectors ~c ∗, NAMOA∗ will always expand for sure all labels with some
~f(n) ≺ ~c ∗. Given consistent lower bound functions, more actual suboptimal alter-
natives can be pushed out of the Pareto frontier with more informed lower bounds,
reducing search effort.

Property 5.3 (Optimality) NAMOA∗ has been proved to be optimal in the number
of path expansions among the class of exact best-first algorithms when using consistent
distance estimates (Mandow & Pérez de la Cruz, 2010), i.e. no algorithm in this class
provided only with the same information could avoid exploring a single label explored
by NAMOA∗ without compromising admissibility.

5.2 Formal characterization of LEXGO∗

This section proves some relevant properties of LEXGO∗. First, we will show that
LEXGO∗ is at least as efficient as NAMOA∗ in terms of label expansions, i.e. it
always expands a subset of the labels expanded by NAMOA∗. Then, we will show that
it is admissible, i.e. it always returns the set of all goal-optimal solutions. Again, these
properties are analogous to those of the single objective A∗ search algorithm.

5.2. Formal characterization of LEXGO∗ 69

The proofs presented in this section rely on a set of reasonable assumptions, ana-
logous to those presented in Section 5.1.1 to prove the admissibility of NAMOA∗ and
other multiobjective label-setting algorithms:

Assumption 5.1 The graph G = (N,A) to be searched is locally finite, i.e. only a
finite number of arcs emanate from each node.

Assumption 5.2 The lower bound function ~h(n) is consistent.

5.2.1 Efficiency

Let us consider first the question of efficiency. LEXGO∗ is essentially a version of
NAMOA∗ with additional pruning and filtering rules. However, simply adding addi-
tional discarding rules to NAMOA∗ does not necessarily guarantee that the resulting
algorithm will explore a subset of the labels expanded by NAMOA∗. The example in
Figure 5.1 illustrates the case for an arbitrary pruning rule. Let us assume ∀n ~h(n) = ~0.
There are two non-dominated paths from s to n1 with costs (8,6) and (9,1), respec-
tively. Let us assume that by a certain arbitrary rule the path with cost (8,6) prunes
the one with cost (9,1). There are two paths from s to n2 through n1 with costs (9, 14)
and (10, 9). The latter dominates the path from s to n2 with cost (10,10). However,
due to the pruning rule, it will never be generated, and the dominated path with cost
(10,10) will need to be expanded. In other words, the inclusion of an arbitrary pruning
rule may lead to the exploration of labels never considered by NAMOA∗.

Figure 5.1. A pruning rule prunes a path to n1 with cost (9,1) leading to the
expansion of the dominated label (10,10) in n2.

So we must formally show that the additional rules of LEXGO∗ guarantee that
only a subset of the labels expanded by NAMOA∗ are actually considered. To do
so, Lemma 5.2 analyzes the relation between pruning, goal, and Pareto preferences.
Then, Theorem 5.7 proves the desired efficiency of LEXGO∗, and finally, Theorem 5.8
establishes its admissibility.

Lemma 5.2 Assume ~ε � ~0. Then
a) If ~y ≺P ~y′ then ~y + ~ε ≺G ~y′ + ~ε.
b) If ~y ≺P ~y′ then ~y + ~ε ≺P ~y′ + ~ε.
c) If ~y ≺P ~y′ and ~y′ ≺ ~y′′, then ~y ≺P ~y′′.

70 Chapter 5. Formal Analysis of Multicriteria Algorithms

Proof. Notice that, by definition,

δi(~y, ~y′) = 0 ⇒ ∀k ∈ Ii sk ≥ s′k (5.3)

Additionally, assume di(~y) = di(~y′). Since ~y has greater or equal slack than ~y′ for
all goals in level i, then it is straightforward that,

∀~ε � ~0, di(~y′ + ~ε) ≥ di(~y + ~ε) (5.4)

Notice again that, by definition,

δj(~y, ~y′) < dj(~y′)− dj(~y) ⇒ ∀~ε � ~0, dj(~y′ + ~ε) > dj(~y + ~ε) (5.5)

Property (a) follows then from the definition of goal preferences. Assume ~y ≺P ~y′,
and that ∃j dj(~y) < dj(~y′) ∧ (∀i < j di(~y) = di(~y′)). Then, from equations 5.4 and
5.5, ~y′+~ε will not have better deviation over ~y+~ε for any of the first j levels, and will
have strictly worse deviation for at least one of them, i.e. ~y + ~ε ≺G ~y′ + ~ε.

For part (b) we still have to prove the additional constraints imposed on cross-
slacks. Let us denote by s′′k and s′′′k the slack for goal k of vectors ~y + ~ε and ~y′ + ~ε
respectively. For all levels i < j we have,

δi(~y, ~y′) = 0 ⇒ ∀k ∈ Ii sk ≥ s′k ⇒ ∀k ∈ Ii s′′k ≥ s′′′k ⇒ δi(~y + ~ε, ~y′ + ~ε) = 0

and also di(~y′ + ~ε) ≥ di(~y + ~ε).
If for some m < j dm(~y′+~ε) > dm(~y+~ε), then δm(~y+~ε, ~y′+~ε) = 0 < dm(~y′+~ε)−

dm(~y+~ε), and the property holds. Otherwise, we need to prove that the condition on
cross-slacks still holds for level j. Let us define δi(~y, ~y′) = wi × max(0, s′i − si). The
following is an alternate definition of formula 4.3,

δj(~y, ~y′) =
∑
m∈Ij

δm(~y, ~y′)

Analogously, let us define di(~y) = wi ×max(0, yi − ti). Then,

dj(~y) =
∑
m∈Ij

dm(~y)

Now, we analyze for each goal m ∈ Ij its influence in deviations and cross-slack.
We have three cases to consider:

• When sm = s′m, deviations increase in the same amount (i.e. their relative
difference does not change) and δm(~y + ~ε, ~y′ + ~ε) = δm(~y, ~y′) = 0.

• If sm > s′m, then dm(~y′)−dm(~y) ≤ dm(~y′+~ε)−dm(~y+~ε), i.e. the relative difference
between deviations can never decrease. Since δm(~y, ~y′) = δm(~y + ~ε, ~y′ + ~ε) , the
condition will hold for the goal.

• If sm < s′m, then we have to consider three distinct cases:

– When 0 ≤ εm ≤ sm < s′m, both deviations are zero, their relative difference
remains zero and δm(~y, ~y′) does not change.

5.2. Formal characterization of LEXGO∗ 71

– When sm < εm ≤ s′m, we have [dm(~y′)− dm(~y)]− [dm(~y′+~ε)− dm(~y+~ε)] =
wm × (εm − sm). However, we also have δm(~y, ~y′) − δm(~y + ~ε, ~y′ + ~ε) =
wm × (εm − sm), i.e. it decreases in the same amount as before, and the
inequality still holds for goal m.

– When sm < s′m < εm, we have [dm(~y′)− dm(~y)]− [dm(~y′+ ε)− dm(~y+ ε)] =
wm × (s′m − sm). However, δm(~y, ~y′)− δm(~y + ~ε, ~y′ + ~ε) = wm × (s′m − sm),
i.e. it also decreases in the same amount as before, and the inequality still
holds for goal m.

Part (c) is quite straightforward. Notice that,

~y′ ≺ ~y′′ ⇒ ∀l∀k ∈ Il s′k ≥ s′′k (5.6)

If ~y ≺P ~y′, then we have that for all levels i < j, δi(~y, ~y′) = 0, δi(~y, ~y′′) = 0, and
di(~y′′) ≥ di(~y′) = di(~y).

Let us examine level j. From equation 5.6 it follows that δj(~y, ~y′) ≥ δj(~y, ~y′′) and
from dominance dj(~y′′) ≥ dj(~y′). In consequence,

dj(~y′′)− dj(~y) ≥ dj(~y′)− dj(~y) > δj(~y, ~y′) ≥ δj(~y, ~y′′) (5.7)

and therefore ~y ≺P ~y′′.

Theorem 5.7 When the lower bound function is monotone LEXGO∗ explores a subset
of the labels explored by NAMOA∗, i.e. if NAMOA∗ does not explore a label (n,~g),
LEXGO∗ will not explore it either.

Proof. A label (n,~g, ~f) is not explored by NAMOA∗ if (a) ∃~c∗ ∈ C∗ such that ~c∗ ≺ ~f ,
or (b) ~g is dominated in n.

It is straightforward that LEXGO∗ never explores a label discarded by NAMOA∗
by condition (a). Since C∗G ⊆ C∗, for all c∗ ∈ C∗, either c∗ ∈ C∗G, or ~dB = ~d∗ ≺L ~d(~c∗).
In the latter case, if for some ~f , ~c∗ ≺ ~f , then ~d∗ ≺L ~d(~c∗) �L ~d(~f). Therefore, LEXGO∗
filters the labels with equations 4.7 and 4.8.

Let us consider now labels discarded by NAMOA∗ by condition (b). Let us assume
a non-dominated path P = (s, n, . . . , ni, . . . , nk) to nk represented by label (nk, ~g, ~f),
and its two subpaths P1 = (s, n, . . . , ni) and P2 = (ni+1, . . . , nk). Let us also assume
a dominated path P ′ = (s, . . . , nk) to nk in OPEN with label (nk, ~g′, ~f ′). Finally, lets
assume that P1 is the largest subpath of P to enter OPEN, with label (ni, ~g1, ~f1). This
situation is depicted in Figure 5.2.

Let us assume label (ni, ~g1, ~f1) is in OPEN. Since the lower bound function is
monotone, as defined in the assumptions, ~g1 +~hi � ~g+~hk ≺ ~g′+~hk and P ′ can never
be selected by LEXGO∗. If eventually, ni = nk P

′ is dominated and pruned by P .
On the other hand, if (ni, ~g1, ~f1) is never selected and not in OPEN, then there

must be some other path P3 that pruned P1, i.e. ~f(P3) ≺P ~f(P1). By Lemma 5.2(b),
we have ~f(P3P2) ≺P ~f(P1P2). This fact, together with the fact that ~f(P1P2) ≺ ~f(P ′),
leads us to conclude by virtue of Lemma 5.2(c), that ~f(P3P2) ≺P ~f(P ′), i.e. if a path
prunes some other non-dominated path, then the extensions of the former will also
prune those that would be pruned by the latter. Therefore, the property holds.�

72 Chapter 5. Formal Analysis of Multicriteria Algorithms

Figure 5.2. Scenario where a dominated path P ′ is pruned either by P1P2 or P3P2.

5.2.2 Admissibility

Once the efficiency of LEXGO∗ has been established, we turn our attention to admis-
sibility, i.e. to prove that the subset of labels explored by LEXGO∗ still includes all
goal-optimal solutions. A scalar algorithm is said to be admissible if it is guaranteed
to return an optimal solution whenever a solution exists. We extend the definition as
follows: a multiobjective search algorithm with goal-based preferences is admissible if
it terminates with the set of all goal-optimal solutions to the problem.

Theorem 5.8 Algorithm LEXGO∗ is admissible.

Proof. LEXGO∗ is a label-setting algorithm that generates partial paths from
the start node to the destination. Each partial path is either expanded, filtered, or
pruned. A goal-optimal solution could be pruned by pruning conditions 4.5 or 4.6 as
described in Section 4.1.1, or could be filtered by filtering conditions 4.7 or 4.8 from
Section 4.1.2. By definition, a goal-optimal solution has a non-dominated cost. Since
the optimality principle holds for dominated costs, neither pruning condition 4.5 nor
filtering condition 4.7 will ever discard a goal-optimal solution.

The proof for condition 4.6 follows. Let us assume two paths P 1 = (s, . . . , n)
and P 2 = (s, . . . , n), leading to the same node n, and an additional Pareto-optimal
path P 3 = (n, . . . , t) leading from n to a destination node. Let us call ~f1 = ~f(P 1) =
~g(P 1)+~h(n), ~f2 = ~f(P 2) = ~g(P 2)+~h(n). Since the lower bound is optimistic, we know
that ~h(n) � ~g(P 3). Let us call ~e = ~g(P 3)−~h(n) � ~0. Extending P 1 and P 2 with P 3, the
costs of both solutions are respectively ~f13 = ~g(P 1)+~g(P 3) = ~g(P 1)+~h(n)+~e = ~f1 +~e
and ~f23 = ~g(P 2) + ~g(P 3) = ~g(P 2) + ~h(n) + ~e = ~f2 + ~e.

Let us assume that P 1 prunes P 2 in virtue of condition 4.6. Then ~f1 ≺P ~f2 and,
by Lemma 5.2(a), ~f13 = ~f1 +~e ≺G ~f2 +~e = ~f23, so by this expansion P 2 does not lead
to a better solution than P 1. Since no assumptions were made about P 3, the result
holds for every expansion of n, therefore P 2 does not lead to a better solution than P 1

and the pruning is correct.
Finally, let us consider filtering condition 4.8, due to the lexicographic selection

policy, the deviation of the first solution found ~dB = ~dt is trivially equal or lexico-
graphically better than the deviation of any other label in OPEN. No goal-optimal
solution cost ~c∗ ∈ C∗G with deviation ~d(~c∗) can have worse lexicographical deviation
than ~dB Therefore, filtering condition 4.8 never filters goal-optimal solutions.

5.3. Formal characterization of NAMOA∗dr 73

Since LEXGO∗ never prunes nor filters goal-optimal solutions, the only remaining
possibility is that they are all selected and found before termination, i.e. LEXGO∗ is
admissible.�

5.3 Formal characterization of NAMOA∗dr
This section proves some relevant properties of NAMOA∗dr under reasonable assump-
tions. The t-discarding method, see Section 4.2, introduces a new technique to check
dominance of new alternatives against the solutions already found (filtering) and
against partial paths to each node already explored (cl-pruning). We will show that
NAMOA∗ is not affected when the t-discarding technique is applied instead of the
standard dominance tests.

5.3.1 Admissibility

In order to demonstrate the admissibility of NAMOA∗dr, we will make the following
assumptions:

Assumption 5.3 The lower bound function returns a single vector estimate for each
node, i.e. H(n) = {~h(n)}, and satisfies the monotone property.

Assumption 5.3 is satisfied by the precalculated lower bound proposed by Tung and
Chew (Tung & Chew, 1992), which corresponds to the ideal point. This is in fact the
most informed possible single-valued multiobjective lower bound, and has been shown
to be very effective in practice (Machuca & Mandow, 2012).

Assumption 5.4 The lexicographic order is applied to select non-dominated labels
from OPEN, that is, if (n,~g, ~f) is selected, then for all (n′, ~g′, ~f ′) ∈ OPEN, ~f �L ~f ′.

Lexicographic order is a common choice in multiobjective search algorithms, since
the lexicographic optimum is also non-dominated. Notice that dominance always im-
plies lexicographical preference, that is, if ~x ≺ ~y then ~x ≺L ~y, and if ~x � ~y then ~x �L ~y
(obviously the opposite is not true).

We will prove (Theorem 5.9) that under Assumptions 5.3 and 5.4 NAMOA∗dr is
not affected when filtering and cl-pruning use t-discarding checks instead of standard
dominance checks. We will prove first two auxiliary results (Lemmas 5.3 and 5.4).

Let ~v be a vector and X a set. We will write X �L ~v when ~v is an upper lexico-
graphic bound of X, that is, when for every ~v′ ∈ X, ~v′ �L ~v.

Lemma 5.3 Given Assumptions 5.3 and 5.4, when a label l = (n,~g, ~f) is selected from
OPEN, then (i) Gcl(n) �L ~g; and (ii) COSTS �L ~f .

Proof. Let us define OPENt as the set of open labels at iteration t and assume
(m, ~g′, ~f ′) was selected at iteration t of the algorithm. Then, at that moment, for all
(n′′, ~g′′, ~f ′′) ∈ OPENt we have (by Assumption 5.4) ~f ′ �L ~f ′′. Let us consider now
the label (n,~g, ~f) selected from OPENt+1 at the next iteration t+ 1. If it was already
(n,~g, ~f) ∈ OPENt, then obviously ~f ′ �L ~f . If (n,~g, ~f) is a new label, then n is a child

74 Chapter 5. Formal Analysis of Multicriteria Algorithms

of m and ~g = ~g′ + ~c(m,n). By Assumption 5.3, ~h(m) � ~c(m,n) + ~h(n) and hence
~f ′ = ~g′ + ~h(m) � ~g′ + ~c(m,n) + ~h(n) = ~g + ~h(n) = ~f and hence ~f ′ �L ~f . We have
proved that if (m, ~g′, ~f ′) is selected for expansion at iteration t and (n,~g, ~f) at iteration
t+ 1 then ~f ′ �L ~f ; and it trivially follows by induction that if (m, ~g′, ~f ′) is selected for
expansion before (n,~g, ~f) then ~f ′ �L ~f .

Now we can prove part (i) of the lemma. Let us consider the set Gcl(n). If
~g′ ∈ Gcl(n), then there is a closed label (n, ~g′, ~f ′) at n that was selected before (n,~g, ~f),
so ~f ′ �L ~f . Since ~f = ~g + ~h(n) and ~f ′ = ~g′ + ~h(n), then ~g′ �L ~g, so Gcl(n) �L ~g as
stated in part (i).

Let us consider now the set COSTS. If ~f ′ ∈ COSTS, it belongs to a label (γ, ~f ′, ~f ′)
(where γ is the destination node) that has been already selected, so ~f ′ �L ~f , as stated
in part (ii). �

Lemma 5.4 Let ~v be a vector and X a set of vectors such that X �L ~v. Then ~v is
dominated by X iff ~v is t-discarded by X.

Proof. The “if” direction is trivial: if ~v is t-discarded by X, both condition (a) and
condition (b) in Definition 4.5 imply that there exists ~v′ ∈ X such that ~v′ ≺ v, hence
~v is dominated by X.

The “only if” direction is also immediate: Suppose ~v is dominated by X. Then
there exists at least a ~v′ ∈ X such that ~v′ ≺ v. Suppose first that t(~v′) ∈ T (X) and
v′1 < v1. Then it must be t(v′1) � t(v1). So ~v′ satisfies conditions imposed in Definition
4.5 (option a) to t-discard ~v. On the other hand, if v′1 = v1 it must be t(~v′) ≺ t(~v) and
v′ also satisfies conditions imposed in Definition 4.5 (option b). Let us suppose now
t(~v′) /∈ T (X). Then t(~v′) is dominated by a certain t(~v′′), that is, t(~v′′) ≺ t(~v′) � t(v).
And, since ~v′′ ∈ X �L ~v, it must be v′′1 ≤ v1. But if v′′1 < v1, ~v′′ allows to t-discard ~v
(option a); and if v′′1 = v1, ~v′′ allows to t-discard ~v (option b). So, in any case, if ~v is
dominated by X then ~v is t-discarded by X. �

Theorem 5.9 Under Assumptions 5.3 and 5.4, the workings of NAMOA∗ are unaf-
fected if filtering and/or cl-pruning are defined as follows:

• Filtering. Discard (n,~g, ~f) if ~f is t-discarded by COSTS.

• Cl-pruning. Discard (n,~g, ~f) if ~g is t-discarded by Gcl(n).

Proof. First note that by Lemma 5.3 when a label l = (n,~g, ~f) is selected from
OPEN, then Gcl(n) �L ~g and COSTS �L ~f . Lemma 5.4 guarantees in that case
that dominance and t-discarding by a set X are equivalent. So, a new label will be
cl-pruned and/or filtered exactly in the same cases. �

5.3.2 Efficiency

The real advantage of t-discarding is time performance. A recent work (Mandow &
Pérez de la Cruz, 2009) shows that when arc costs are integer in the interval [ci, ca],
ci, ca > 0, then the worst-case number of Pareto optimal costs reaching a node at depth
d with q objectives is O((dr)q−1), where r = ca−ci+1. This is, therefore, a worst-case

5.4. Formal characterization of LEXGO∗dr 75

bound on the size of the COSTS and Gcl(n) sets, and in the number of dominance
checks against those sets.

The use of t-discarding implies checking only against the T (COSTS) and T (Gcl(n))
sets. The size of vectors in these sets is q′ = q − 1, hence the worst-case size of the
T (COSTS) and T (Gcl(n)) sets is only O((dr)q−2).

Let us consider the class of problems with three objectives (q = 3). Then, the worst-
case size of the Gcl(n) and COSTS sets grows quadratically with depth and range of
costs (and so does the worst-case number of dominance comparisons). However, with
t-dominance this growth is limited to a linear case. The next chapter presents a set of
experiments to evaluate the effectiveness of this method in practice.

5.4 Formal characterization of LEXGO∗dr
This section analyzes the applicability of the t-discarding technique to LEXGO∗. T-
discarding requires evaluation vectors ~f to be selected in lexicographical order by the
algorithm. This is easy to achieve for multiobjective search with a lexicographical pol-
icy, but cannot be straightforwardly applied in goal-based search, due to goal-based
search with a lexicographical selection order selects the lexicographical optimal devi-
ation vector, not the lexicographical optimal non-dominated f-vector (like in multiob-
jective search). An scenario where t-discarding can be applied to LEXGO∗ preserving
its admissibility follows.

5.4.1 Admissibility

Assumption 5.5 The lexicographic order is applied to select goal-optimal labels from
OPEN, that is, if (n,~g, ~f, ~d) is selected, then for all (n′, ~g′, ~f ′, ~d′) ∈ OPEN, ~d �L ~d′

and if ~d = ~d′ then ~f �L ~f ′.

By definition of a goal-optimal solution, the lexicographically optimal deviation
vector according to the concatenation of deviation and estimate vectors, ~d · ~f , is a goal-
optimal alternative, i.e. it has a non-dominated deviation and it is a non-dominated
vector.

Lemma 5.5 Given Assumptions 5.3 and 5.5, when a label l = (n,~g, ~f, ~d) is selected
from OPEN and ~d = ~0 then for all (~g′, ~f ′, ~d′) ∈ OPEN, ~d · ~f �L ~d′ · ~f ′ and (i)
Gcl(n) �L ~g; and (ii) COSTS �L ~f .

On one hand, when ~d = ~0, obviously, for all (n′, ~g′, ~f ′, ~d′) ∈ Gcl(n), ~d′ = ~0 and in a
similar way to Lemma 5.3, we can remove d-vectors and achieve the same result, i.e.
Gcl(n) �L ~g.

On the other hand, if ~d = ~0 and l is selected from OPEN, if there exists any ~c∗ ∈
COSTS, by definition, d(~c∗) = ~0. Therefore, in an equivalent way to Lemma 5.3, we
can remove d-vectors and achieve the same result, i.e. COSTS �L ~f .

Theorem 5.10 Under Assumptions 5.3 and 5.5, the workings of LEXGO∗dr are unaf-
fected if filtering and/or cl-pruning are defined as follows:

• Filtering. Discard (n,~g, ~f, ~d) if ~f is t-discarded by COSTS.

76 Chapter 5. Formal Analysis of Multicriteria Algorithms

• Cl-pruning. Discard (n,~g, ~f, ~d) if ~g is t-discarded by Gcl(n).

Proof. The same argument used in Theorem 5.9 applies to prove that dominance
and t-discarding by a set X are equivalent in LEXGO∗dr when a label l = (n,~g, ~f, ~d)
with ~d = ~0 is selected from OPEN. Thus, this new label will be cl-pruned and/or
filtered exactly in the same cases for LEXGO∗dr as it was in LEXGO∗.

5.5 Discussion

This section has reviewed the formal properties of NAMOA∗, and presented some
analogous properties for the three algorithms introduced in this thesis. More precisely,
the admissibility (i.e. the exactness of the algorithms) is formally proved for all of
them and their relative efficiency is also examined.

NAMOA∗ is known to be optimal in the number of path expansions among the
class of admissible best-first algorithms when using consistent lower bounds. LEXGO∗
has also been proven to be admissible.

The worst case scenario for LEXGO∗ is when the whole Pareto set of solutions
satisfies the goals. The important theoretical results showed in this chapter indicate
that (a) provided with the same lower bounds, LEXGO∗ always expands a subset of
the labels expanded by NAMOA∗; (b) the superiority in runtime of NAMOA∗dr over
NAMOA∗; and (c) the superiority in runtime of LEXGO∗dr over LEXGO∗. These
important theoretical results do not completely settle the question of which algorithm
is better in practice. We address a comprehensive empirical analysis of this question
in Chapters 6 and 7.

Chapter 6

Empirical Analysis on Grid
Problems

It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.

Richard P. Feynman (1918-1988)

One of the main goals of this thesis is to develop efficient procedures for the goal-
based search problem. In Chapter 4 we introduced LEXGO∗, a new search algorithm
for lexicographic goal problems, as well as an improved procedure for efficient domi-
nance checks in multicriteria search algorithms. This procedure can be applied to
LEXGO∗ and NAMOA∗, yielding algorithms LEXGO∗dr and NAMOA∗dr. Formal prop-
erties of these algorithms were presented in Chapter 5. LEXGO∗ and LEXGO∗dr always
return the set of all goal-optimal solutions to a lexicographic goal search problem, while
NAMOA∗dr returns the set of all Pareto-optimal solutions to a Multiobjective Search
Problem.

In this chapter we evaluate experimentally the performance of two different strate-
gies for lexicographic goal problems: (a) use a multiobjective search algorithm (like
NAMOA∗ or NAMOA∗dr), and then select the goal-optimal solutions among those in
the Pareto set, (b) use a specific goal-based algorithm (like LEXGO∗ or LEXGO∗dr).

First, we shall describe the experimental setup in Section 6.1, which is based on
the use of randomly generated grid problems with three to five criteria. We analyze
time and space performance of the algorithms for problems of increasing depth. We
also evaluate performance for different kinds of goal preferences. More precisely, we set
up goals that range from unsatisfiability to satisfability by increasingly larger subsets
of the Pareto set. Chapter 7 will present additional experiments over route planning
problems in realistic road maps.

We perform systematic comparisons between the algorithms. First we compare
LEXGO∗ against full Pareto search with NAMOA∗ (using both lexicographic and linear
aggregation selection policies in both algorithms) in Section 6.2. Then, we evaluate the
algorithms that employ the dimensionality reduction technique against the standard
ones. First, we compare in Section 6.3 NAMOA∗ with a linear aggregation selection

77

78 Chapter 6. Empirical Analysis on Grid Problems

policy against our new version NAMOA∗dr. After that we compare LEXGO∗dr against
LEXGO∗ in Section 6.4. Finally, we evaluate both versions that employ t-discarding
over problems with goals. A summary and conclusions are presented at the end of this
chapter.

6.1 Experimental setup

This chapter evaluates the performance of algorithms over sets of randomly generated
grids. Furthermore, we have generated three uncorrelated criteria in order to evaluate
search with goal-based preferences and three to five uncorrelated criteria when we
evaluate multiobjective search without preferences (NAMOA∗ versus NAMOA∗dr). The
solution depth is used as an indicator of problem difficulty. All multiobjective search
algorithms analyzed in this thesis employ the ideal point as lower bound (described in
Section 2.6.3).

We use randomly generated grids which are a standard test bed in the evaluation
of multicriteria search algorithms (Machuca et al., 2012) (Raith & Ehrgott, 2009).
Square bi-dimensional grids of 100 x 100 nodes with a vicinity of four neighbors were
generated as described in Section 3.2.1. The start node is placed at the grid center
and a single destination node is placed in the diagonal from the center to the bottom
right corner. Different solution depths are considered, varying from 20 to 100. A set
of five different problems was generated for each solution depth. For each arc a vector
~c(i, j) = (c1, c2, ..., cq) of q integer scalar costs was randomly generated in the range
[1,10] using an uniform distribution, i.e. leading to uncorrelated objectives.

In order to assess search with goal-based preferences two different classes of ex-
periments were carried out. Three goals grouped in two priority levels were consi-
dered, where target values are defined in terms of the ideal and nadir points. The
first class of experiments defines five different sets of targets using the constant k1 ∈
{0, 0.25, 0.5, 0.75, 1} for both priority levels (see Equation 3.1). For the second class,
targets of the first level are fixed for k1 = 0.75 and k1 = 0.5, using the constant
k2 = k1× k′ to set the targets of the second priority level, with k′ ∈ {0.25, 0.5, 0.75, 1}
(see Equation 3.2). The complete description regarding the generation of these classes
of experiments can be seen in Section 3.2.4.

Regarding multiobjective search performance, the experiments over NAMOA∗ and
NAMOA∗dr are carried out with three, four and five uncorrelated criteria. All solution
depths for each number of criteria range from d = 20 to the maximum solution depth
by increments of 10. The maximum solutions depths considered are d = 100, d = 50,
and d = 40 for q = 3, q = 4 and q = 5, respectively.

This study analyzes for NAMOA∗ and LEXGO∗ the following aspects as a function
of solution depth:

1. The percentage of goal-optimal solutions returned by LEXGO∗ relative to the
size of the full Pareto set returned by NAMOA∗.

2. The percentage of scanned labels by LEXGO∗ relative to the number of scanned
labels by NAMOA∗.

3. The relative runtime requirements of LEXGO∗ to NAMOA∗.

6.2. LEXGO∗ vs NAMOA∗ 79

Additionally, in order to analyze the performance of the t-discarding technique the
following aspects are analyzed as a function of solution depth:

1. The size of the truncated sets of closed labels (T (Gcl)) and solutions (T(COSTS))
relative to the complete sets of NAMOA∗.

2. The percentage of cl-pruned and filtered labels over the total number of discarded
labels.

3. Time requirements of t-discarding algorithms (NAMOA∗dr or LEXGO∗dr) relative
to their reference algorithms (NAMOA∗ or LEXGO∗).

The algorithms were implemented to share as much code as possible. The pro-
gramming language used was ANSI Common Lisp using LispWorks Professional 6.01
(64-bit). The OPEN queue of alternatives was implemented as a binary heap but
only the current best estimate of each node is kept in OPEN at each iteration. The
Gop and Gcl sets are ordered according to the label selection policy employed by the
algorithm. Lexicographic and linear orders were used to choose among non-dominated
open alternatives in NAMOA∗ and LEXGO∗. Their counterparts with the t-discarding
technique NAMOA∗dr and LEXGO∗dr employ the lexicographic order.

Grid problems were run on an Intel Core i7 3612QM at 2.1 GHz and 4 GB of DDR3
RAM. All experiments were run on a single thread.

6.2 LEXGO∗ vs NAMOA∗

This section presents the comparison between NAMOA∗ and LEXGO∗. The study
tested both the lexicographic and linear selection orders (see Definitions 2.13 and
2.14 for further description of the OPEN selection orders employed in this thesis).
Regarding NAMOA∗, the first variant is called NAMOA∗lex, and uses a lexicographic
order of selection. The second, called NAMOA∗lin, uses an order of selection based on
a linear aggregation of vector components. Similarly, the first variant of LEXGO∗ is
called LEXGO∗lex and the second LEXGO∗lin. These four alternatives are evaluated over
the two classes of experiments described in Section 6.1. Additionally, the performance
of LEXGO∗ was evaluated with and without the deviation-based pruning (see Equation
4.6), in order to evaluate the effectiveness of this newly introduced pruning condition.

Notice that both algorithms, NAMOA∗ and LEXGO∗, return exactly the same set
of solutions regardless the label selection policy, i.e. both NAMOA∗lex and NAMOA∗lin
return the full Pareto set of efficient solutions to the problem, that is referred to as C∗,
whereas LEXGO∗lex and LEXGO∗lin return the same set of goal-optimal solutions. Thus,
the first comparison between them is devoted to analyze the percentage of goal-optimal
solutions regarding the full Pareto set. Then, the space and runtime performance are
analyzed. The former is measured by the relative number of scanned labels, and
the latter by a runtime performance comparison when the lexicographic or the linear
aggregation selection orders are employed.

These experiments were partly published by the author and reported in (Pulido
et al., 2014). The results in this thesis go beyond those experiments and also consider
the linear selection order and k1 = 0.75 in class II experiments.

80 Chapter 6. Empirical Analysis on Grid Problems

Table 6.1. Class I experiments on grids, average percentage of goal-optimal solution
vectors returned by LEXGO∗ relative to average |C∗| as a function of solution depth.
An asterisk (∗) indicates that the goals could not be satisfied.

LEXGO∗

NAMOA∗ 1 0.75 0.5 0.25 0 k1

d Avg. |C∗| % % % % %
20 122 100 74.3 20.5 0.98∗ 0.82∗
30 302 100 77.6 22.2 0.33∗ 0.33∗
40 694 100 78.7 20.8 0.14∗ 0.17∗
50 1,599 100 78.2 16.8 0.06∗ 0.06∗
60 2,007 100 83.0 24.6 0.06∗ 0.05∗
70 2,561 100 82.4 24.6 0.04∗ 0.04∗
80 5,423 100 82.3 20.3 0.02∗ 0.02∗
90 5,912 100 77.7 21.0 0.02∗ 0.03∗

100 8,307 100 77.9 17.0 0.01∗ 0.01∗

6.2.1 Analysis on class I experiments

Table 6.1 shows reductions in the number of Pareto-optimal solution vectors returned
by LEXGO∗ relative to the full Pareto set C∗. It can be observed that for large values
of k1 the subset of Pareto-optimal solution vectors returned by LEXGO∗ is somewhat
reduced. However, for k1 = 0.5 only about 20% of the Pareto set is returned. For
k1 = 0.25 or k1 = 0, no solution satisfies all goals, and a subset of only one or two
Pareto-optimal solution cost vectors minimizing deviation is returned. This is also
beneficial for the efficiency of LEXGO∗ since the number of computationally costly
filtering checks is greatly reduced when compared to NAMOA∗. The portion of the
Pareto set returned for varying k1 appears graphically illustrated in Figure 6.1 for a
sample problem with solution depth d = 100.

This figure displays all Pareto-optimal solution vectors in cost (or attribute) space.
The figure displays a box enclosing all Pareto-optimal solution vectors, delimited by
the ideal and nadir points (k1 = 1). Boxes delimiting the regions of cost space that
would satisfy the goals established by parameter k1 equal to 0.75, 0.5 and 0.25 are also
displayed. In the case k1 = 0 only the ideal point would satisfy the goals.

Figures 6.2 and 6.3 display the average number of scanned labels and average
runtimes of LEXGO∗and NAMOA∗, respectively, both as a function of solution depth.
In these graphics, we observe that LEXGO∗lex (6.3(a)) achieves important reductions
in time of almost one order of magnitude for k1 = 0.5, two orders of magnitude for
k1 = 0.25, and up to four orders of magnitude for k1 = 0. These are explained in large
part by the reduction observed in the number of labels scanned, i.e. half the number of
labels for k1 = 0.5, around one order of magnitude less for k1 = 0.25 and three orders
of magnitude less for k1 = 0.

Figure 6.3(b) shows the average runtimes of LEXGO∗lin and NAMOA∗lin. A small
time overhead is also found for k1 = 0.75 in the linear case, as well as poorer results
when k1 = 0.5. Notice that NAMOA∗lin is shown to be approximately two times faster

6.2. LEXGO∗ vs NAMOA∗ 81

Figure 6.1. Three-dimensional Pareto frontier divided according to goal satisfiability
for a sample problem with solution depth d = 100.

Figure 6.2. Class I experiments on grids, average number of scanned (explored)
labels per solution depth for lexicographic selection order.

82 Chapter 6. Empirical Analysis on Grid Problems

than NAMOA∗lex. These results regarding the importance of the selection order are
consistent with other recent studies (Machuca & Mandow, 2011; Iori et al., 2010).
However, LEXGO∗lin is not always more efficient than LEXGO∗lex. For k1 = 1 and
k1 = 0.75 the linear aggregation order guides the search to find the solutions later
than the lexicographic order and speeds up the runtime performance of algorithms
that use the linear order whenever a big amount of solutions exist, due to a smaller
number of filtering comparisons are needed. We further analyze in Section 6.3 the
impact of the number of pruning and filtering comparisons in runtime performance.

Table 6.2 summarizes the space and runtime performance of LEXGO∗ relative to
NAMOA∗ for d = 100 with the lexicographic and linear aggregation selection orders,
respectively. The space performance is measured in scanned labels (

∑
Gcl) and the

runtime performance in seconds.
A small time overhead can be observed for LEXGO∗lex with k1 = 1 when compared

with NAMOA∗lex. This time overhead is greater for LEXGO∗lin, due to the comparison
with the more efficient version of NAMOA∗ with the linear aggregation order. The
time difference can be attributed to the extra calculations of deviation from targets
needed by LEXGO∗ for all labels, and the extra checks for pruning and filtering that
do not provide any advantage in this situation.

No significant difference is found regarding the scanned labels by NAMOA∗lex and
NAMOA∗lin, or the relative number to LEXGO∗lex and LEXGO∗lin. In fact, NAMOA∗
should expand the same labels regardless of the selection order policy. However, the
lazy filtering technique introduces a slight variation which is found not to be significant
in any case (see Sanders & Mandow (2013) for a more detailed explanation of the lazy
filtering technique).

6.2.2 Analysis on class II experiments

Target values in the second class of experiments were defined using k1 = {0.75, 0.5},
where k2 is defined as in Equation 3.2. This allows us to analyze the case where
targets for one goal are proportionally stricter, and the extreme case where some goals
are satisfied and some not.

Tables 6.3 and 6.4 show percentages of Pareto goal-optimal solution costs and
scanned labels of all values of k2 in LEXGO∗ relative to NAMOA∗. Figure 6.4 displays
the average number of scanned labels as a function of solution depth for k1 = 0.75 and
k1 = 0.5.

Table 6.5 displays the relative percentage of LEXGO∗ runtimes to NAMOA∗ em-
ploying lexicographic and linear selection orders. In a graphical manner, Figures 6.5
and 6.6 show, respectively, average runtimes for k1 = 0.75 and k1 = 0.5 with lexico-
graphic and linear selection orders.

A progressive reduction in scanned labels and runtimes is observed as the value of k2
decreases. For d = 100 and k2 = 0.75, LEXGO∗ explores around 97% of labels explored
by NAMOA∗, but for k2 = 0.1875 this value drops to only around 17.5%. Similarly,
when k2 = 0.5 LEXGO∗explores around 60% of labels explored by NAMOA∗, but
for k2 = 0.125 this value falls to around 12%. The percentage of Pareto goal-optimal
solution costs returned also drops sharply as k2 decreases. For k1 = 0.5 and k2 = 0.125,
some problem instances could not satisfy all goals.

6.2. LEXGO∗ vs NAMOA∗ 83

(a) Lexicographic selection order

(b) linear aggregation selection order

Figure 6.3. Class I experiments on grids, average runtime in seconds per solution
depth for NAMOA∗ and LEXGO∗.

84 Chapter 6. Empirical Analysis on Grid Problems

Table 6.2. Class I experiments on grids, summary of the relative space and runtime
performance of LEXGO∗ over NAMOA∗ for d = 100 experiments.

(a) Relative space performance of LEXGO∗lex over NAMOA∗lex

LEXGO∗lex

NAMOA∗lex 1 0.75 0.5 0.25 0 k1∑
Gcl % % % % %

2,550,354 99.9 96.9 59.2 8.5 0.08

(b) Relative space performance of LEXGO∗lin over NAMOA∗lin

LEXGO∗lin
NAMOA∗lin 1 0.75 0.5 0.25 0 k1∑

Gcl % % % % %
2,598,427 99.9 97.2 59.1 8.3 0.08

(c) Relative runtime performance of LEXGO∗lex over NAMOA∗lex

LEXGO∗lex

NAMOA∗lex 1 0.75 0.5 0.25 0 k1

Runtime (s) % % % % %
3,662.9 102.7 92.3 22.3 0.9 0.001

(d) Relative runtime performance of LEXGO∗lin over NAMOA∗lin

LEXGO∗lin
NAMOA∗lin 1 0.75 0.5 0.25 0 k1

Runtime (s) % % % % %
1,754.4 120.5 105.3 65.2 2.1 0.005

6.2. LEXGO∗ vs NAMOA∗ 85

Table 6.3. Class II experiments on grids, LEXGO∗ average percentage of goal-optimal
solution costs relative to C∗. An asterisk (∗) indicates some of the five instances could
not satisfy all goals, and two asterisks (∗∗) that none of the five instances could satisfy
all goals.

LEXGO∗

0.75 0.5 k1
NAMOA∗ 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

d Avg. |C∗| % % % % % % % %
20 122 74.3 59.1 35.2 10.6 20.5 11.5 3.3 ∗0.82
30 302 77.6 63.4 38.5 15.5 22.2 12.3 5.6 ∗1.00
40 694 78.7 59.3 34.0 12.2 20.8 10.5 3.3 ∗∗0.14
50 1,599 78.2 57.2 33.6 12.3 16.8 8.4 2.6 ∗0.06
60 2,007 83.0 62.6 35.9 12.6 24.6 13.1 3.8 ∗0.25
70 2,561 82.4 66.0 41.9 14.6 24.6 13.6 4.2 ∗0.12
80 5,423 82.3 64.9 36.1 11.6 20.3 9.1 1.7 ∗∗0.02
90 5,912 77.7 63.6 38.2 10.7 21.0 10.5 2.1 ∗∗0.02

100 8,307 77.9 60.5 35.7 10.6 17.0 8.1 1.1 ∗∗0.01

Table 6.4. Class II experiments on grids, LEXGO∗lex average percentage of scanned
labels (

∑
Gcl) compared to NAMOA∗lex.

LEXGO∗lex

0.75 0.5 k1
NAMOA∗lex 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

d
∑
Gcl % % % % % % % %

20 1,985 86.2 75.1 50.9 19.0 41.4 28.9 17.5 8.9
30 9,164 92.4 83.1 55.5 20.3 50.3 34.8 18.9 11.0
40 36,557 94.5 83.2 55.6 19.1 55.1 38.4 19.9 9.5
50 145,823 95.5 83.4 54.7 18.3 52.7 36.4 18.2 7.5
60 257,935 97.5 88.9 60.9 19.8 62.9 45.9 23.1 7.8
70 420,056 96.6 88.9 63.5 21.2 61.5 45.7 23.5 7.2
80 1,231,565 97.3 89.1 60.4 18.8 59.2 42.0 20.0 8.6
90 1,789,607 96.7 88.8 62.9 20.0 59.1 43.1 21.6 10.3

100 2,550,354 97.0 89.3 61.1 17.5 59.3 42.2 19.8 11.8

86 Chapter 6. Empirical Analysis on Grid Problems

(a) k1 = 0.75

(b) k1 = 0.5

Figure 6.4. Class II experiments on grids, average scanned labels per solution depth
for NAMOA∗ and LEXGO∗ with lexicographic selection order.

6.2. LEXGO∗ vs NAMOA∗ 87

Table 6.5. Class II experiments on grids, LEXGO∗ runtimes (in seconds) percentage
relative to NAMOA∗.

(a) Lexicographic selection order

LEXGO∗lex

0.75 0.5 k1
NAMOA∗lex 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

d Runtime (s) % % % % % % % %
20 0.06 100.0 66.6 50.0 16.6 33.3 16.6 1.6 1.6
30 0.4 112.5 95.0 55.0 17.5 47.5 30.0 17.5 12.5
40 3.5 91.4 68.5 34.2 8.5 34.2 20.0 8.5 5.7
50 36.8 84.7 60.0 25.8 4.6 22.8 12.5 4.8 1.9
60 86.9 90.6 67.4 29.4 4.4 30.4 16.6 5.8 1.8
70 178.5 88.4 67.5 31.2 4.9 28.1 15.1 5.3 1.4
80 1,164.1 92.2 69.5 27.8 3.4 23.5 11.6 3.4 1.4
90 2,030.0 87.7 69.0 31.4 3.7 24.1 12.6 3.9 1.9
100 3,662.9 92.3 66.7 27.6 2.9 22.3 11.1 3.3 2.1

(b) linear aggregation selection order

LEXGO∗lin
0.75 0.5 k1

NAMOA∗lin 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

d Runtime (s) % % % % % % % %
20 0.04 160.3 146.6 100.4 40.2 66.2 46.6 32.9 19.7
30 0.3 138.4 149.5 99.9 30.8 83.8 58.1 28.2 16.3
40 2.3 131.3 174.6 104.2 25.4 99.7 62.7 26.3 11.5
50 18.3 113.6 144.0 92.5 17.6 79.2 50.4 18.1 5.3
60 43.8 108.8 138.6 95.8 16.1 90.2 61.9 22.6 4.8
70 83.3 104.4 117.4 101.3 19.5 72.6 56.9 21.2 4.2
80 533.8 105.5 138.3 96.4 13.8 72.6 49.6 14.6 4.0
90 981.3 102.6 121.4 92.4 12.8 63.3 48.2 15.5 4.8
100 1,754.4 105.3 130.2 98.0 11.1 65.3 46.1 13.1 5.3

88 Chapter 6. Empirical Analysis on Grid Problems

(a) k1 = 0.75

(b) k1 = 0.5

Figure 6.5. Class II experiments on grids, average runtime (in seconds) per solution
depth for LEXGO∗ and NAMOA∗ with lexicographic selection order.

6.2. LEXGO∗ vs NAMOA∗ 89

(a) k1 = 0.75

(b) k1 = 0.5

Figure 6.6. Class II experiments on grids, average runtime (in seconds) per solution
depth for LEXGO∗ and NAMOA∗ with linear aggregation selection order.

90 Chapter 6. Empirical Analysis on Grid Problems

Figure 6.7. Class I experiments on grids, average explored labels per solution depth
to LEXGO∗ (k1 = 0) with and without deviation pruning.

Regarding the differences between the lexicographic and linear selection orders, we
observed a better comparative performance of LEXGO∗lexwhen compared to NAMOA∗lex
than LEXGO∗lin to NAMOA∗lin. The linear order introduces a particular case when
k1 = 0.75 and k2 = 0.5625, since its runtime performance is worse than k1 = 0.75
and k2 = 0.75. The former performs a smaller number of label expansions but a much
higher number of deviation pruning comparisons than the latter.

6.2.3 Analysis on the pruning condition

Figures 6.7 and 6.8 compare average runtimes and scanned labels by LEXGO∗, with
lexicographic selection order, with and without deviation pruning (see Equation 4.4),
respectively. Only the results with the lexicographic order are shown, since the results
with the linear order are practically identical. These are results for the first set of
experiments and k1 = 0, where goals are not satisfied and deviation pruning is most
effective. Values for NAMOA∗ are also displayed as reference. As soon as goals are
satisfied, deviation pruning loses pruning power. For k1 = 0.25 a smaller advantage is
achieved. For larger values of k1, deviation pruning does not offer practical advantage.

These results show where goals could be satisfied, i.e. k1 = {0.5, 0.75, 1}, deviation
pruning does not improve performance in practice. However, for those values of k1, i.e.
k1 = {0, 0.25}, where goals cannot be satisfied, deviation pruning can make a difference,
specially for k1 = 0. Figure 6.8 shows up to three orders of magnitude of improvement
in runtime, that can be attributed to a reduction of two orders of magnitude in scanned
labels (see Figure 6.7). This can be explained by the fact that when goals are satisfied,
values of deviation vectors of expanded labels are ~0 and deviation pruning is barely
triggered. On the other hand, unsatisfied goals cause greater deviation values and
hence, a greater number of pruning opportunities. Therefore, the higher deviation
from goals, the more effective deviation pruning.

6.3. NAMOA∗dr vs NAMOA∗ 91

Figure 6.8. Class I experiments on grids, average runtimes in seconds per solution
depth to LEXGO∗ (k1 = 0) with and without deviation pruning.

6.2.4 Summary

We present a deeper study than the experiments already presented by the author in
Pulido et al. (2014). We have also added to the experimental set the linear aggregation
order to both algorithms, NAMOA∗ and LEXGO∗, as well as k1 = 0.75 for class II
experiments. NAMOA∗lin outperforms NAMOA∗lex in all cases, by approximately a
factor of two. Several studies have reported the same results for NAMOA∗ on the
lexicographic and linear selection orders.

Regarding LEXGO∗lex and LEXGO∗lin, the latter performs faster when the number
of goal-optimal solution costs is bigger, i.e. when k1 = {1, 0.75}, by an approximate
factor of 1.8, due to the fact that linear version finds the solutions at a later stage and
therefore, a smaller number of filtering comparisons is needed. However, LEXGO∗lex
outperforms LEXGO∗lin when the number of goal-optimal solution vectors is smaller,
i.e. when k1 = 0.5. Moreover, LEXGO∗lex has a slightly better performance when
goals cannot be satisfied, i.e. when k1 = {0.25, 0}. In the latter case, the relative
performance is problem-dependent.

The comparative performance between LEXGO∗lex vs NAMOA∗lex, and LEXGO∗lin vs
NAMOA∗lin turns out to be very similar in explored labels. However, the lexicographic
order is comparatively more advantageous in runtime for LEXGO∗ than the linear,
having a smaller time overhead and better comparative performance. Even so, both
LEXGO∗ alternatives run faster than NAMOA∗ for k1 = 0.5, they run several orders
of magnitude faster for k1 = 0 and around two orders of magnitude when k1 = 0.25,
regardless the selection order.

6.3 NAMOA∗dr vs NAMOA∗

In this section, we analyze the runtime performance of two different versions of the
NAMOA∗ algorithm: the standard version, and the newly introduced one. A descrip-

92 Chapter 6. Empirical Analysis on Grid Problems

tion of these algorithms can be found in Sections 2.6.2 and 4.3, respectively. NAMOA∗
and NAMOA∗dr were presented in Section 2.6.2 and Section 4.3, respectively.

The experiments presented in this section analyze the impact of the dimensionality
reduction technique on the sets of random grid problems previously used with q =
3. Extra problem sets with q = 4 and q = 5 objectives have been added to the
experimental evaluation of these algorithms. The solution depths considered for these
new experiments are d = {20, 30, 40, 50} and d = {20, 30, 40} for q = 4 and q = 5,
respectively.

These two versions of NAMOA∗ differ in the order of selection of OPEN labels and
in the way dominance is checked in filtering and cl-pruning operations. The first ana-
lyzed variants are NAMOA∗lex and NAMOA∗lin, which use, to the best of our knowledge,
the usual dominance pruning and filtering techniques in previously reported experimen-
tal evaluations of multiobjective search algorithms. The second algorithm analyzed,
NAMOA∗dr uses a lexicographic order of selection and the t-discarding technique for
filtering and cl-pruning, as described in Section 4.2.

6.3.1 Analysis

Table 6.6 shows the average size of relevant sets of labels for the execution of NAMOA∗dr
on random grid problems. The first column (q) indicates the number of objectives. The
second column (d) displays solution depth. The third column (Max OPEN) displays
the maximum cardinality of the set of open labels. The fourth column,

∑
Gcl, displays

the total number of closed (permanent) labels at termination, calculated as the sum of
the number of labels at the Gcl sets of all visited nodes. This is also the total number
of labels expanded by the algorithm. The fifth column shows for comparison the sum
of sizes of the corresponding sets of truncated labels, i.e.

∑
T (Gcl). The sixth column

displays the percentage ratio between columns four and five. For example, for d = 20,
the average number of label expansions by NAMOA∗dr was 1,985, while the average
number of labels in the truncated sets was only 476, this results in a percentage ratio
of 23.98%.

Column seven in Table 6.6 shows the average number of different non-dominated
solution vectors in COSTS (C∗). The eighth column displays the size of the corre-
sponding truncated set T (C∗). The last column displays the percentage ratio between
columns six and seven.

Table 6.7 displays the average runtimes of the three considered alternatives of
NAMOA∗ with q ∈ {3, 4, 5} objectives for random grid problems. The last columns
show the relative percentage improvement of NAMOA∗dr over NAMOA∗lex and NAMOA∗lin,
respectively.

All evaluated algorithms perform op-pruning in the same way. However, NAMOA∗dr
uses a different technique for cl-pruning and filtering. Figure 6.9 displays some results
of the execution of NAMOA∗dr: the percentage of labels pruned by Gop (op-pruning),
truncated closed node labels T (Gcl) (cl-pruning), and filtered by T (C∗) over the total
number of discarded labels. Results are displayed as a function of solution depth d,
(a) for q = 3 objectives, (b) for q = 4 objectives, and (c) for q = 5 objectives.

Figure 6.10 shows runtimes of NAMOA∗lex, NAMOA∗lin and NAMOA∗dr in logarith-
mic scale against solution depth for q = {3, 4, 5} objectives. The items in the legend

6.3. NAMOA∗dr vs NAMOA∗ 93

Table 6.6. Average size of relevant sets of labels for random grid problems solved by
NAMOA∗dr.

q d Max OPEN
∑
Gcl

∑
T (Gcl) % C∗ T (C∗) %

3 20 194 1,985 476 23.98 122 13 10.66
3 30 723 9,164 2,091 22.82 302 32 10.60
3 40 2,233 36,557 4,923 13.47 694 44 6.34
3 50 8,327 145,823 12,450 8.54 1,599 60 3.75
3 60 11,091 257,935 21,026 8.15 2,007 80 3.99
3 70 17,312 420,056 29,845 7.11 2,561 74 2.89
3 80 38,512 1,231,565 61,457 4.99 5,423 108 1.99
3 90 51,817 1,789,607 81,036 4.53 5,912 122 2.06
3 100 72,062 2,550,354 97,160 3.81 8,307 137 1.65
4 20 531 6,192 2,061 33.28 493 83 16.83
4 30 3,183 49,735 13,150 26.44 2,230 320 14.34
4 40 14,409 283,811 44,191 15.57 7,826 774 9.89
4 50 72,112 1,542,793 153,639 9.95 24,942 1,382 5.54
5 20 1,127 15,681 6,539 41.70 1,819 522 28.69
5 30 10,019 172,238 51,145 29.69 10,830 1,917 17.70
5 40 62,280 1,371,885 319,333 23.27 49,634 8,320 16.76

Table 6.7. Average runtimes in seconds for random grid problems.

q d NAMOA∗lex σlex NAMOA∗lin σlin NAMOA∗dr σdr (drlex)% (drlin)%
3 20 0.06 0.02 0.04 0.01 0.0622 0.01 99.67 132.91
3 30 0.46 0.26 0.36 0.18 0.293 0.11 62.74 80.23
3 40 3.53 1.21 2.36 0.74 1.32 0.30 37.39 56.13
3 50 36.83 15.56 18.37 5.67 6.87 2.02 18.65 37.41
3 60 86.93 49.57 43.83 22.94 11.94 4.48 13.73 27.26
3 70 178.53 106.75 83.37 47.77 20.93 7.69 11.72 25.11
3 80 1,164.11 293.72 533.79 135.96 76.01 14.22 6.52 14.24
3 90 2,030.06 730.05 981.32 313.79 120.66 33.19 5.94 12.30
3 100 3,662.93 1,100.91 1,754.43 583.28 196.13 52.74 5.35 11.18
4 20 0.39 0.14 0.30 0.11 0.23 0.07 58.52 76.66
4 30 11.64 4.22 8.88 3.87 4.31 1.97 37.02 48.53
4 40 292.17 188.27 166.36 105.31 50.41 29.47 17.25 30.30
4 50 5,604.29 2,356.35 3,173.81 1,171.11 645.37 195.84 11.51 20.33
5 20 4.01 1.51 2.99 1.14 2.20 0.76 54.86 73.57
5 30 204.69 135.77 114.91 73.32 57.89 34.61 28.28 50.37
5 40 10,848.24 7,404.86 6,141.63 4,212.81 1,919.56 1,269.98 17.69 31.25

94 Chapter 6. Empirical Analysis on Grid Problems

(a) q = 3

(b) q = 4

(c) q = 5

Figure 6.9. Percentage of pruned and filtered labels over the total number of dis-
carded labels by NAMOA∗dr per solution depth for q ∈ {3, 4, 5} objectives in grid
problems.

6.3. NAMOA∗dr vs NAMOA∗ 95

Figure 6.10. Average runtimes for q ∈ {3, 4, 5} objectives per solution depth in grid
problems.

indicate the version of the algorithm and the objectives, e.g. dr(4) indicates NAMOA∗dr
with q = 4. Finally, Figure 6.11 displays the percentage of runtimes of NAMOA∗dr and
NAMOA∗lin over NAMOA∗lex for q = 3 experiments displayed as a function of solution
depth.

6.3.2 Summary

A linear aggregation selection function is consistently more efficient in runtime than
a lexicographic function when both are applied to standard NAMOA∗. However, the
lexicographic order can be exploited by the t-discarding technique for filtering and
cl-pruning (NAMOA∗dr). Results over grid problems reveal a dramatic improvement in
runtime performance of over an order of magnitude for three-objective problems (see
Figure 6.10). The speedup of NAMOA∗dr over NAMOA∗lex and NAMOA∗lin even grows
with problem difficulty (see Table 6.7 and Figure 6.11), reducing time requirements over
90% for the harder q = 3 problems. When more objectives are considered, q = {4, 5},
similar results can be observed, although a smaller number of experiments can be
presented due to the increasing computational difficulty.

As expected, multiobjective label-setting search spends most of the time performing
dominance checks between labels. Every new label has to be checked for op-pruning,
cl-pruning, and filtering. Figure 6.9 shows that, for the harder grid problems, cl-
pruning is the operation that tends to discard most labels for deeper solutions. The
same tendency can be observed regardless the number of objectives.

While the ratio of labels discarded by filtering decreases with problem difficulty, it
was always larger than the ratio of those discarded by op-pruning in our grid experi-
ments. This is important for the efficiency of NAMOA∗dr, since cl-pruning and filtering
can both benefit from t-discarding. Table 6.6 reveals that the truncated sets of labels
used by t-discarding are significantly smaller than the original ones, and their relative
size even decreases with problem difficulty. For example, with solution depth d = 100

96 Chapter 6. Empirical Analysis on Grid Problems

Figure 6.11. Percentage of average runtime of NAMOA∗dr and NAMOA∗lin over
NAMOA∗lex for q = 3 grid problems.

and q = 3, a label is checked against a set of 8,307 labels for filtering in the worst case
with the standard procedure, while with t-discarding the worst case involves only a set
of 137 labels (or 1.65%).

6.4 LEXGO∗dr vs LEXGO∗

In this section we examine the performance of the dimensionality reduction tech-
nique applied to LEXGO∗, called LEXGO∗dr. A detailed description of LEXGO∗ and
LEXGO∗dr are presented in Section 4.1 and Section 4.4, respectively. The experiments
presented below are applied to the random grid problems with three objectives and
goals defined in Section 6.1.

6.4.1 Analysis on class I experiments

Table 6.8 displays average runtimes for LEXGO∗lex, LEXGO∗lin, and LEXGO∗dr for depth
d = 100. The last column shows the speed-up obtained by LEXGO∗dr over the best
version of standard LEXGO∗ for each value of k1. LEXGO∗dr achieves important re-
ductions in runtime when goals can be satisfied, i.e. when k1 = {1, 0.75, 0.5} and it
barely affects runtimes when goals cannot be satisfied, i.e. k1 = {0.25, 0}. Figure 6.12
shows graphically the relative runtime performance of LEXGO∗dr over the best previous
runtimes of LEXGO∗, as a function of solution depth. Values corresponding to k1 = 0
are not shown since they are practically zero.

6.4.2 Analysis on class II experiments

Table 6.9 shows the average runtimes of LEXGO∗dr for all possible values of k2 with
k1 = 0.75 and k1 = 0.5. Figures 6.13(a) and 6.13(b) display, as a function of solution
depth, the relative runtime performance of LEXGO∗dr over the best previous runtimes
of LEXGO∗ in k1 = 0.75 and k1 = 0.5, respectively.

6.4. LEXGO∗dr vs LEXGO∗ 97

Table 6.8. Class I experiments on grids, average runtimes in seconds of LEXGO∗lex,
LEXGO∗lin and LEXGO∗dr for d = 100. Speed-up of LEXGO∗dr over the best standard
version of LEXGO∗.

k1 LEXGO∗lex LEXGO∗lin LEXGO∗dr Speedup
1 3,763.78 2,114.18 254.40 8.31

0.75 3,381.33 1,847.88 300.86 6.14
0.5 819.28 1,145.15 282.49 2.90

0.25 33.47 37.45 35.37 0.94
0 0.07 0.09 0.10 0.77

Figure 6.12. Class I experiments on grids, relative runtime performance of LEXGO∗dr
over the best runtimes of standard LEXGO∗.

98 Chapter 6. Empirical Analysis on Grid Problems

Table 6.9. Class II experiments on grids, LEXGO∗dr runtimes in seconds.

LEXGO∗dr

0.75 0.5 k1
d 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

20 0.07 0.06 0.04 0.01 0.03 0.02 0.01 <0.01
30 0.38 0.35 0.23 0.09 0.22 0.15 0.08 0.05
40 1.7 1.6 1.1 0.38 1.1 0.81 0.42 0.24
50 10.3 10.6 6.5 1.7 6.5 4.2 1.9 0.84
60 17.3 19.3 13.5 3.6 14.4 10.3 4.8 1.8
70 30.8 32.2 22.8 6.8 24.0 17.7 8.5 2.9
80 105.9 133.1 95.0 24.0 97.8 68.5 29.4 17.4
90 187.9 219.8 156.5 41.2 158.7 117.8 53.3 40.0
100 300.8 389.6 283.7 63.4 282.4 199.1 84.7 82.1

Just as in the case of class I experiments, LEXGO∗dr obtains a better efficiency
when the number of goal-optimal solution costs is greater. Thus, the relative runtime
for k1 = 0.75 is around 20% and for k1 = 0.5 around 30% to 70% of LEXGO∗lin, the
fastest version of the LEXGO∗ algorithm so far. The sole case when LEXGO∗dr does
not show improvement in practice is when k1 = 0.5 and k2 = 0.125. We can observe
in Table 6.3 that in this case the goals are rarely satisfied by any problem instance.

6.4.3 Summary

Just as in the case of NAMOA∗, LEXGO∗ can also be improved when applying the
t-discarding method. This method can be applied to LEXGO∗ when goals can be
satisfied, i.e. when deviation vectors are ~0.

In a similar way as NAMOA∗dr performs against NAMOA∗ (see Section 6.3), the
speed-up of LEXGO∗dr over LEXGO∗ grows with problem difficulty (see Figures 6.12,
and 6.13), reducing time requirements over 88% for the harder problems. In addition,
LEXGO∗dr speed-up grows with the number of goal-optimal solution costs. Notice in
Table 6.8 that LEXGO∗dr for d = 100 runs 11% faster with k1 = 1 than with k1 = 0.5,
despite of the fact that the number of label expansions is 40% greater for k1 = 1 than
for k1 = 0.5 (see Tables 6.2(a) and 6.2(b)). This is because the number of opportunities
to apply t-discarding grows with the relative percentage of goal-optimal solution costs
over the Pareto set. Hence, t-discarding is triggered on a more regular basis on these
cases where k1 is greater.

LEXGO∗dr does not show any improvement when goals cannot be satisfied, since the
t-discarding can be barely applied to these problems. However, LEXGO∗ achieves im-
portant reductions in time when goals can be satisfied, being three to eight times faster
in class I experiments and up to six times faster in the second class of experiments.

6.4. LEXGO∗dr vs LEXGO∗ 99

(a) k1 = 0.75

(b) k1 = 0.5

Figure 6.13. Class II experiments on grids, relative runtime performance (in seconds)
of LEXGO∗dr over the best previous runtimes of LEXGO∗ as a function of solution
depth.

100 Chapter 6. Empirical Analysis on Grid Problems

Table 6.10. Class I experiments on grids, runtimes of LEXGO∗dr and NAMOA∗dr for
d = 100.

LEXGO∗dr

NAMOA∗dr (k1 = 1) (k1 = 0.75) (k1 = 0.5) (k1 = 0.25) (k1 = 0)
Runtime (s)

196.1 254.4 300.8 282.5 35.3 0.1

6.5 LEXGO∗dr vs NAMOA∗dr
This section deals with the algorithms that employ the dimensionality reduction tech-
nique, NAMOA∗dr and LEXGO∗dr. We have already seen the improvement of NAMOA∗dr
over NAMOA∗, as well as LEXGO∗dr over LEXGO∗. In the following, a final time per-
formance comparison between the two best alternatives is presented.

The experiments included in this section are applied to random grid problems with
three objectives and goals described in Section 6.1.

6.5.1 Analysis on class I experiments

Table 6.10 shows the relative performance of LEXGO∗dr over NAMOA∗dr for the solution
depth equal to 100. LEXGO∗dr performs better than NAMOA∗dr when goals cannot be
satisfied, i.e. k1 = {0.25, 0} but it is significantly slower when goals can be satisfied. It
is also worth to pay attention to the relative performance when k1 = 1 in comparison
with k1 = 0.5. The former performs around 40% more label expansions (see Table
6.2) and it is still faster than the latter. Notice that the number of scanned labels of
both algorithms that employ the dimensionality reduction technique are equal to their
versions without t-discarding, although the number of dominance checks is greatly
reduced in NAMOA∗dr and LEXGO∗dr.

Figure 6.14 displays the average runtimes of NAMOA∗dr and LEXGO∗dr as a function
of solution depth. The trend here is slightly in favor of NAMOA∗dr over LEXGO∗dr for
k1 ≥ 0.5.

6.5.2 Analysis on class II experiments

Regarding the second class of experiments, Table 6.11 shows NAMOA∗dr and LEXGO∗dr
runtimes for k1 = 0.75 and k1 = 0.5 with all k2 possible values. Those cases where
LEXGO∗dr outperforms NAMOA∗dr are shown in bold. Figures 6.15(a) and 6.15(b)
display the runtimes as a function of solution depth for k1 = 0.75 and k1 = 0.5,
respectively.

In these experiments, it can be observed that there are cases when goals are
satisfiable and LEXGO∗dr is still faster than NAMOA∗dr. On one hand, when k1 =
0.75, k2 = 0.1875 approximately 10% of the Pareto frontier is returned (see Table 6.3)
and LEXGO∗dr is somewhat three times faster than NAMOA∗dr. On the other hand,
when k1 = 0.5 and k2 = 0.25 goals can also be satisfied and LEXGO∗dr outperforms
NAMOA∗dr.

6.5. LEXGO∗dr vs NAMOA∗dr 101

Figure 6.14. Class I experiments on grids, average runtimes (in seconds) of
NAMOA∗dr and LEXGO∗dr per solution depth.

Table 6.11. Class II experiments on grids, LEXGO∗dr and NAMOA∗dr runtimes (in
seconds). Cases were LEXGO∗dr outperforms NAMOA∗dr are highlighted in bold.

LEXGO∗dr

NAMOA∗dr 0.75 0.5 k1
d Runtime (s) 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

20 0.06 0.07 0.06 0.04 0.01 0.03 0.02 0.01 <0.01
30 0.29 0.38 0.35 0.23 0.09 0.22 0.15 0.08 0.05
40 1.3 1.7 1.6 1.1 0.38 1.1 0.81 0.42 0.24
50 6.8 10.3 10.6 6.5 1.74 6.5 4.2 1.9 0.84
60 11.9 17.3 19.3 13.5 3.6 14.4 10.4 4.8 1.8
70 20.9 30.8 32.2 22.8 6.8 24.0 17.7 8.5 2.9
80 76.0 105.9 133.1 95.0 24.0 97.8 68.5 29.4 17.4
90 120.6 187.9 219.8 156.5 41.2 158.7 117.8 53.3 40.0
100 196.1 300.8 389.6 283.7 63.4 282.4 199.1 84.7 82.1

102 Chapter 6. Empirical Analysis on Grid Problems

(a) k1 = 0.75

(b) k1 = 0.5

Figure 6.15. Class II experiments on grids, average runtimes in seconds of LEXGO∗dr
and NAMOA∗dr per solution depth.

6.6. Summary on random grid experiments 103

6.5.3 Summary

The experimental comparison between NAMOA∗dr and LEXGO∗dr is one of the con-
tributions of this thesis. On one hand, LEXGO∗dr is the application of the successful
technique of t-discarding dominated paths to the algorithm LEXGO∗, which has also
been proposed in this thesis. In fact, these results are new to the literature and expose
a significant different behavior than the comparison between LEXGO∗ and NAMOA∗
showed in Section 6.2. Despite LEXGO∗ has been proved to be more efficient than
NAMOA∗ (see Section 5.2.1), the same cannot be asserted when the t-discarding tech-
nique is applied to both algorithms.

Both NAMOA∗dr and LEXGO∗dr achieve a speed-up of about an order of magnitude
for our random grid problem experiments over NAMOA∗ and LEXGO∗, respectively.
However, LEXGO∗dr cannot apply the t-discarding method when a path does not satisfy
goals and therefore, the applicability of this technique is partial, even though practi-
cally is applied to an average of 99.5% of the pruning operations. This small percent-
age of iterations that must perform the classical dominance checks clearly affect the
runtime performance of LEXGO∗dr in comparison with NAMOA∗dr. Thus, NAMOA∗dr
becomes the option to be selected when goals can be satisfied while LEXGO∗dr is still
preferred when goals cannot be satisfied and the path which minimizes the deviation
from goals has to be returned.

6.6 Summary on random grid experiments

Previous results to the experiments showed in this thesis were reported in Pulido
et al. (2014) and Pulido et al. (2015). The experiments reported in this chapter go
beyond those previously reported and add LEXGO∗lin and LEXGO∗dr algorithms to the
analyses. Furthermore, additional cases of LEXGO∗ have been evaluated, for instance,
k1 = 0.75 in class II experiments.

A summary of the runtime performance obtained from the evaluation of the algo-
rithms NAMOA∗lex, NAMOA∗lin, LEXGO∗lex, LEXGO∗lin, NAMOA∗dr and LEXGO∗dr is
presented in Table 6.12. A detailed analysis for class I and II experiments follows.

6.6.1 Summary on class I experiments

Table 6.13 shows all runtimes for class I experiments and all algorithms evaluated.
NAMOA∗dr runtimes and those experiments of LEXGO∗ which perform faster than
NAMOA∗dr are highlighted in bold. Thus, the empirical evaluation of all considered
alternatives draws a clear picture on the performance of each algorithm, resulting
generally in NAMOA∗dr as the best algorithm when goals can be satisfied and LEXGO∗dr
when goals cannot be satisfied. Moreover, the t-discarding technique improves over
an order of magnitude both algorithms NAMOA∗dr and LEXGO∗dr over NAMOA∗ and
LEXGO∗, and does not affect significantly the runtime of LEXGO∗ when goals cannot
be satisfied.

104 Chapter 6. Empirical Analysis on Grid Problems

Table 6.12. Runtime comparison - summary table for random grid experiments.

Comparison Results

NAMOA∗lin vs NAMOA∗lex NAMOA∗lin outperforms NAMOA∗lex by a factor of two
in all cases. Its comparative advantage slightly grows
with problem difficulty.

LEXGO∗lin vs LEXGO∗lex LEXGO∗lin outperforms LEXGO∗lex by a factor of 1.8
when a high percentage of the non-dominated cost vec-
tors satisfy the goals. When this percentage is smaller
LEXGO∗lex outperforms LEXGO∗lin. Both have similar
performance when goals cannot be satisfied.

LEXGO∗ vs NAMOA∗ The lexicographic order is comparatively more ad-
vantageous in runtime for LEXGO∗ than the linear.
With both selection orders, LEXGO∗ runs faster than
NAMOA∗ for k1 = 0.5, around two orders of magnitude
faster when k1 = 0.25, and several orders of magnitude
faster for k1 = 0. A small time overhead can be ob-
served for LEXGO∗ with k1 = 1 and in some cases with
k1 = 0.75.

NAMOA∗dr vs NAMOA∗ NAMOA∗dr is consistently faster than NAMOA∗lex and
NAMOA∗lin. Its advantage in runtime clearly grows with
problem difficulty.

LEXGO∗dr vs LEXGO∗ Their performance is similar when goals cannot be satis-
fied. However, LEXGO∗dr achieves important reductions
in runtime when goals can be satisfied. LEXGO∗dr run-
time advantage grows with the number of goal-optimal
solution costs and with problem difficulty.

LEXGO∗dr vs NAMOA∗dr LEXGO∗dr is faster than NAMOA∗dr when goals cannot
be satisfied. NAMOA∗dr performs faster when goals can
be satisfied.

6.6. Summary on random grid experiments 105

Table 6.13. Class I experiments on grids, runtimes (in seconds) of all algorithms
studied in this thesis as a function of solution depth.

Depth 20 30 40 50 60 70 80 90 100
NAMOA∗lex 0.06 0.47 3.53 36.83 86.94 178.53 1,164.12 2,030.07 3,662.93
NAMOA∗lin 0.06 0.37 2.36 18.37 43.84 83.38 533.80 981.32 1,754.44
NAMOA∗dr 0.06 0.29 1.33 6.87 11.95 20.94 76.01 120.67 196.14
LEXGO∗lex
(k1 = 1) 0.07 0.52 3.70 37.35 88.89 179.67 1,202.71 2,115.23 3,763.78
(k1 = 0.75) 0.07 0.46 3.23 31.20 78.87 157.80 1,074.36 1,781.12 3,381.33
(k1 = 0.5) 0.03 0.19 1.20 8.44 26.54 50.37 274.42 490.95 819.28
(k1 = 0.25) 0.01 0.03 0.14 0.74 1.36 2.02 9.34 19.55 33.47
(k1 = 0) <0.01 <0.01 0.01 0.02 0.02 0.03 0.05 0.07 0.07
LEXGO∗lin
(k1 = 1) 0.09 0.52 3.10 21.18 48.77 95.36 606.91 1,141.97 2,114.18
(k1 = 0.75) 0.07 0.51 3.10 20.88 47.68 87.01 563.05 1,006.66 1,847.88
(k1 = 0.5) 0.03 0.31 2.36 14.55 39.54 60.51 387.28 620.69 1,145.15
(k1 = 0.25) 0.01 0.03 0.18 0.92 1.70 2.55 11.04 21.58 37.45
(k1 = 0) <0.01 0.01 0.01 0.02 0.02 0.04 0.07 0.09 0.09
LEXGO∗dr
(k1 = 1) 0.08 0.40 1.77 9.08 15.69 27.46 98.24 158.32 254.40
(k1 = 0.75) 0.07 0.38 1.78 10.38 17.38 30.89 105.95 187.93 300.86
(k1 = 0.5) 0.03 0.22 1.15 6.53 14.44 24.03 97.85 158.71 282.49
(k1 = 0.25) 0.01 0.03 0.16 0.82 1.53 2.25 9.76 20.03 35.37
(k1 = 0) <0.01 0.01 0.02 0.02 0.03 0.05 0.07 0.09 0.10

6.6.2 Summary on class II experiments

With respect to class II experiments, Table 6.14 shows all runtimes for class II exper-
iments and all algorithms evaluated. NAMOA∗dr runtimes and those experiments of
LEXGO∗ which perform faster than NAMOA∗dr are also highlighted in bold.

There are eight different cases for each solution depth with the combinations of
k1 = {0.75, 0.5} and k2 calculated as described in Equation 3.2. It can be observed that
the number of cases where LEXGO∗dr outperforms NAMOA∗dr decreases with solution
depth. For instance, the number of cases where LEXGO∗dr is faster than NAMOA∗dr
decreases from 7 out of 8 when d = 20 to 3 out of 8 when d = 100. It is expected
that NAMOA∗dr will outperform LEXGO∗dr in runtime performance in more difficult
problems.

106 Chapter 6. Empirical Analysis on Grid Problems

Table 6.14. Class II experiments on grids, runtimes (in seconds) of all algorithms
studied in this thesis as a function of solution depth.

Depth 20 30 40 50 60 70 80 90 100
NAMOA∗lex 0.06 0.47 3.53 36.83 86.94 178.53 1,164.12 2,030.07 3,662.93
NAMOA∗lin 0.06 0.37 2.36 18.37 43.84 83.38 533.80 981.32 1,754.44
NAMOA∗dr 0.06 0.29 1.33 6.87 11.95 20.94 76.01 120.67 196.14
LEXGO∗lex
(0.75, 0.75) 0.07 0.46 3.23 31.20 78.87 157.80 1,074.36 1,781.12 3,381.33
(0.75, 0.5625) 0.04 0.39 2.47 22.14 58.66 120.67 809.09 1,401.87 2,444.38
(0.75, 0.375) 0.03 0.22 1.25 9.56 25.65 55.71 324.66 639.08 1,013.19
(0.75, 0.1875) 0.01 0.08 0.34 1.76 3.98 8.95 39.93 76.38 108.27
(0.5, 0.5) 0.03 0.19 1.20 8.44 26.54 50.37 274.42 490.95 819.28
(0.5, 0.375) 0.02 0.12 0.75 4.64 14.51 27.16 135.74 256.56 407.47
(0.5, 0.25) 0.01 0.07 0.37 1.78 5.07 9.58 40.52 80.67 122.57
(0.5, 0.125) <0.01 0.05 0.21 0.73 1.59 2.63 16.99 40.18 79.69
LEXGO∗lin
(0.75, 0.75) 0.07 0.51 3.10 20.88 47.68 87.01 563.05 1,006.66 1,847.88
(0.75, 0.5625) 0.07 0.55 4.12 26.45 60.75 97.91 738.42 1,191.72 2,285.11
(0.75, 0.375) 0.05 0.37 2.46 16.99 41.98 84.46 514.54 906.98 1,719.23
(0.75, 0.1875) 0.02 0.11 0.60 3.24 7.07 16.25 73.87 125.71 194.55
(0.5, 0.5) 0.03 0.31 2.36 14.55 39.54 60.51 387.28 620.69 1,145.15
(0.5, 0.375) 0.02 0.21 1.48 9.26 27.15 47.45 264.65 473.42 809.28
(0.5, 0.25) 0.02 0.10 0.62 3.33 9.89 17.70 78.02 152.09 229.97
(0.5, 0.125) 0.01 0.06 0.27 0.97 2.12 3.51 21.35 46.80 92.27
LEXGO∗dr
(0.75, 0.75) 0.07 0.38 1.78 10.38 17.38 30.89 105.95 187.93 300.86
(0.75, 0.5625) 0.06 0.35 1.68 10.62 19.30 32.24 133.15 219.81 389.68
(0.75, 0.375) 0.04 0.24 1.14 6.49 13.53 22.85 95.03 156.58 283.77
(0.75, 0.1875) 0.01 0.09 0.38 1.75 3.62 6.85 24.03 41.21 63.41
(0.5, 0.5) 0.03 0.22 1.15 6.53 14.44 24.03 97.85 158.71 282.49
(0.5, 0.375) 0.03 0.16 0.81 4.24 10.39 17.73 68.58 117.82 199.12
(0.5, 0.25) 0.02 0.09 0.42 1.92 4.85 8.55 29.48 53.39 84.79
(0.5, 0.125) 0.01 0.05 0.24 0.84 1.82 2.91 17.45 40.04 82.18

Chapter 7

Empirical Analysis On Road
Map Problems

The rise of Google, the rise of Facebook, the
rise of Apple, I think are proof that there is a
place for computer science as something that

solves problems that people face every day.
Eric Schmidt (1955-)

This chapter is devoted to analyze the algorithmic performance on realistic road
maps from the "9th DIMACS Implementation Challenge: Shortest Path". The chal-
lenge comprises a set of twelve road maps of increasing size. In particular, we use the
New York city map. Additionally we have employed a second road map from the UA
Census 2000 TIGER/Line Files, which was assembled by Dr. Dominik Schultes 1 and
is available from the same site. In particular, we use the Vermont State map.

All DIMACS maps provide two different cost values: physical distance and travel
time. An additional cost was introduced in Machuca & Mandow (2011) by calculating
the travel economic cost. This was obtained combining tolls and fuel consumption
according to road category. The resulting values are not linearly correlated to those
of the other cost values. The experiments reported below consider the simultaneous
minimization of these three attributes, physical distance (c1), travel time (c2), and
travel economic cost (c3) (further details about these experiments can be seen in Section
3.2.2).

The two maps selected for our experiments have different sizes. Table 7.1 shows the
coordinates and number of nodes and arcs for each map. The NY city map represents
a difficult problem to be tackled with three objectives and only some problems could
be solved. The other map, VTcut, corresponds to a trimmed version of the original
map of Vermont, reduced to approximately 70% of its original size in order to allow
the solution of the complete set of experiments by all the algorithms. Renderings of
the NY and VTcut maps are presented in Figures 7.1 and 7.2, respectively.

We selected the first twenty problems for the New York city road map proposed
in Machuca et al. (2012). These problems were randomly generated using an uniform

1<mail@dominik-schultes.de>

107

108 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.1. Maps employed in the road map experiments. (∗) corresponds to a cut of
the original map.

Description Acronym Nodes Arcs Longitude Latitude
New York city NY 264,346 730,100 [73.5-74.5]◦W [40.3-41.3]◦N
Vermont State∗ VTcut 69,575 152,012 [72-73.5]◦W [43.5-45.0]◦N

Figure 7.1. Rendering of NY city
map

Figure 7.2. Cut of Vermont map
(squared)

distribution to select start and destination nodes. In a similar manner, we genera-
ted twenty random problems for the VTcut map. These test sets and the additional
generated map files are available online 2.

Since previously reported runtimes of NAMOA∗ solving a biobjective version of
these problems (minimizing c2 and c3, i.e. much easier problems) were up to several
days (Machuca, 2011), we also established a runtime limit of 8 hours for the experiments
over the NY city map.

The algorithms were implemented in Common Lisp using LispWorks Professional
6.01 (64-bit), and run on a Sun Fire X4140 server with 2 six-core AMD Opteron 2435
at 2.60 GHz processors and 64 GB of DDR2 RAM memory. This machine is slower
than the one employed to solve the random grid experiments, however, it was chosen
due to the greater memory space requirements of the problem analyzed here. All
experiments were run on a single thread.

In the following, we conduct an experimental evaluation of the algorithms in an
analogous fashion of that performed in Chapter 6 for random grid problems.

7.1 LEXGO∗ vs NAMOA∗

This section analyzes NAMOA∗ and LEXGO∗on the realistic road maps of Vermont
and New York city. The study is applied to the lexicographic and linear selection

2http://alef.iaia.lcc.uma.es/projects/alef-public/wiki/Benchmarks

7.1. LEXGO∗ vs NAMOA∗ 109

orders (see Definitions 2.13 and 2.14 for further description), and performed over the
two classes of experiments already described for random grids in Section 6.1.

The full set of experiments on Vermont was solved by all the algorithms, how-
ever, out of the twenty problems which compose the problem set of New York city,
NAMOA∗lex and NAMOA∗lin were capable of solving only four of them, NY#2, NY#4,
NY#5 and NY#16. The comparison to their LEXGO∗ counterpart using the same
selection order follows.

7.1.1 Analysis on class I experiments

Target values for LEXGO∗ were defined as in Equation 3.1 for random grids class I ex-
periments. Table 7.2 displays the percentage of goal-optimal solution vectors returned
by LEXGO∗ relative to the full set (C∗) returned by NAMOA∗.

Table 7.3 shows the relative percentage number of scanned labels by LEXGO∗lin to
NAMOA∗linin Vermont and NY city maps. As it was mentioned before, the number of
explored labels by NAMOA∗lin is nearly the same as NAMOA∗lex. This slight difference
is attributed to the lazy filtering procedure applied to both alternatives. This is also
the case of LEXGO∗lex and LEXGO∗lin.

Finally, Tables 7.4 and 7.5 display the runtimes of NAMOA∗ and the relative time of
LEXGO∗ to NAMOA∗ for the maps of Vermont and NY city with the lexicographic and
linear selection orders, respectively. When the runtime of NAMOA∗ was smaller than
0.01 seconds, we display < 0.01 in the tables, and complete the relative percentages
of LEXGO∗ with dashes to indicate that those are not significative. Likewise, if the
relative percentage of runtime of LEXGO∗ to NAMOA∗ was smaller than 0.01%, we
simply display < 0.01.

The results obtained for the road map problems are much more heterogeneous than
the ones for random grids. Thus, we can observe a wide range of goal-optimal solution
ratios, for instance, the range of ratios of goal-optimal solution vectors returned for
k1 = 0.75 varies from 1.64% to 92.82% (see Table 7.2) for Vermont map problems
(VT#16 and VT#13, respectively). This could be expected, since the road map
experiments represent a realistic scenario, on the contrary, the random grids were
generated using an uniform distribution. However, both scenarios share the inability
to satisfy the goals when k1 = 0.25 or k1 = 0.

The heterogeneity of the results remains regarding the labels scanned and the
runtime of LEXGO∗, however, it shall be noticed that the runtime comparison between
NAMOA∗lex and NAMOA∗lin does not show a clear advantage to NAMOA∗lin, as it
happens in the grids experiments.

Regarding the lexicographic order, LEXGO∗ does perform in a very similar manner
for the road maps as for the random grids. LEXGO∗ explores for the most difficult
problem solved by both algorithms, VT#11 of Vermont, 98.27%, 72.55% and 69.46%
of the labels explored by NAMOA∗ for k1 = 1, k1 = 0.75 and k1 = 0.5, respectively.

The small time overhead observed in grid experiments for k1 = 1 is also found
in some of the road map experiments, as well as the important reductions in labels
scanned and runtimes when k1 = 0.25 or k1 = 0, regardless the function employed as
selection order.

We will further analyze in depth these data and the class II experiments reported

110 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.2. Class I experiments in road maps, percentage of goal-optimal solution
vectors relative to C∗ for solvable problems within the time limit by LEXGO∗ and
NAMOA∗. An asterisk (∗) indicates that the goals could not be satisfied.

LEXGO∗

NAMOA∗ 1 0.75 0.5 0.25 0 k1

n |C∗| % % % % %

Ve
rm

on
t

1 1,252 100 3.04 0.64 ∗0.08 ∗0.08
2 223 100 38.57 34.53 ∗0.45 ∗0.45
3 34 100 67.65 29.41 ∗2.94 ∗2.94
4 4,759 100 57.11 17.42 ∗0.02 ∗0.02
5 334 100 36.23 1.80 ∗0.30 ∗0.30
6 7,576 100 84.52 19.97 ∗0.01 ∗0.01
7 3 100 33.33 ∗33.33 ∗33.33 ∗33.33
8 5 100 60.00 20.00 ∗20.00 ∗20.00
9 206 100 47.09 23.30 ∗0.49 ∗0.49
10 9,712 100 82.22 20.15 ∗0.01 ∗0.01
11 14,537 100 54.95 48.81 ∗0.01 ∗0.01
12 1,648 100 32.52 ∗0.06 ∗0.06 ∗0.06
13 10,256 100 92.82 43.80 ∗0.01 ∗0.01
14 444 100 55.41 21.17 ∗0.23 ∗0.23
15 1,310 100 49.16 4.81 ∗0.08 ∗0.08
16 1,216 100 1.64 ∗0.08 ∗0.08 ∗0.08
17 8,189 100 58.30 23.70 ∗0.01 ∗0.01
18 38 100 65.79 18.42 ∗2.63 ∗2.63
19 1 100 100.00 100.00 100.00 100.00
20 4,949 100 33.97 9.23 ∗0.02 ∗0.02

N
Y

ci
ty

2 303 100 57.42 4.62 ∗0.33 ∗0.33
4 4,429 100 88.82 74.32 ∗0.02 ∗0.02
5 7 100 71.42 ∗14.28 ∗14.28 ∗14.28
16 1,640 100 48.35 ∗0.06 ∗0.06 ∗0.06

7.1. LEXGO∗ vs NAMOA∗ 111

Table 7.3. Class I experiments in road maps, relative percentage number of scanned
labels by LEXGO∗lin to NAMOA∗lin.

LEXGO∗lin
NAMOA∗lin 1 0.75 0.5 0.25 0 k1

n
∑
Gcl % % % % %

Ve
rm

on
t

1 211,268 99.73 46.80 11.63 4.05 0.07
2 115,435 99.99 50.41 43.08 17.81 0.44
3 11,332 96.86 83.15 49.28 15.91 2.06
4 1,134,467 99.99 80.17 32.35 2.95 0.03
5 45,650 96.65 72.95 16.58 3.59 1.65
6 5,497,553 99.17 93.42 44.25 2.88 0.01
7 187 73.26 55.61 55.08 57.75 45.99
8 480 88.33 61.46 33.96 22.29 22.08
9 65,140 99.76 67.24 39.98 15.10 0.71
10 5,332,256 98.31 86.29 33.43 9.20 0.02
11 10,125,074 98.27 72.55 69.46 19.64 0.02
12 127,611 97.45 29.81 5.49 3.33 0.54
13 8,664,536 99.98 97.45 70.83 20.19 0.01
14 47,215 99.30 76.21 34.57 4.91 0.19
15 571,195 99.95 93.83 68.61 3.35 0.21
16 88,699 96.76 47.69 33.91 20.55 0.44
17 1,223,581 99.60 73.43 26.25 4.96 0.16
18 11,021 76.33 52.55 36.53 13.51 2.79
19 92 64.13 64.13 64.13 64.13 64.13
20 1,904,080 99.99 71.65 39.55 11.26 0.03

N
Y

ci
ty

2 17,294 93.96 61.91 17.83 2.80 3.64
4 3,390,656 99.40 92.23 74.00 9.14 0.01
5 719 47.98 32.96 10.43 6.53 8.20
16 2,445,191 81.14 47.17 11.67 0.53 0.01

112 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.4. Class I experiments in road maps, relative percentage runtimes in seconds
for LEXGO∗lex and NAMOA∗lex.

LEXGO∗lex

NAMOA∗lex 1 0.75 0.5 0.25 0 k1

n Runtime (s) % % % % %

Ve
rm

on
t

1 39.95 106.68 16.20 3.12 1.21 0.04
2 7.05 118.81 41.81 32.29 18.81 0.67
3 0.32 137.80 117.18 58.43 18.90 <0.01
4 1,386.53 99.14 59.88 7.81 0.28 <0.01
5 2.49 111.26 66.23 22.52 2.48 2.52
6 17,731.38 95.35 76.09 12.22 0.18 <0.01
7 <0.01 - - - - -
8 <0.01 - - - - -
9 3.60 121.23 61.48 28.56 16.46 0.42

10 17,828.99 100.05 73.27 6.57 1.62 <0.01
11 30,318.76 99.85 57.99 47.17 2.77 <0.01
12 40.21 97.90 11.09 1.09 0.85 0.04
13 29,337.51 104.79 97.68 38.46 7.92 <0.01
14 3.83 102.84 68.71 26.81 3.26 <0.01
15 115.33 102.54 83.58 42.54 0.78 0.03
16 8.54 94.53 18.61 18.25 8.57 <0.01
17 2,245.32 96.76 44.88 5.07 0.39 <0.01
18 0.34 104.66 113.70 40.82 18.37 <0.01
19 <0.01 - - - - -
20 1,899.15 95.95 33.55 7.18 2.23 <0.01

N
Y

ci
ty

2 1.48 97.97 54.72 15.54 0.67 0.67
4 4,752.77 101.94 84.97 59.52 1.57 <0.01
5 <0.01 - - - - -

16 559.76 81.93 41.86 11.30 0.18 <0.01

7.1. LEXGO∗ vs NAMOA∗ 113

Table 7.5. Class I experiments in road maps, relative percentage runtimes in seconds
for LEXGO∗lin and NAMOA∗lin.

LEXGO∗lin
NAMOA∗lin 1 0.75 0.5 0.25 0 k1

n Runtime (s) % % % % %

Ve
rm

on
t

1 40.02 98.71 20.78 4.80 1.29 0.04
2 7.35 125.05 47.35 42.46 22.71 0.22
3 0.30 194.93 166.66 94.59 26.35 5.41
4 1,428.44 88.94 55.66 7.46 0.33 <0.01
5 2.62 136.28 97.02 19.65 2.40 1.18
6 17,913.28 90.27 77.75 12.81 0.19 <0.01
7 <0.01 - - - - -
8 <0.01 - - - - -
9 3.42 131.02 73.95 45.22 21.45 0.91

10 17,167.54 100.51 70.97 8.03 1.83 <0.01
11 28,712.69 96.00 52.18 42.35 3.83 <0.01
12 39.25 106.76 12.44 1.31 0.60 0.20
13 27,556.06 101.59 95.62 34.33 9.40 <0.01
14 3.88 127.32 91.99 35.35 4.02 <0.01
15 108.65 102.89 93.65 60.95 1.38 0.04
16 7.64 109.59 28.98 21.23 15.50 0.20
17 2,077.78 100.42 51.94 5.04 0.48 <0.01
18 0.52 93.79 96.89 45.44 12.23 3.11
19 <0.01 - - - - -
20 1,699.91 104.33 29.30 9.66 2.87 <0.01

N
Y

ci
ty

2 1.43 129.37 86.01 25.87 2.09 0.69
4 3,963.98 110.34 105.57 85.97 4.35 <0.01
5 <0.01 - - - - -

16 712.59 71.32 52.04 11.02 0.14 <0.01

114 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.6. Class II experiments in road maps, LEXGO∗ percentage of goal-optimal
solution vectors relative to the size of C∗. An asterisk (∗) indicates that the goals could
not be satisfied.

LEXGO∗

0.75 0.5 k1
NAMOA∗ 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

n |C∗| % % % % % % % %

Ve
rm

on
t

1 1,252 3.04 3.04 0.32 0.08 0.64 0.08 0.08 0.08
2 223 38.57 36.77 24.66 14.80 34.53 24.66 15.70 11.21
3 34 67.65 64.71 55.88 35.29 29.41 20.59 5.88 2.94
4 4,759 57.11 54.32 29.57 8.01 17.42 6.41 1.41 0.02
5 334 36.23 24.25 12.28 0.30 1.80 0.30 0.30 0.30
6 7,576 84.52 68.99 42.56 9.75 19.97 6.89 0.01 0.01
7 3 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
8 5 60.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00
9 206 47.09 36.89 30.58 16.50 23.30 22.33 16.02 0.49

10 9,712 82.22 49.24 14.93 1.01 20.15 4.17 0.01 0.01
11 14,537 54.95 53.64 42.46 21.73 48.81 39.85 23.66 7.36
12 1,648 32.52 31.98 31.98 18.63 0.06 0.06 0.06 0.06
13 10,256 92.82 89.12 53.64 20.69 43.80 22.24 13.31 0.09
14 444 55.41 49.77 33.56 3.60 21.17 7.88 0.68 0.23
15 1,310 49.16 34.43 28.24 14.73 4.81 4.12 2.82 0.08
16 1,216 1.64 0.08 0.08 0.08 0.08 0.08 0.08 0.08
17 8,189 58.30 55.50 32.34 3.04 23.70 8.19 0.10 0.01
18 38 65.79 65.79 47.37 42.11 18.42 10.53 10.53 2.63
19 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 4,949 33.97 25.16 15.15 0.02 9.23 2.61 0.02 0.02

N
Y

ci
ty

2 303 57.42 50.49 30.69 ∗0.33 4.62 ∗0.33 ∗0.33 ∗0.33
4 4,429 88.82 87.76 70.28 8.19 74.32 63.44 21.49 0.29
5 7 71.42 42.85 28.57 ∗14.28 ∗14.28 ∗14.28 ∗14.28 ∗14.28

16 1,640 48.53 17.98 3.04 ∗0.06 ∗0.06 ∗0.06 ∗0.06 ∗0.06

below in the summary section.

7.1.2 Analysis on class II experiments

In the second class of experiments, goal preferences and target values were defined
using k1 = {0.75, 0.5} with all possible values of k2 defined in Equation 3.2. Tables
7.6 displays the relative number of goal-optimal solution vectors to the full Pareto set.
The number of scanned labels for these maps is shown in Table 7.7. Finally, Tables
7.8 and 7.9 show runtimes of LEXGO∗ and NAMOA∗ with lexicographic and linear
selection orders, respectively.

There are several cases where the solution returned is exactly the same. When
problems NY#5 and NY#16 are solved with k1 = 0.5 the only solution returned, the
one which minimizes the deviation from goals, is the same for all values of k2.

It can be observed that both, LEXGO∗lin and LEXGO∗lex, outperform their NAMOA∗
counterparts when either k1 = 0.75 or k1 = 0.5, except for the problem VT#3.

7.1. LEXGO∗ vs NAMOA∗ 115

Table 7.7. Class II experiments in road maps, relative number of scanned labels by
LEXGO∗ and NAMOA∗ on lexicographic selection order.

LEXGO∗lin
0.75 0.5 k1

NAMOA∗lin 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

n
∑
Gcl % % % % % % % %

Ve
rm

on
t

1 211,268 46.80 44.21 33.78 31.55 11.63 9.91 9.91 9.91
2 115,435 50.41 49.98 43.35 32.32 43.08 37.83 30.73 19.11
3 11,332 83.15 78.08 72.31 43.98 49.28 44.98 26.45 23.01
4 1,134,467 80.17 79.10 54.28 25.85 32.35 15.50 4.90 3.69
5 45,650 72.95 61.01 32.07 16.42 16.58 11.82 11.41 11.41
6 5,497,553 93.42 83.51 55.34 14.48 44.25 28.19 8.94 8.94
7 187 55.61 55.61 55.61 55.61 55.08 55.08 55.08 55.08
8 480 61.46 47.29 22.29 22.08 33.96 22.29 22.08 22.08
9 65,140 67.24 61.04 45.71 32.52 39.98 32.14 26.18 11.74
10 5,332,256 86.29 63.39 26.69 4.26 33.43 13.75 5.17 5.17
11 10,125,074 72.55 72.24 68.17 40.86 69.46 65.85 51.88 19.27
12 127,611 29.81 26.58 26.54 15.69 5.49 5.49 5.49 5.49
13 8,664,536 97.45 97.09 84.46 27.20 70.83 60.09 31.32 1.89
14 47,215 76.21 66.15 37.68 7.09 34.57 18.48 3.60 2.37
15 571,195 93.83 87.18 75.67 56.63 68.61 60.84 52.78 28.48
16 88,699 47.69 41.25 41.25 41.25 33.91 33.91 33.91 33.91
17 1,223,581 73.43 71.77 57.03 20.66 26.25 14.31 1.89 1.66
18 11,021 52.55 52.21 49.68 46.14 36.53 35.68 35.01 31.46
19 92 64.13 64.13 64.13 64.13 64.13 64.13 64.13 64.13
20 1,904,080 71.65 66.27 46.16 16.18 39.55 24.51 11.51 11.51

N
Y

ci
ty

2 17,294 61.91 53.45 32.15 6.74 17.83 12.25 12.25 12.25
4 3,390,656 92.23 91.91 82.21 25.98 74.00 67.66 44.58 7.05
5 719 32.96 25.45 17.80 9.59 10.43 10.43 10.43 10.43
16 2,445,191 47.17 25.79 9.41 2.76 11.67 11.67 11.67 11.67

116 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.8. Class II experiments in road maps, runtimes in seconds of NAMOA∗lex and
LEXGO∗lex percentage of runtime compared to NAMOA∗lex.

LEXGO∗lex

0.75 0.5 k1
NAMOA∗lex 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

n Runtime (s) % % % % % % % %

Ve
rm

on
t

1 39.95 16.20 16.01 18.04 32.95 3.12 3.71 4.06 5.15
2 7.05 41.81 43.37 33.19 30.76 32.29 27.43 25.88 17.03
3 0.32 117.18 104.57 97.5 52.13 58.43 52.44 29.06 28.66
4 1,386.53 59.88 62.11 23.77 4.94 7.81 1.45 0.25 0.32
5 2.49 66.23 56.85 41.87 25.64 22.52 9.98 12.5 21.23
6 17,731.38 76.09 56.61 23.61 1.25 12.22 4.62 0.74 1.59
7 <0.01 - - - - - - - -
8 <0.01 - - - - - - - -
9 3.60 61.48 55.87 41.99 25.53 28.56 27.70 20.79 14.29
10 17,828.99 73.27 29.91 3.95 0.19 6.57 1.15 0.41 0.75
11 30,318.76 57.99 56.67 42.22 16.53 47.17 38.78 24.12 4.01
12 40.21 11.09 9.12 9.62 4.15 1.09 1.09 1.05 1.09
13 29,337.51 97.68 91.96 53.87 6.39 38.46 22.80 6.83 0.08
14 3.83 68.71 57.30 38.61 7.71 26.81 12.19 1.64 1.64
15 115.33 83.58 75.59 53.82 36.58 42.54 35.66 31.07 16.96
16 8.54 18.61 18.43 23.00 22.27 18.25 17.71 15.51 16.42
17 2,245.32 44.88 41.85 21.15 2.45 5.07 1.11 0.06 0.05
18 0.34 113.7 63.85 59.18 100.00 40.82 45.48 40.82 41.11
19 <0.01 - - - - - - - -
20 1,899.15 33.55 21.84 10.66 5.19 7.18 2.61 1.67 2.10

N
Y

ci
ty

2 1.48 57.14 50.00 37.85 4.50 16.42 15.57 17.85 17.78
4 4,752.77 84.97 85.43 55.18 5.61 59.52 39.85 13.19 0.86
5 <0.01 - - - - - - - -
16 559.76 41.86 21.77 5.92 2.26 11.29 13.91 15.06 15.30

7.1. LEXGO∗ vs NAMOA∗ 117

Table 7.9. Class II experiments in road maps, runtimes in seconds of NAMOA∗lin and
LEXGO∗lin percentage of runtime compared to NAMOA∗lin.

LEXGO∗lin
0.75 0.5 k1

NAMOA∗lin 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

n Runtime (s) % % % % % % % %

Ve
rm

on
t

1 40.01 20.78 21.17 37.66 42.61 4.80 5.03 5.30 5.65
2 7.34 47.35 56.48 44.58 34.19 42.46 39.70 32.91 19.54
3 0.29 221.28 231.76 147.64 153.04 94.59 84.12 52.70 42.23
4 1,428.43 55.66 51.21 26.87 5.55 7.46 1.71 0.33 0.37
5 2.62 97.02 82.14 73.83 41.09 19.65 13.70 21.40 15.45
6 17,913.28 77.75 55.72 23.64 1.51 12.81 6.25 0.93 1.79
7 <0.01 - - - - - - - -
8 <0.01 - - - - - - - -
9 3.41 73.95 71.20 49.31 36.99 45.22 38.34 26.92 12.79
10 17,167.53 70.97 31.26 4.90 0.29 8.03 1.70 0.57 0.82
11 28,712.68 52.18 48.93 42.12 19.42 42.35 37.41 25.37 5.52
12 39.25 12.44 10.09 10.57 4.73 1.31 1.27 1.27 1.31
13 27,556.06 95.62 87.11 62.33 7.95 34.33 26.01 8.44 0.13
14 3.88 91.99 81.54 45.80 4.81 35.35 24.49 5.61 2.01
15 108.65 93.65 94.52 73.55 74.26 60.95 56.35 57.83 38.00
16 7.64 28.98 26.73 33.07 30.82 21.23 24.90 22.04 23.05
17 2,077.77 51.94 46.93 22.64 3.21 5.04 1.40 0.07 0.08
18 0.51 96.89 57.67 54.56 51.46 45.44 45.44 84.85 78.83
19 <0.01 - - - - - - - -
20 1,699.91 29.30 24.70 18.36 8.33 9.66 6.06 2.40 2.67

N
Y

ci
ty

2 1.43 86.01 70.62 44.75 10.48 25.87 20.27 18.18 18.18
4 3,963.98 105.57 106.69 106.50 19.23 85.97 71.12 44.33 3.73
5 <0.01 - - - - - - - -
16 712.59 52.04 30.86 7.84 2.12 11.02 12.47 13.04 13.47

118 Chapter 7. Empirical Analysis On Road Map Problems

7.1.3 Summary

We have analyzed the relative space and runtime performance of LEXGO∗ over NAMOA∗
on road map problems. Two different functions to select the best alternative from the
OPEN set have been also tested with both algorithms. Tables 7.10 and 7.11 summarize
the outcome of the class I and class II experiments.

In class I experiments, the number of goal-optimal solution vectors found when
k1 = 0.75 is slightly smaller than for the grid experiments, whereas it is slightly greater
when k1 = 0.5. The scanned labels follow the same trend.

The experiments over random grids shown in Chapter 6 defined a clear advantage
of the linear selection order over the lexicographic one when applied to NAMOA∗.
However, in our road map experiments, the practical advantage of NAMOA∗lin over
NAMOA∗lex is greatly reduced to 4.3% (see Tables 7.11(a) and 7.11(b)).

The relative improvement of LEXGO∗lin over NAMOA∗lin is enhanced in comparison
with the results of grids. In those, the majority of the experiments in class II with
k1 = 0.75 could not achieve a runtime improvement over NAMOA∗lin. Nevertheless,
LEXGO∗lin in road maps achieves a relative improvement over NAMOA∗lin very similar
to the improvement achieved by LEXGO∗lex over NAMOA∗lex.

7.2 NAMOA∗dr vs NAMOA∗

This section analyzes the runtime performance of the three different versions of the
NAMOA∗ algorithm, NAMOA∗lex, NAMOA∗lin and NAMOA∗dr. The experiments pre-
sented in this section analyze the impact of the dimensionality reduction technique on
the sets of road map problems already presented.

The three versions of NAMOA∗ differ in the order of selection of OPEN labels
and/or in the way dominance is checked in filtering and cl-pruning operations. The
first and second variants are NAMOA∗lex and NAMOA∗lin, and both use, to the best
of our knowledge, the usual dominance pruning and filtering technique in previously
reported experimental evaluations of multiobjective search algorithms. The third algo-
rithm analyzed, NAMOA∗dr, uses a lexicographic order of selection and the t-discarding
technique, described in Section 4.2, for filtering and cl-pruning.

7.2.1 Analysis

Tables 7.12 and 7.13 show the size of relevant label sets for each problem instance
solved by NAMOA∗dr, as well as NAMOA∗lin and NAMOA∗dr runtimes for the NY city
and Vermont maps, respectively. The first column displays the problem identifier (n).
The description of these sets is the same presented previously in Table 6.6. Notice that
for NY map only problems solved within the time limit are displayed in this table.
Figure 7.3 shows the runtimes in logarithmic scale of NAMOA∗lin and NAMOA∗dr for
VTcut map sorted by the number of scanned labels by each problem.

Finally, Figures 7.4(a) and 7.4(b) show the percentage of labels filtered, pruned
by open, and pruned by closed node labels over the total number of discarded labels
by NAMOA∗dr, for the maps of NY city and Vermont, respectively. The X-axis shows
problem ids sorted by the number of scanned labels.

7.2. NAMOA∗dr vs NAMOA∗ 119

Table 7.10. Class I experiments in road maps, summary of the relative space and
time performance of LEXGO∗ over NAMOA∗.

(a) Relative average number of goal-optimal solution vectors for
the Vermont problems

LEXGO∗

NAMOA∗ 1 0.75 0.5 0.25 0 k1

Avg. |C∗| % % % % %
3,334.6 100 64.34 27.89 0.03 0.03

(b) Relative average number of scanned labels for the Vermont pro-
blems

LEXGO∗lin
NAMOA∗lin 1 0.75 0.5 0.25 0 k1

Avg.
∑
Gcl % % % % %

1,758,843.6 99.06 84.15 55.12 13.60 0.04

(c) Relative average time performance of LEXGO∗lex to NAMOA∗lex for the
Vermont problems

LEXGO∗lex

NAMOA∗lex 1 0.75 0.5 0.25 0 k1

Avg. runtime (s) % % % % %
5,048.47 100.39 74.67 29.06 3.51 <0.01

(d) Relative average time performance of LEXGO∗lin to NAMOA∗lin for the
Vermont problems

LEXGO∗lin
NAMOA∗lin 1 0.75 0.5 0.25 0 k1

Avg. runtime (s) % % % % %
4,838.46 97.49 72.28 26.61 4.25 <0.01

120 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.11. Class II experiments in road maps, summary of the relative space and
runtime performance of LEXGO∗ over NAMOA∗ for the Vermont map experiments.

(a) Relative average number of goal-optimal solution vectors

LEXGO∗

0.75 0.5 k1
NAMOA∗ 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

Avg. |C∗| % % % % % % % %
3,334.6 64.34 55.25 33.59 11.04 27.89 15.47 7.50 1.68

(b) Relative average number of scanned labels

LEXGO∗lin
0.75 0.5 k1

NAMOA∗lin 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

Avg.
∑
Gcl % % % % % % % %

1,758,843.6 84.15 78.37 61.34 25.29 55.12 43.97 26.89 9.74

(c) Relative average runtime performance of LEXGO∗lex to NAMOA∗lex

LEXGO∗lex

0.75 0.5 k1
NAMOA∗lex 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

Avg. runtime (s) % % % % % % % %
5,048.47 74.67 61.26 34.25 7.36 29.06 19.43 9.51 1.71

(d) Relative average runtime performance of LEXGO∗lin to NAMOA∗lin

LEXGO∗lin
0.75 0.5 k1

NAMOA∗lin 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

Avg. runtime (s) % % % % % % % %
4,838.46 72.28 57.51 36.81 8.77 26.61 20.20 10.33 2.26

7.2. NAMOA∗dr vs NAMOA∗ 121

Table 7.12. Size of relevant sets of labels for VTcut road map experiments solved by
NAMOA∗dr

Size of relevant sets of labels of NAMOA∗dr Runtime (sec)
n Max OPEN

∑
Gcl

∑
T (Gcl) % C∗ T (C∗) % tNAMOA∗lin tNAMOA∗dr

1 1,352 209,906 27,353 13.03 1,252 62 4.95 40.0 9.2
2 2,157 114,109 40,522 35.51 223 86 38.57 7.3 4.6
3 1,062 11,483 11,477 99.95 34 34 100.00 0.3 0.4
4 2,717 1,132,450 59,068 5.22 4,759 57 1.20 1,428.4 47.5
5 922 44,950 10,398 23.13 334 12 3.59 2.6 2.0
6 4,373 5,445,252 160,410 2.95 7,576 145 1.91 17,913.2 259.0
7 61 178 178 100.00 3 3 100.00 <0.01 <0.01
8 62 483 483 100.00 5 5 100.00 <0.01 <0.01
9 1,636 64,226 43,787 68.18 206 150 72.82 3.4 2.4
10 7,271 5,229,959 32,398 0.62 9,712 23 0.24 17,167.5 246.0
11 31,846 10,057,176 286,083 2.84 14,537 247 1.70 28,712.6 527.5
12 1,974 127,731 15,947 12.48 1,648 70 4.25 39.2 4.7
13 9,387 8,640,728 137,410 1.59 10,256 139 1.36 27,556.0 395.2
14 819 46,861 9,650 20.59 444 14 3.15 3.8 1.8
15 12,648 568,388 90,676 15.95 1,310 170 12.98 108.6 33.3
16 1,558 87,522 51,641 59.00 1,216 48 3.95 7.6 4.7
17 2,596 1,207,119 41,414 3.43 8,189 94 1.15 2,077.7 51.2
18 1,331 10,270 5,550 54.04 38 18 47.37 0.5 0.4
19 34 92 92 100.00 1 1 100.00 <0.01 <0.01
20 24,671 1,856,420 171,675 9.25 4,949 255 5.15 1,699.9 102.5

Table 7.13. Results of NY city road map experiments with size of relevant sets of
labels of NAMOA∗dr and runtimes of NAMOA∗lin and NAMOA∗dr.

Size of relevant sets of labels of NAMOA∗dr Runtime (sec)
n Max OPEN

∑
Gcl

∑
T (Gcl) % C∗ T (C∗) % tNAMOA∗lin tNAMOA∗dr

1 379,060 274,567,814 2,158,829 0.79 93,464 45 0.05 - 27,632.3
2 185 17,294 1,771 10.24 303 12 3.96 1.4 0.7
3 - - - - - - - - -
4 8,636 3,390,656 28,088 0.83 4,429 24 0.54 3,963.9 149.3
5 44 719 613 85.26 7 1 14.29 <0.01 <0.01
6 152,988 80,721,099 628,829 0.78 40,606 163 0.40 - 11,641.6
7 160,079 182,473,300 1,118,218 0.61 58,410 308 5.27 - 21,768.3
8 - - - - - - - - -
9 - - - - - - - - -
10 464,998 214,901,344 1,070,285 0.50 92,048 31 0.03 - 26,107.8
11 35,544 24,584,323 812,383 3.30 26,575 401 1.51 - 1,452.5
12 - - - - - - - - -
13 - - - - - - - - -
14 159,041 278,481,469 6,296,377 2.26 108,856 346 0.32 - 21,957.6
15 844,037 136,776,273 5,256,283 3.84 23,678 26 0.11 - 16,582.9
16 6,821 2,445,191 242,832 9.93 1,640 69 4.20 712.5 106.8
17 - - - - - - - - -
18 236,826 270,364,947 1,630,261 0.60 95,072 242 0.25 - 25,599.0
19 67,883 108,347,749 1,137,035 1.05 46,205 241 0.52 - 8,355.3
20 482,686 162,419,342 1,788,698 1.10 77,051 156 0.20 - 15,617.3

122 Chapter 7. Empirical Analysis On Road Map Problems

Figure 7.3. Runtimes of NAMOA∗lin and NAMOA∗dr for the VTcut map problems
sorted by the number of labels expanded.

The experiments on the realistic road map problems are much harder than the
random grid problems. The largest solvable one (NY#14) requiring up to 278 million
label expansions (the deepest grid problems involved in average 2.5 million label ex-
pansions, and 3.3 million in the worst case). Again, NAMOA∗dr clearly outperformed
NAMOA∗lin, which could only solve problems involving less than 10.1 million label ex-
pansions (VT#11). For such a problem, NAMOA∗dr required only 1.83% of the time
needed by NAMOA∗lin.

On one hand, NAMOA∗lin was capable of solving only 4 problems from the NY set
(20%), while NAMOA∗dr solved 14 (70%) (see Table 7.13), and on the other hand, in
the test set of VTcut map, which was entirely solved by both algorithms, NAMOA∗dr
requires 1.74% of the time needed by NAMOA∗lin(see Table 7.14). Notice that for the
NY map the algorithms were not capable of solving several problem instances in the
given 8 hour time limit. These are indicated by symbol “-” in the table. Problems
#11 and #6 were solved by NAMOA∗lin without time limit in 31 hours and 25 days,
respectively.

Except for the simpler problems, cl-pruning was responsible for around 70 to 80%
of the discarded labels (see Figures 7.4(a) and 7.4(b)). In general, the ratio of filtered
labels was larger than those discarded by op-pruning. Once again, this explains the
efficiency achieved by t-discarding. Tables 7.12 and 7.13 show dramatic reductions in
the sizes of the sets used for cl-pruning and filtering. For the hardest solved instance
(NY#14), the size of T (C∗) is just 0.32% the size of C∗. For the sets of closed labels,
the ratio is 2.26%.

7.2.2 Summary

The proposed t-discarding procedure proves to be very effective, reducing the time re-
quirements over an order of magnitude over the most efficient search with the standard
dominance checks. The new technique effectively extends the size of the three-objective

7.2. NAMOA∗dr vs NAMOA∗ 123

(a) NY city map

(b) Vermont state map

Figure 7.4. Percentage of pruned and filtered labels over the total number of dis-
carded labels by NAMOA∗dr per solution depth in road map experiments.

Table 7.14. Summary of V Tcut map results.

Map (
∑

Gcl∑
T (Gcl)

)% (
∑

C∗∑
T (C∗))% C∗ tNAMOA∗lin tNAMOA∗dr %

VTcut 3.43 2.45 3,334.6 4,838.4 84.6 1.74

124 Chapter 7. Empirical Analysis On Road Map Problems

problems that can be practically solved and opens a range of possibilities for multi-
objective search algorithms to become more time-efficient. Thus, we then analyze the
runtime performance of the application of this technique to the algorithm LEXGO∗.

7.3 LEXGO∗dr vs LEXGO∗

This section analyzes the three versions of LEXGO∗ already presented, LEXGO∗lex,
LEXGO∗lin, and LEXGO∗dr. A detailed description of LEXGO∗ and LEXGO∗dr are
presented in Sections 4.1 and 4.4, respectively.

The experiments below analyze the impact of the dimensionality reduction tech-
nique over the sets of random road map problems previously used, employing the goals
already described in previous sections. The analysis is conducted over the Vermont
problems and the NY city problems able to be solved by LEXGO∗lex or LEXGO∗lin.
Notice that for a problem to be considered solved, all class I and II experiments must
be solved within the time limit. The standard versions of LEXGO∗ solved four and
LEXGO∗dr six out of the twenty problems considered in the NY city map.

7.3.1 Analysis on class I experiments

Table 7.15 displays all the runtimes in seconds corresponding to Vermont and NY city
problems solved by LEXGO∗dr. Table 7.16 summarizes the average execution times
of Vermont problems for LEXGO∗lex, LEXGO∗lin, and LEXGO∗dr. Finally, Table 7.17
shows the runtimes of LEXGO∗lex, LEXGO∗lin, and LEXGO∗dr for problems NY#4 and
NY#16 (runtimes of problems NY#2 and NY#5 are not shown since they are too
small to be significative).

In this first class of problems, LEXGO∗dr has a substantial advantage over both
standard versions of LEXGO∗. LEXGO∗dr solves the full set of Vermont problems
in 1.87% and 2.01% of the time needed by LEXGO∗lex and LEXGO∗lin when k1 = 1,
respectively. The time needed by LEXGO∗dr is 2.21% and 2.39%, and 3.91% and 4.45%
with respect to LEXGO∗lex and LEXGO∗lin when k1 = 0.75 and k1 = 0.5. Regarding
the experiments where the goals cannot be satisfied, the improvement of LEXGO∗dr
is 11.45% and 23.55% over LEXGO∗lex and LEXGO∗lin when k1 = 0.25, respectively,
whereas all the runtimes when k1 = 0 are equal to 0.03 seconds. It is also worth noting
that the runtime of LEXGO∗dr when k1 = 0.25 is greater than the runtimes when
goals can be satisfied, i.e. when k1 = {1, 0.75, 0.5}. This is due to the fact that the
t-discarding technique is only applied to LEXGO∗ when goals can be satisfied, hence,
few problems when k1 = 0.25 can benefit from the dimensionality reduction technique.

Let’s turn now our attention to the NY city problems. Regarding problem NY#4,
LEXGO∗dr is more than twenty times faster than LEXGO∗lex and LEXGO∗lin when k1 =
{1, 0.75}, sixteen times faster when k1 = 0.5, and it has a similar performance when
goals cannot be satisfied, i.e. when k1 = {0.25, 0}.

7.3.2 Analysis on class II experiments

Regarding the class II experiments, Table 7.18 displays all the runtimes in seconds
corresponding to Vermont and NY city problems solved by LEXGO∗dr. The average

7.3. LEXGO∗dr vs LEXGO∗ 125

Table 7.15. Class I experiments in road maps, runtimes in seconds of LEXGO∗dr for
the experiments over Vermont and NY city maps.

LEXGO∗dr

n 1 0.75 0.5 0.25 0 k1

Ve
rm

on
t

1 9.68 4.71 1.35 0.45 <0.01
2 4.99 2.49 2.44 1.29 0.06
3 0.68 0.42 0.20 0.18 0.03
4 55.58 43.72 18.42 4.10 0.03
5 2.37 1.82 0.59 0.06 0.04
6 291.90 278.64 175.31 32.85 0.03
7 <0.01 <0.01 <0.01 <0.01 <0.01
8 0.03 <0.01 <0.01 <0.01 <0.01
9 3.16 2.15 1.37 0.60 <0.01

10 265.2 258.7 117.81 274.95 0.10
11 584.45 427.56 401.99 357.66 0.09
12 5.50 1.96 0.60 0.18 0.03
13 464.60 491.77 332.82 2413.64 0.06
14 2.10 1.87 0.95 0.10 <0.01
15 33.36 30.60 23.35 1.32 0.09
16 4.52 1.90 1.70 0.88 <0.01
17 61.37 43.24 14.90 9.26 0.07
18 0.37 0.24 0.32 0.07 <0.01
19 <0.01 <0.01 <0.01 <0.01 <0.01
20 108.15 80.15 53.52 43.00 0.03

N
Y

ci
ty

2 0.87 0.65 0.28 0.01 <0.01
4 201.64 198.18 176.04 63.94 0.03
5 <0.01 <0.01 <0.01 <0.01 <0.01

11 1,753.57 1,668.50 1,366.86 3,664.96 0.07
16 118.63 116.22 62.97 0.96 0.01
19 10,873.42 10,960.56 10,005.21 1,506.29 0.45

Table 7.16. Class I experiments in road maps, summary of Vermont problems run-
times in seconds of LEXGO∗lex, LEXGO∗lin and LEXGO∗dr.

1 0.75 0.5 0.25 0 k1

LEXGO∗lex 5,068.00 3,769.51 1,467.00 177.33 0.03
LEXGO∗lin 4,716.90 3,497.26 1,287.37 205.39 0.03
LEXGO∗dr 94.90 83.59 57.38 157.02 0.03

126 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.17. Class I experiments in road maps, runtimes of LEXGO∗lex, LEXGO∗lin,
and LEXGO∗dr for two NY city problems.

Problem 4 16
Algorithm LEXGO∗lex LEXGO∗lin LEXGO∗dr LEXGO∗lex LEXGO∗lin LEXGO∗dr
(k1 = 1) 4,845.19 4,379.98 201.64 458.64 508.23 118.63
(k1 = 0.75) 4,038.80 4,184.89 198.18 234.34 370.87 116.22
(k1 = 0.5) 2,829.04 3,407.90 176.04 63.26 78.54 62.97
(k1 = 0.25) 74.89 172.52 63.94 1.03 1.01 0.96
(k1 = 0) 0.01 0.03 0.03 0.01 0.01 0.01

runtimes of Vermont problems for LEXGO∗lex, LEXGO∗lin, and LEXGO∗dr are summa-
rized in Table 7.19.

In these experiments, LEXGO∗dr also outperforms LEXGO∗lex and LEXGO∗lin. The
relative advantage of LEXGO∗dr over LEXGO∗lex and LEXGO∗lin grows when the number
of goal-optimal solution vectors is greater, as well as with the size of the problem. Thus,
the time needed by LEXGO∗dr to solve the full set of Vermont problems is 41.87% of
the time needed by LEXGO∗lex when k1 = 0.5 and k2 = 0.125. This comparative
advantage grows to its maximum when k1 = k2 = 0.75, where LEXGO∗dr runtime
is 2.21% of LEXGO∗lex runtime, i.e. LEXGO∗dr is more than 45 times faster than
LEXGO∗lex.

Table 7.20 shows a comparative of LEXGO∗lex, LEXGO∗lin, and LEXGO∗dr runtimes
for problems NY#4 and NY#16. Problem NY#16 does not show an apparent im-
provement when using LEXGO∗dr in many cases, since those cases cannot satisfy the
provided goals.

7.3.3 Summary

In a similar manner as LEXGO∗dr outperforms LEXGO∗ in random grids, the results
do not change for road map problems. A greater speed-up can be observed in these
experiments. When a large number of goal-optimal solution vectors from the Pareto
frontier satisfy the goals, the t-discarding method is applied to a greater extent to
LEXGO∗dr and speeds up the performance to up to 50 times faster than any previous
version of LEXGO∗. Since this advantage grows with difficulty, the obtained results
point out that LEXGO∗dr must be chosen over LEXGO∗ in problems with a certain level
of difficulty and satisfiable goals, although when goals cannot be satisfied LEXGO∗dr
does only contribute with a slight advantage.

7.4 LEXGO∗dr vs NAMOA∗dr
This section considers NAMOA∗dr and LEXGO∗dr, versions of NAMOA∗ and LEXGO∗
that employ the t-discarding technique described in Section 4.2. Since t-discarding can
only be applied to LEXGO∗ when goals can be satisfied, the question of its comparative
performance to NAMOA∗dr also arises for the road map problems.

NAMOA∗dr has been empirically proved to be more efficient than NAMOA∗. In the
same manner, LEXGO∗dr outperforms LEXGO∗. NAMOA∗dr obtains a greater ratio

7.4. LEXGO∗dr vs NAMOA∗dr 127

Table 7.18. Class II experiments in road maps, runtimes in seconds of LEXGO∗dr for
the experiments over Vermont and NY city maps.

LEXGO∗dr

0.75 0.5 k1
n 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

V e
rm

on
t

1 4.71 4.71 6.32 13.90 1.36 1.42 1.78 2.20
2 2.50 3.01 2.61 2.28 2.45 2.06 1.90 1.17
3 0.42 0.64 0.38 0.20 0.20 0.20 0.13 0.11
4 43.73 46.94 31.79 22.11 18.42 8.66 2.98 5.18
5 1.83 1.47 0.91 0.70 0.59 0.30 0.34 0.53
6 278.65 266.84 184.47 58.47 175.31 211.48 93.07 281.11
7 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
8 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
9 2.15 1.92 1.56 1.00 1.37 0.91 0.78 0.61
10 258.79 200.35 134.57 26.68 117.81 81.26 57.49 146.35
11 427.57 418.82 394.06 264.59 402.00 395.54 313.09 209.03
12 1.97 1.92 1.78 0.90 0.67 0.45 0.64 0.45
13 491.78 450.97 438.63 144.61 332.83 304.70 189.07 17.80
14 1.87 1.53 1.00 0.31 0.95 0.47 0.08 0.08
15 30.61 28.50 24.96 26.46 23.35 22.56 22.51 15.85
16 1.95 2.12 2.65 2.14 1.70 1.73 1.54 1.79
17 43.24 43.51 35.51 25.83 14.93 10.09 1.42 1.64
18 0.25 0.23 0.22 0.39 0.33 0.17 0.17 0.17
19 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
20 80.15 92.57 84.66 97.33 53.52 36.50 31.65 38.94

N
Y

ci
ty

2 0.65 0.60 0.42 0.15 0.28 0.23 0.25 0.25
4 198.18 220.77 225.99 128.49 176.04 177.32 170.47 35.67
5 <0.01 - - - - - - -
11 1,668.50 1,617.41 2,653.90 2,852.52 1,366.86 1,860.42 2,727.67 4,532.50
16 116.22 86.22 31.18 12.69 62.97 77.39 86.87 84.35
19 10,960.56 15,407.65 20,771.40 5,270.44 10,005.21 12,456.02 5,141.12 4,519.28

Table 7.19. Class II experiments in road maps, runtimes in seconds of LEXGO∗dr for
the experiments over Vermont and NY city maps.

0.75 0.5 k1
0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

LEXGO∗lex 3,769.51 3,092.73 1,729.26 371.33 1,467.00 980.69 479.92 86.32
LEXGO∗lin 3,497.26 2,782.82 1,781.04 424.25 1,287.37 977.48 499.61 109.20
LEXGO∗dr 83.59 78.30 67.31 34.40 57.39 53.93 35.93 36.15

128 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.20. Class II experiments in road maps, runtimes in seconds of LEXGO∗lex,
LEXGO∗lin, and LEXGO∗dr for two NY city problems.

Problem 4 16
Algorithm LEXGO∗lex LEXGO∗lin LEXGO∗dr LEXGO∗lex LEXGO∗lin LEXGO∗dr
(0.75, 0.75) 4,038.8 4,184.9 198.1 234.3 370.8 116.2
(0.75, 0.5625) 4,060.7 4,229.3 220.7 121.9 219.9 86.2
(0.75, 0.375) 2,622.8 4,222.0 226.0 33.1 55.9 31.1
(0.75, 0.1875) 267.1 762.3 128.5 12.6 15.1 12.7
(0.5. 0.5) 2,829.0 3,407.9 176.0 63.2 78.5 62.9
(0.5. 0.375) 1,894.2 2,819.4 177.3 77.8 88.9 77.3
(0.5. 0.25) 627.1 1,757.5 170.5 84.3 92.9 86.8
(0.5. 0.125) 41.0 148.0 35.6 85.6 96.0 84.3

of improvement over the standard versions of NAMOA∗ than LEXGO∗dr achieves over
their counterparts of LEXGO∗. Thus, a final comparative analysis for random map
problems between NAMOA∗dr and LEXGO∗dr is presented in this section.

The experiments are applied to the road map problems previously used. The goals
employed to define the set of goal-optimal solution vectors are defined analogously as
in Section 6.1. The analysis is conducted over the Vermont problems and the NY city
problems able to be solved by LEXGO∗dr and NAMOA∗dr, which were six and fourteen
out of twenty, respectively.

7.4.1 Analysis on class I experiments

In Table 7.21 the results of NAMOA∗dr and LEXGO∗dr are presented. Cases where
LEXGO∗dr runtimes are faster than runtimes of NAMOA∗dr are highlighted in bold.
The average runtimes of the full set of Vermont map experiments are shown in Table
7.22.

An expected overhead in LEXGO∗dr over NAMOA∗dr is found when k1 = 1. In
this case, the overhead corresponding to the extra deviation pruning and filtering
efforts represents 12.08% of the runtime of NAMOA∗dr. LEXGO∗dr shows a very similar
runtime in average when k1 = 0.75, only 1.26% faster. When k1 = 0.5, LEXGO∗dr
clearly outperforms NAMOA∗dr, being 32.22% more efficient in runtime. As always,
when the goals are located in the ideal point (k1 = 0), LEXGO∗dr, with an average
runtime of three hundredths of a second, outperforms NAMOA∗dr.

A particular case of LEXGO∗dr can be observed in k1 = 0.25 case. Problem VT#13
is solved by LEXGO∗dr more than six times slower than by NAMOA∗dr, and problem
NY#11 two and a half times slower. In order to understand this behavior we measured
the percentage of times that a pruning operation is conducted in a time-efficient manner
with respect to the total of pruning operations. We call this quotient ð. Thus, ð13V T =
0.4698 and ð11NY = 0.6938 while other problems of similar difficulty, VT#11 for
example, present a much higher value (ð11 = 0.9531). In other words, problem VT#13
cannot use the Pareto pruning (dr) as often as the rest of the problems, in this case
only 46.98% of the times, and hence, its runtime is much higher than the average.

7.4. LEXGO∗dr vs NAMOA∗dr 129

Table 7.21. Class I experiments in road maps, runtimes in seconds of NAMOA∗dr and
LEXGO∗dr for the experiments over Vermont and NY city maps.

LEXGO∗dr

n NAMOA∗dr 1 0.75 0.5 0.25 0 k1

V e
rm

on
t

1 9.29 9.68 4.71 1.35 0.45 <0.01
2 4.64 4.99 2.49 2.44 1.29 0.06
3 0.45 0.68 0.42 0.20 0.18 0.03
4 47.53 55.58 43.72 18.42 4.10 0.03
5 2.04 2.37 1.82 0.59 0.06 0.04
6 259.05 291.90 278.64 175.31 32.85 0.03
7 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
8 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
9 2.46 3.16 2.15 1.37 0.60 <0.01
10 246.09 265.20 258.70 117.81 274.95 0.10
11 527.56 584.45 427.56 401.99 357.66 0.09
12 4.71 5.50 1.96 0.60 0.18 0.03
13 395.24 464.60 491.77 332.82 2,413.64 0.06
14 1.82 2.10 1.87 0.95 0.10 <0.01
15 33.35 33.36 30.60 23.35 1.32 0.09
16 4.77 4.52 1.90 1.70 0.88 <0.01
17 51.26 61.37 43.24 14.90 9.26 0.07
18 0.42 0.37 0.24 0.32 0.07 <0.01
19 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
20 102.57 108.15 80.15 53.52 43.00 0.03

N
Y

ci
ty

2 0.71 0.87 0.65 0.28 0.01 <0.01
4 149.30 201.64 198.18 176.04 63.94 0.03
5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
11 1,452.58 1,753.57 1,668.50 1,366.86 3,664.96 0.07
16 106.89 118.63 116.22 62.97 0.96 0.01
19 8,355.32 10,873.42 10,960.56 10,005.21 1,506.29 0.45

Table 7.22. Class I experiments in road maps, average runtimes in seconds of
NAMOA∗dr and LEXGO∗dr for the set of Vermont map experiments.

LEXGO∗dr

NAMOA∗dr 1 0.75 0.5 0.25 0 k1

84.66 94.89 83.59 57.38 157.02 0.03

130 Chapter 7. Empirical Analysis On Road Map Problems

Table 7.23. Class II experiments in road maps, runtimes in seconds of NAMOA∗dr
and LEXGO∗dr for the experiments over Vermont and NY city maps.

LEXGO∗dr

0.75 0.5 k1
n NAMOA∗dr 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

V e
rm

on
t

1 9.29 4.71 4.71 6.31 13.90 1.35 1.42 1.77 2.20
2 4.64 2.49 3.01 2.60 2.27 2.44 2.05 1.90 1.17
3 0.45 0.42 0.64 0.37 0.20 0.20 0.20 0.12 0.10
4 47.53 43.72 46.94 31.79 22.10 18.42 8.65 2.97 5.17
5 2.04 1.82 1.46 0.90 0.70 0.59 0.29 0.34 0.53
6 259.05 278.64 266.84 184.47 58.46 175.31 211.47 93.07 281.11
7 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
8 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
9 2.46 2.15 1.91 1.56 0.99 1.37 0.90 0.78 0.60

10 246.09 258.70 200.35 134.56 26.67 117.81 81.26 57.48 146.34
11 527.56 427.56 418.81 394.05 264.59 401.99 395.54 313.09 209.02
12 4.71 1.96 1.91 1.77 0.90 0.60 0.45 0.64 0.45
13 395.24 491.77 450.96 438.62 144.61 332.82 304.70 189.07 17.80
14 1.82 1.87 1.52 0.99 0.31 0.95 0.46 0.07 0.07
15 33.35 30.60 28.50 24.96 26.45 23.35 22.55 22.51 15.84
16 4.77 1.90 2.12 2.65 2.13 1.70 1.73 1.54 1.79
17 51.26 43.24 43.50 35.50 25.83 14.90 10.09 1.41 1.63
18 0.42 0.24 0.23 0.21 0.39 0.32 0.17 0.17 0.17
19 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
20 102.57 80.15 92.57 84.66 97.32 53.52 36.50 31.65 38.93

N
Y

ci
ty

2 0.71 0.65 0.60 0.42 0.15 0.28 0.23 0.24 0.25
4 149.30 198.18 220.77 225.99 128.49 176.04 177.32 170.47 35.67
5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

11 1,452.58 1,668.50 1,617.41 2,653.90 2,852.52 1,366.86 1,860.42 2,727.67 4,532.50
16 106.89 116.22 86.22 31.18 12.69 62.97 77.39 86.87 84.35
19 8,355.32 10,960.56 15,407.65 20,771.40 5,270.44 10,005.21 12,456.02 5,141.12 4,519.28

7.4.2 Analysis on class II experiments

Regarding the second class of problems, unlike LEXGO∗lex and LEXGO∗lin with their
NAMOA∗ counterparts, when applying the t-discarding technique to LEXGO∗ and
NAMOA∗, LEXGO∗dr does not perform always faster than NAMOA∗dr when k2 values
become stricter, in fact, the runtimes eventually increase notably although the number
of label expansions decrease. This is due to the t-discarding method only applies to
LEXGO∗dr when goals can be satisfied.

Table 7.23 displays the runtimes in seconds of NAMOA∗dr and LEXGO∗dr for the
Vermont and New York city maps experiments. Table 7.24 displays a summary of the
average runtime of the full set of Vermont map experiments. On one hand, LEXGO∗dr
outperforms in average NAMOA∗dr in the Vermont map experiments, on the other hand,
for the two most difficult problems solved by both algorithms, NY#11 and NY#19,
LEXGO∗dr only runs faster than NAMOA∗dr in three of the sixteen cases available.

7.4.3 Summary

The results obtained for road map problems are significantly different from the exper-
iments conducted on grid problems. LEXGO∗dr does not always perform faster than
NAMOA∗dr when goals cannot be satisfied, in fact, its runtime in problems with unsat-
isfiable goals can be significantly higher. In addition, LEXGO∗dr may perform slower

7.5. Summary on road map problems 131

Table 7.24. Class II experiments in road maps, average runtimes in seconds of
NAMOA∗dr and LEXGO∗dr for the set of Vermont map experiments.

LEXGO∗dr

0.75 0.5 k1
NAMOA∗dr 0.75 0.5625 0.375 0.1875 0.5 0.375 0.25 0.125 k2

84.66 83.59 78.30 67.31 34.40 57.38 53.93 35.93 36.15

when the number of expansions is reduced, due to the fact that the t-discarding method
may not be applied to prune and filter new scanned labels.

The average of the full set of Vermont problems gives LEXGO∗dr an advantage over
NAMOA∗dr for all the analyzed class II experiments and most of the class I experiments.
NAMOA∗dr outperforms LEXGO∗dr only when k1 = 1 and k1 = 0.25. The former case
is obvious, since all goal-optimal solution vectors are also Pareto-optimal, therefore,
LEXGO∗dr only introduces extra calculations to the process of returning the full Pareto
set. The latter, it corresponds to an extreme case of bad performance of LEXGO∗dr.
When k1 = 0.25 and the difficulty of the problem grows, the impact of the regular
pruning and filtering on the runtime highly affects LEXGO∗dr performance. Thus, we
can also observe than NAMOA∗dr was capable of solving 14 out of the 20 problems
of New York city, while LEXGO∗dr solved only 6. This can only be attributed to
the regular pruning and filtering operations, highly inefficient in time compared to
t-discard alternatives.

7.5 Summary on road map problems

The experiments previously presented are a new contribution to the multicriteria route
planning. To the best of our knowledge, these are the largest problems solved with 3
objectives.

The main contributions of this thesis are LEXGO∗, a new devised algorithm to
cope with lexicographic goals on MSP, the t-discarding method, which applied to MSP
achieves a significant runtime performance improvement, and the application of the
t-discarding method to NAMOA∗ and LEXGO∗ within a broader set of experiments
that were previously reported in the literature.

Previous results to the experiments shown in this thesis were reported in Pulido
et al. (2015). The experiments reported in this chapter go beyond those previously
reported and add LEXGO∗lin and LEXGO∗dr algorithms to the analyses. Furthermore,
additional cases of LEXGO∗ has been evaluated, for instance, k1 = 0.75 in class II
experiments.

The empirical evaluation conducted in this chapter over realistic road map problems
confirms the previous results over random grids to some extent. LEXGO∗ has been
formally and empirically proved to be more efficient for the majority of the analyzed
cases than NAMOA∗, regardless the selection order and the road map.

The t-discarding method applied to NAMOA∗ and LEXGO∗ is also proved formally
and now empirically to improve significantly the performance of these algorithms.

132 Chapter 7. Empirical Analysis On Road Map Problems

Finally, the comparison between the best alternatives, NAMOA∗dr and LEXGO∗dr, allow
us to differentiate those cases where LEXGO∗dr may be chosen over NAMOA∗dr.

7.5. Summary on road map problems 133

Table 7.25. Runtime comparison - summary table for road map experiments.

Comparison Results
NAMOA∗lin vs NAMOA∗lex In contrast to the experiment results of random grids,

where NAMOA∗lin outperforms NAMOA∗lex by a factor of
two, NAMOA∗lin has only a slight performance advantage
on road maps.

LEXGO∗lin vs LEXGO∗lex In a slightly different way to the experiment results for
random grids, LEXGO∗lin also obtain better runtimes
than LEXGO∗lex, although the difference between them
is significantly smaller on road maps.

LEXGO∗ vs NAMOA∗ The selection order does not make a difference in
the comparative performance between LEXGO∗ and
NAMOA∗ (in contrast to the experiment results for ran-
dom grids). The speed-up of LEXGO∗ over NAMOA∗,
however, remains outstanding for k1 ≤ 0.5, and its time
overhead for k1 = {0.75, 1} is practically zero.

NAMOA∗dr vs NAMOA∗ NAMOA∗dr is almost two orders of magnitude faster than
NAMOA∗lex and NAMOA∗lin for the most difficult pro-
blems. Moreover, NAMOA∗dr extends the size of the
three objective problems that can be solved in practice.

LEXGO∗dr vs LEXGO∗ In a similar way to the results for random grids,
LEXGO∗dr achieves speed-ups of up to 50 times faster
than any version of LEXGO∗ with standard discarding
procedures and goals that can be satisfied. When goals
can not be satisfied, LEXGO∗dr does have a slight ad-
vantage of performance. Its relative improvement also
grows with problem difficulty.

LEXGO∗dr vs NAMOA∗dr The comparative performance of LEXGO∗dr over
NAMOA∗dr is significantly different in road map pro-
blems than in random grids. NAMOA∗dr outperforms
LEXGO∗dr when k1 = 1 and k1 = 0.25. The lat-
ter corresponds to an extreme case of bad performance
for LEXGO∗, since the standard pruning and filter-
ing procedures highly impact the runtime performance.
LEXGO∗dr outperforms NAMOA∗dr in the rest of the
cases, i.e. when k1 = {0.75, 0.5, 0} in class I experiments
and all class II experiments.

Part III

Conclusions

The last part of this thesis gathers the conclusions of this research work.
Chapter 8 sums up the conclusions collected from this research work into nine

different points, deducted from the formal and empirical analyses conducted in the
second part. Furthermore, some lines for future developments and improvements are
also suggested.

Chapter 8

Conclusions and Future Work

Time is really the only capital that any human
being has and the thing that he can least afford

to waste or lose.
Thomas Edison (1847-1931)

Multicriteria Decision Making (MCDM) is a branch of Operations Research that
considers multiple criteria in decision-making environments. Goal Programming is a
branch of MCDM that models preferences using goals, i.e. establishing target values
over a set of attributes. The Multicriteria Search Problem (MSP) is the natural exten-
sion for the multiobjective case of the Shortest Path Problems, which are one of the
most extensively studied problems in Artificial Intelligence and Operations Research.
New developments in these fields are of practical importance in current research.

The main goals of this thesis are to analyze the use of goal-based preferences in
Multicriteria Shortest Path Problems, and provide new techniques and algorithms
framed in this field. In particular, we are concerned with exact techniques where
the preferences of the decision maker (DM) are modeled into levels of pre-emptive
importance. Within each level, one or more targets are defined as the expectations of
the DM and weights characterize the importance of the criteria.

In the literature, there is a general agreement that labeling multicriteria search
algorithms are frequently the best choice to solve MSP (Skriver & Andersen, 2000;
Raith, 2009; Raith & Ehrgott, 2009). Moreover, two strategies can be used in these al-
gorithms, node-selection and label-selection, and the latter has been repeatedly proved
to be more efficient in label-setting algorithms (Paixão & Santos, 2013; Pérez de la Cruz
et al., 2013). Furthermore, the use of lower bound functions has been shown as a great
advantage in the efficiency of these algorithms (Mandow & Pérez de la Cruz, 2010;
Machuca, 2012). Thus, under the framework of lexicographic goal-based preferences
we have analyzed two different strategies. The first one is to calculate the whole set
of efficient solutions to the problem and extract the satisfactory solutions a posteri-
ori. NAMOA∗ is included in these algorithms. The second one is to employ the goals
given by the DM to bound the area of interesting solutions. The main goal of our
new devised algorithm, LEXGO∗, which falls in this second category, is to achieve
improvements over the efficiency of NAMOA∗ in the calculation of this set of efficient

137

138 Chapter 8. Conclusions and Future Work

solutions according to the goals.
Time has been shown as the limiting factor in the performance of multicriteria

search algorithms. The majority of the time effort is devoted to check dominance
against set of labels and thereby discard new generated alternatives. Our new proposed
dimensionality reduction technique, called t-discarding, speeds up the processes of
pruning and filtering, which are responsible of discarding new paths by comparing to
partial and full paths, respectively.

The new dimensionality reduction technique can be used to improve the time re-
quirements of labeling multicriteria search algorithms. In particular, we introduced
NAMOA∗dr and LEXGO∗dr as the versions of the algorithms previously analyzed that
employ the dimensionality reduction technique. Finally, we perform extensive bench-
marking to all the algorithms proposed over two scenarios, random grids and road
maps problems.

In summary, a new exact label-setting multicriteria search algorithm is proposed to
deal with MSP with lexicographic goal-based preferences and improve the performance
of the full search. In addition, a new technique to speed up the processes of discarding
new alternatives is also proposed, as well as formally and practically applied. Finally,
empirical analyses test all the algorithmic alternatives.

8.1 Conclusions

The main conclusions of this doctoral dissertation can be enumerated as follows:

1. LEXGO∗, a new multicriteria search algorithm has been proposed.
Multiobjective search algorithms benefit from the principle of optimality, i.e. an
optimal path is made up of optimal subpaths. Regrettably, this property does
not hold for lexicographic goal-based preferences. We have introduced a new
exact label-setting algorithm that returns the subset of Pareto-optimal paths
that satisfy a set of lexicographic goals grouped in pre-emptive priority levels, or
the subset that minimizes deviation from goals if these cannot be fully satisfied.
Along with LEXGO∗, it has been proposed a specific pruning condition that
allows to reduce the number of paths explored in goal-based search. We have
also provided formal proofs on the correctness of the new pruning procedure and
LEXGO∗.

2. LEXGO∗ is more efficient than a full Pareto search. LEXGO∗ is theoret-
ically proved to expand a subset of the labels expanded by the full Pareto search.
Since the number of expanded labels is not the only relevant factor in the analy-
sis of multicriteria search algorithms, we compared LEXGO∗ and NAMOA∗ over
random grids and road maps problems. In both cases, a small time overhead
can be observed for LEXGO∗ when the full Pareto frontier satisfies the goals,
and the relative performance of LEXGO∗ over NAMOA∗ improves progressively
whenever the set of efficient solutions is reduced. Elsewhere in the test sets,
LEXGO∗ achieves important reductions in time requirements of about one order
of magnitude when goals are satisfied for some Pareto solutions, and up to four
orders of magnitude whenever goals can not be fully satisfied.

8.1. Conclusions 139

3. The label selection policy has an important impact on time perfor-
mance. We have conducted experiments with two different label selection poli-
cies, lexicographic and linear aggregation, over NAMOA∗ and LEXGO∗. It can
be observed that NAMOA∗lin is approximately 50% faster than NAMOA∗lex/ in
random grids. The comparison between LEXGO∗lex and LEXGO∗lin is however,
not that straightforward. LEXGO∗lin is only faster than LEXGO∗lex when a high
percentage of the Pareto frontier is returned, and slower whenever a reduced
number of solutions satisfy all goals. When goals cannot be satisfied, LEXGO∗lex
and LEXGO∗lin show a very similar performance.

4. A new dimensionality reduction technique, t-discarding, is proposed.
Time rather than space is the limiting factor to increase the number of Multiob-
jective Search Problems that can be practically solved. Thus, we have devised a
simple but very effective technique to decrease the number of labels belonging to
the sets in charge of discarding new alternatives. This technique is applied under
reasonable circumstances: when a consistent lower bound function is employed
along with the algorithm and a lexicographic order is used to select alternatives
from OPEN.

5. T-discarding is extensively used to discard labels. We employ sets of
closed labels, Gcl(n), and full solution paths, COSTS, to perform pruning (cl-
pruning) and filtering processes, respectively. Nonetheless, sets of partial open
labels, Gop(n), can not benefit from this technique to speed up dominance checks
(op-pruning). Therefore, we launched experiments to measure the percentage of
op-pruned, cl-pruned and filtered labels over the total number of discarded labels.
Neither in the experiments over random grids nor in the experiments over road
maps op-pruning was employed in more than 10% of the cases. Then, we can
ensure t-discarding is highly applied to discard new alternatives.

6. T-discarding checks dominance against reduced sets of labels. Relative
size of the sets of truncated labels over the original sets is theoretically unknown.
However, in practice, an experimental evaluation was conducted and this size
was around two orders of magnitude smaller for the difficult grid problems and
about two to three orders for difficult road maps problems. Moreover, the relative
advantage of t-discarding is incremented gradually with problem size, hence, this
new contribution can effectively extends the set of Multicriteria Search Problems
that can be practically solved.

7. NAMOA∗dr reduces NAMOA∗ time requirements. The t-discarding tech-
nique can be applied to exact multicriteria search algorithms like NAMOA∗. In
random grid problems, the speed-up for the most difficult problems was 8.94
by NAMOA∗dr over NAMOA∗lin, the fastest studied version of NAMOA∗. In road
maps problems, the speed-up for the most difficult problem solved by NAMOA∗lin
was 26.55, i.e. NAMOA∗dr solved the problem in 3.77% of the time needed by
NAMOA∗lin. NAMOA∗dr also extended the number of solved problems from 4 out
of 20 by NAMOA∗lin to 14 out of 20 in a very difficult set of realistic problems
with three criteria.

140 Chapter 8. Conclusions and Future Work

8. LEXGO∗dr reduces standard LEXGO∗ time requirements in some cases.
The t-discarding technique requires the lexicographical selection of evaluation
vectors. This imposed lexicographic order in LEXGO∗dr makes those cases where
the goals cannot be satisfied incompatible with the correctness of t-discarding.
However, LEXGO∗dr can benefit from the use of t-discarding when goals can be
satisfied, which indeed are the most difficult problems, and achieve speed-ups of
up to 8.31 and 21.72 for the most difficult random grid and road map problems,
respectively.

9. A comparative between NAMOA∗dr and LEXGO∗dr. Finally, we have
conducted an experimental evaluation of the most successful alternatives studied.
In random grids, the inclusion of the t-discarding technique makes NAMOA∗dr
be the alternative to choose whenever goals can be satisfied, specially, when a
higher percentage of the non-dominated solutions satisfy the goals. LEXGO∗dr is
the best alternative whenever goals can not be fully satisfied or a smaller portion
of the Pareto frontier is returned.

In road maps problems, the results are compatible but significantly different.
It must be pointed out that k1 = 0.25 represents an extreme case of bad per-
formance for LEXGO∗dr. Thus, in class I experiments, NAMOA∗dr outperforms
LEXGO∗dr when k1 = 1 and k1 = 0.25, and LEXGO∗dr has a better performance
when k1 = {0.75, 0.5, 0}. In class II experiments, the majority of LEXGO∗dr
experiments perform faster than NAMOA∗dr experiments. When goals could
be satisfied there existed a significant number of problems that were solved by
NAMOA∗dr and could not be solved within the time limit by LEXGO∗dr.

8.2 Future Work

This doctoral dissertation has contributed new algorithms and techniques. These con-
tributions have also raised new future lines of research where current developments
can be effectively improved. The following lines may justify further investigation:

• The experimental evaluation conducted in this thesis has remarked the impor-
tance of the label selection policy for time performance. The determination of
an optimal policy is a desirable issue for a deeper study.

• The study and development of more efficient data structures to store the sets of
open and closed labels, as well as the queue of alternatives, is a current research.
All the algorithms presented in this thesis could benefit from more efficient im-
plementations of these data structures.

• Two important formal analyses could be carried out regarding the optimality of
LEXGO∗ when used with consistent lower bounds. The first one, research the
possibility that LEXGO∗ is optimal in its class of exact goal-based algorithms
according to the number of labels expanded. The second one, investigate the-
oretically the possibility that LEXGO∗ expands an equal or smaller number of
labels when using more informed lower bound functions.

8.2. Future Work 141

• LEXGO∗ can be extended to use other GP models or other formulas to measure
the deviation from goals. New pruning and/or filtering rules will probably need
to be developed for each particular case, in order to enhance their efficiency.

• Apply t-discarding to other multicriteria search algorithms with lower bounds.
We have applied the t-discarding technique to NAMOA∗, but it can be applied
to a significant number of algorithms to reduce their time requirements.

• Both NAMOA∗ and LEXGO∗ return the set of all non-dominated (or goal-
optimal for LEXGO∗) solutions. In difficult problems seek for the whole set
of non-dominated solutions leads to high runtime requirements. However, there
are other multicriteria techniques that seek only for a single efficient solution,
as Compromise Search. Some of the conclusions reported here, like the perfor-
mance of selection orders or the importance of dominance checks in runtime, can
be useful to extend other multicriteria decision models.

• Multicriteria search in road maps is becoming more popular in the last few years.
Since the query time for single-objective shortest path problems is in the order
of microseconds, the natural evolution is the resolution of problems that involve
more than one criterion. The advanced optimization techniques applied to the
single-objective problem, like multilevel graphs (Schulz et al., 2002) or contrac-
tion hierarchies (Geisberger et al., 2008) represent possibilities for multicriteria
search which deserve further research. For instance, preprocessing techniques
like contraction hierarchies would require a multicriteria bidirectional search. In
fact, this is another field of research of the author (Pulido et al., 2011, 2012),
hence, its application is of his great interest.

• Finally, a recurrent line of research is to identify new potential domains to apply
multicriteria search, as well as the combination with other disciplines to approach
MSP from a different perspective.

Part IV

Appendix

Appendix A

Resumen

Si supiese qué es lo que estoy haciendo, no lo
llamaría investigación, ¿verdad?

Albert Einstein (1879-1955)

El problema del camino más corto (SPP) es uno de los más antiguos y extensamente
estudiados en los campos de Inteligencia Artificial (AI) e Investigación Operativa (OR),
el cual consiste en encontrar el camino entre dos nodos de un grafo tal que la suma de
los pesos de los arcos que lo componen sea mínima. Sin embargo, los problemas en la
vida real suelen implicar múltiples, y normalmente contradictorios, criterios. Cuando
múltiples objetivos deben ser optimizados simultáneamente el concepto de una sola
solución óptima pierde su validez, en su lugar, un conjunto de soluciones eficientes o
Pareto-óptimas definen el equilibrio óptimo entre los objetivos bajo consideración.

El problema de búsqueda multicriterio es la extensión natural del problema del
camino más corto cuando se consideran múltiples criterios. El problema de búsqueda
multicriterio es computacionalmente más complejo que el que involucra un solo cri-
terio. El número de expansiones de etiquetas puede crecer exponencialmente con la
profundidad de la solución, incluso para el caso de dos objetivos (Hansen, 1980). Con
el supuesto de costes enteros acotados y un número fijo de objetivos el problema se
convierte en tratable para grafos de tamaño polinomial (por ejemplo, véase (Mandow
& Pérez de la Cruz, 2009; Müller-Hannemann & Weihe, 2006)).

Un gran variedad de aplicaciones prácticas en diferentes campos pueden ser abor-
dadas como problemas de búsqueda multicriterio, como la planificación de la trayecto-
ria de robots (Wu et al., 2011), el transporte de materiales peligrosos (Caramia et al.,
2010), la planificación de rutas en diferentes contextos (Jozefowiez et al., 2008), el
transporte público (Raith, 2009) o la calidad del servicio en redes (Craveirinha et al.,
2009).

La programación por metas es una de las técnicas de decisión multicriterio más
exitosas utilizadas en la optimización de metas multiobjetivo. En esta tesis aplicamos
una de sus variantes al problema de búsqueda multicriterio. Así, nuestro objetivo es
resolver el problema de búsqueda multicriterio con preferencias lexicográficas basadas
en metas. Para ello, proponemos un nuevo algoritmo llamado LEXGO∗, un algoritmo
exacto de etiquetado que devuelve el subconjunto de caminos óptimos de Pareto que

145

146 Resumen

satisfacen un conjunto de metas lexicográficas, o el subconjunto de mínima desviación
con respecto a las metas si estas no se pueden satisfacer completamente. Adicional-
mente, se demuestran la admisibilidad de LEXGO∗ y la propiedad de expandir sólo
un subconjunto de las etiquetas expandidas por un algoritmo de búsqueda completa
multicriterio.

Puesto que los requisitos temporales en lugar de los espaciales son el factor limi-
tante para el rendimiento de los algoritmos de búsqueda multicriterio, proponemos una
nueva técnica, llamada t-discarding, para disminuir el número y dimensionalidad de
las comprobaciones de dominancia durante la búsqueda. La aplicación del t-discarding
a los algoritmos previamente estudiados, NAMOA∗ y LEXGO∗, da lugar a dos nuevos
algoritmos eficientes en tiempo, NAMOA∗dr y LEXGO∗dr, respectivamente.

Todas las alternativas algorítmicas han sido testadas en dos escenarios, mallas
aleatorias y mapas de carreteras. La evaluación experimental muestra la efectividad
de LEXGO∗ en ambos bancos de prueba, así como reducciones espectaculares en los re-
quisitos temporales de ambos algoritmos con respecto a sus contrapartidas que utilizan
las técnicas de comprobación de dominancia estándar.

A.1 Objetivos

Los principales objetivos de esta tesis doctoral pueden ser esbozados de la siguiente
manera:

1. Abordar el problema de búsqueda multicriterio con metas. El primer
objetivo de esta tesis es presentar la descripción del problema de búsqueda multi-
criterio y concretamente, el problema de búsqueda multicriterio con preferencias
basadas en metas. Describiremos dos enfoques para abordar este problema.

2. Desarrollar un nuevo algoritmo para preferencias basadas en metas
lexicográficas. El principio de optimalidad se cumple para los problemas mul-
tiobjetivo del camino más corto, pero desafortunadamente no se cumple para
las preferencias basadas en metas lexicográficas. Para abordar el problema de
búsqueda multicriterio con un algoritmo específicamente diseñado para metas,
concentraremos nuestros esfuerzos en el desarrollo de un nuevo algoritmo basado
en una política de selección de etiquetas.

3. Probar formalmente la corrección y eficiencia de este nuevo algoritmo.
Otro objetivo de esta tesis es complementar el nuevo algoritmo desarrollado con
análisis formales de su corrección, así como su eficiencia con respecto a un algo-
ritmo óptimo que realiza una búsqueda completa multiobjetivo.

4. Estudio de posibles mejoras a algoritmos multiobjetivo del camino
más corto. Nuestros esfuerzos también se centrarán en general en la mejora
de algoritmos multiobjetivo del camino más corto. De manera más específica,
nuestro objetivo es proponer una nueva técnica para mejorar el rendimiento en
tiempo de ejecución de algoritmos de etiquetado multiobjetivo del camino más
corto con límites superiores consistentes.

Resumen 147

5. Demostrar formalmente la corrección de la técnica eficiente en tiempo.
Desarrollaremos formalmente la aplicación de la técnica eficiente en tiempo al
nuevo algoritmo propuesto con preferencias basadas en metas, así como la apli-
cación a NAMOA∗. En particular, demostraremos teóricamente la corrección de
ambos algoritmos empleando la técnica de reducción de la dimensionalidad.

6. Realizar una evaluación empírica de todas las alternativas algorítmicas
propuestas. Finalmente, el último objetivo de esta tesis es proporcionar una
evaluación extensiva de todos los algoritmos propuestos. Para ello, emplearemos
bancos de pruebas generados aleatoriamente y escenarios realistas.

A.2 Contribuciones

Las contribuciones de esta tesis se enumeran de forma resumida a continuación,

1. Descripción del problema de búsqueda multicriterio basado en metas.
En primer lugar, describimos la técnica de programación por metas dentro de la
disciplina de la teoría de la decisión, así como la búsqueda en grafos multicriterio
dentro de los problemas de optimización multiobjetivo. Dado este marco de
trabajo, describiremos y definiremos formalmente el problema de búsqueda en
grafos multicriterio basados en metas y los diferentes enfoques algorítmicos para
abordarlo.

2. Un nuevo algoritmo de búsqueda multicriterio. Presentamos LEXGO∗(A∗
con metas lexicográficas), un nuevo algoritmo exacto de etiquetado multicrite-
rio con preferencias basadas en metas. LEXGO∗ devuelve el subconjunto de
caminos óptimos de Pareto que satisfacen un conjunto de metas lexicográficas,
o el subconjunto de caminos con menor desviación con respecto a estas metas si
no pueden ser completamente satisfechas.

3. Caracterización formal de la admisibilidad y eficiencia de LEXGO∗.
Demostramos teóricamente la admisibilidad de LEXGO∗, es decir, LEXGO∗ es
un algoritmo exacto y devuelve el conjunto completo de soluciones a un pro-
blema, así como su eficiencia, es decir, el número de etiquetas expandidas por
el algoritmo decrece con límites superiores más informados con respecto a una
búsqueda multicriterio completa.

4. Proponemos la técnica t-discarding. Presentamos una nueva técnica que re-
duce los requisitos temporales de los algoritmos de búsqueda multiobjetivo. Esta
técnica es aplicable a algoritmos de etiquetado multicriterio basados en A∗. Su
clave reside al comprobar la dominancia de un conjunto de etiquetas sobre una
sola etiqueta. En lugar de realizar las comprobaciones de dominancia teniendo en
cuenta n criterios, lo haremos reduciendo todos los vectores implicados a n − 1
criterios. Además, cuando uno de los criterios no se considera, el tamaño de
los conjuntos de vectores no dominados también se reduce drásticamente. Así
podemos usar conjuntos reducidos de vectores truncados en lugar de los origi-
nales para descartar alternativas. Todo esto es posible gracias a las propiedades
formales de las funciones consistentes de cotas inferiores.

148 Resumen

5. Proporcionar la caracterización formal de la técnica t-discarding. Apli-
camos t-discarding a NAMOA∗ y LEXGO∗, y presentamos dos nuevos algoritmos,
NAMOA∗dr y LEXGO∗dr. Probaremos la corrección de NAMOA∗dr y LEXGO∗dr,
evaluaremos su eficiencia y analizaremos su rendimiento.

6. Evaluación empírica de las nuevas contribuciones. Dos escenarios princi-
pales van a ser usados para comprobar la efectividad de nuestros nuevos algorit-
mos: mallas aleatorias y problemas realistas en mapas de carreteras. En ellos,
presentamos reducciones importantes de los requisitos temporales para proble-
mas con tres objetivos. Con nuestro conocimiento a día de la presentación de esta
tesis, los resultados mostrados en mapas de carreteras representan los problemas
de búsqueda con tres objetivos más difíciles resueltos hasta la fecha.

A.3 Resumen de los capítulos de la Tesis

A continuación, se presenta un resumen de cada capítulo de esta tesis. Los Capítulos 1
al 3 se integran dentro de la parte dedicada a la motivación y fundamentos de esta tesis,
los Capítulos 4 al 7 dentro de las contribuciones y finalmente, el Capítulo 8 muestra
las conclusiones y lineas futuras de esta investigación. Puesto que ya hemos hablado
en las secciones anteriores de los objetivos y contribuciones expuestos en el primer
capítulo de esta tesis, comenzamos este resumen en el segundo capítulo y hablaremos
sobre las conclusiones y líneas futuras de trabajo en las dos siguiente secciones.

A.3.1 Búsqueda Multicriterio en Grafos: Problemas y Algoritmos

El Capítulo 2 de esta tesis presenta el problema de Búsqueda Multicriterio con prefe-
rencias lexicográficas basadas en metas. Para ello, se introduce el popular método de
Programación por Metas así como sus variantes en la Sección 2.3. Concretamente, la
Programación por Metas es una de las técnicas más exitosas de Decisión Multicriterio.
Rosenthal (1983) categorizó en tres las formulaciones disponibles de la Programación
por Metas. En esta tesis, ponemos énfasis en la variante que agrupa los criterios en
niveles de prioridad definidos por el decisor. Dentro de cada nivel, las metas propor-
cionadas también tienen pesos, que establecen la importancia de cada criterio dentro
del nivel.

El problema de Búsqueda Multicriterio ha sido estudiado extensivamente por las
comunidades de Inteligencia Artificial e Investigación Operativa. En la Sección 2.5
de este capítulo se proporcionan algunas definiciones relevantes y la formulación del
problema. También se enumeran algunos de sus campos de aplicación, como son la
vigilancia robotizada (Delle Fave et al., 2009), la planificación de la trayectoria de
robots (Wu et al., 2011), el transporte de materiales peligrosos (Caramia et al., 2010),
la planificación de satélites (Gabrel & Vanderpooten, 2002), la planificación de rutas
en diferentes contextos (Jozefowiez et al., 2008), el transporte público (Raith, 2009) o
la calidad del servicio en redes (Craveirinha et al., 2009). Por último, se repasan las
propiedades formales de las funciones multicriterio de límites inferiores.

En la Sección 2.5 se enumeran las tres categorías de algoritmos de búsqueda mul-
ticriterio (Clímaco & Pascoal, 2012). Nos centramos en dos, en primer lugar, los

Resumen 149

algoritmos a priori son aquellos en que las preferencias del decisor son proporcionadas
con anterioridad, y en segundo lugar, los algoritmos a posteriori son aquellos que no
poseen ningún tipo de información del decisor con anterioridad a la ejecución del algo-
ritmo, por lo que recuperan todas las soluciones eficientes para que sea el decisor con
posterioridad quien tome la decisión.

Dentro de este sección también se describirá el algoritmo NAMOA∗(Mandow &
Pérez de la Cruz, 2010), que se engloba en la categoría de algoritmos a posteriori, y
que se empleará en esta tesis como referencia para evaluar las posteriores contribu-
ciones. Además describiremos la función de cotas inferiores propuesta por Tung &
Chew (1992), que emplearemos en todos los algoritmos estudiados en esta tesis.

A.3.2 Bancos de pruebas para búsqueda multicriterio

El Capítulo 3 está dividido en tres secciones diferenciadas. En primer lugar, en la
Sección 3.1 se revisan, sin entrar en un gran grado de detalle, los bancos de pruebas
usados en la literatura para evaluar el rendimiento de la búsqueda multicriterio. Com-
plementariamente, se enuncian los dos factores claves en la evaluación del rendimiento
de algoritmos, la reproducibilidad y la equidad de las pruebas, así como los diversos
factores que pueden influir en los resultados de la evaluación, como el tamaño y forma
del grafo de búsqueda, número de arcos, profundidad de la solución o el número de
criterios, por nombrar algunos.

En la Sección 3.2 se describen en detalle los bancos de pruebas empleados en esta
tesis doctoral. Primeramente, se detallan los parámetros de generación de los ban-
cos de pruebas basados en mallas aleatorias, como el número de nodos y arcos, las
profundidades de solución consideradas o el número de costes eficientes resultantes.
Posteriormente, se detallan los bancos de pruebas sobre mapas de carreteras. En con-
creto, se han empleado veinte problemas aleatorios sobre los mapas de Nueva York y
Vermont, con el objetivo de minimizar alternativamente la distancia, tiempo y coste
del camino planificado. El mapa de Nueva York corresponde al 9th Dimacs Implemen-
tation Challenge: Shortest Path 1, un banco de pruebas basado en datos reales de los
mapas de carreteras de Estados Unidos, donde los arcos representan carreteras y los
nodos las intersecciones entre carreteras. El mapa de Vermont fue obtenido del UA
Census 2000 TIGER/Line y está disponible en el mismo sitio web.

Para concluir, en la Sección 3.3 se define la importancia de los bancos de pruebas
utilizados en esta tesis con respecto a los empleados en la literatura. Tanto por lo
que se refiere a los bancos de pruebas sobre mallas, como a los bancos de pruebas
sobre mapas de carreteras, nuestra evaluación experimental es de una dificultad lo
suficientemente elevada como para considerarse adecuada en este contexto.

A.3.3 Contribuciones

El Capítulo 4 de esta tesis doctoral hace un revisión de las contribuciones aportadas
por este trabajo. LEXGO∗, nuestra proposición algorítmica para resolver problemas
de búsqueda multicriterio basados en metas lexicográficas, es presentado en la Sección
4.1. Esta sección incluye las condiciones especiales de poda y filtrado de LEXGO∗,

1http://www.dis.uniroma1.it/challenge9/

http://www.dis.uniroma1.it/challenge9/

150 Resumen

así como un ejemplo de uso del algoritmo. Aquí también se establece la definición
de solución eficiente con respecto a un conjunto de metas lexicográficas agrupadas en
niveles de prioridad, así como una nueva regla de poda para descartar etiquetas por
su desviación con respecto a estas metas.

Por otro lado, otra de las grandes contribuciones de esta tesis se describe en este
capítulo. La Sección 4.2 muestra la técnica t-discarding para acelerar las compro-
baciones de dominancia de un conjunto de etiquetas. Esta técnica ya fue empleada
para mejorar los requisitos espaciales de la búsqueda frontera multicriterio, y en este
trabajo la consideramos para mejorar considerablemente los requisitos temporales de
los algoritmos de búsqueda multicriterio, como veremos en los capítulos de evaluación
experimental.

Las dos últimas secciones de este capítulo repasan la aplicación de la técnica de
t-discarding a los algoritmos NAMOA∗ y LEXGO∗, dando lugar a los algoritmos,
NAMOA∗dr y LEXGO∗dr, respectivamente.

A.3.4 Análisis formal de los algoritmos de búsqueda multicriterio

El principal propósito del Capítulo 5 de esta tesis es proporcionar un análisis formal
de los algoritmos ideados como resultado de esta tesis, además de encontrar la mejor
alternativa algorítmica cuando las preferencias de un decisor son modeladas basándose
en unas metas de satisfacción y estas son ordenadas en niveles de prioridad con pesos
dentro de cada nivel.

Dos posibilidades surgen ante tal problema, la primera y más obvia, es el cálculo
de todo el conjunto de soluciones eficientes o no dominadas a través de un algoritmo
de búsqueda multicriterio, como por ejemplo NAMOA∗, y posteriormente extraer el
subconjunto de soluciones que satisfacen esas metas. La segunda alternativa consiste
en concentrar el esfuerzo de la búsqueda solo en aquellas soluciones que son óptimas
con respectos a las metas, como se realiza por ejemplo en LEXGO∗, es decir, descartar
desde las primeras fases de la búsqueda aquellos caminos en el grafo que no nos llevarán
a soluciones que sean eficientes con respecto a las metas.

La otra gran contribución de esta tesis, la técnica de t-discarding, puede ser aplicada
a los procesos de poda y filtrado de los algoritmos nombrados anteriormente sin afectar
su admisibilidad. Las propiedades de estos nuevos algoritmos, que utilizan la técnica
de reducción de la dimensionalidad, son analizadas en este capítulo.

Las propiedades formales analizadas en los algoritmos de búsqueda multicriterio
presentados en esta tesis son:

Admisibilidad Se prueba formalmente la admisibilidad de todos los algoritmos estu-
diados. Las pruebas formales de admisibilidad de NAMOA∗ fueron presentadas
en Mandow & Pérez de la Cruz (2005); Mandow & Pérez de la Cruz (2010).
Las propiedades que prueban la admisibilidad de LEXGO∗ son descritas en la
Sección 5.2. Finalmente, la técnica de t-discarding empleada por NAMOA∗dr y
LEXGO∗dr se analiza en la Sección 5.3.

Eficiencia El método estándar para medir la eficiencia de los algoritmos de búsqueda
multicriterio es el número de etiquetas exploradas. Un estudio reciente muestra

Resumen 151

que NAMOA∗ es óptimo con respecto a esta medida cuando se emplea una fun-
ción consistente de límites inferiores (Mandow & Pérez de la Cruz, 2010). La
misma propiedad puede ser aplicada a LEXGO∗, puesto que siempre expande un
subconjunto de las etiquetas expandidas por NAMOA∗(ver Sección 5.2.1 para
mayor detalle de esta demostración). En cuanto a los algoritmos que emplean
la técnica de t-discarding, el conjunto de etiquetas expandidas por las versiones
básicas y las que usan la técnica de la reducción de la dimensionalidad se de-
muestran equivalentes, puesto que las nuevas reglas de poda y filtrado descartan
exactamente las mismas etiquetas que los procesos originales de poda y filtrado
(para más detalles consultar el Teorema 5.9).

NAMOA∗ ha demostrado expandir un número igual o menor de etiquetas cuando
se emplea un función consistente de límites inferiores (Mandow & Pérez de la
Cruz, 2010). De manera equivalente por las razones explicadas anteriormente,
LEXGO∗ y las variantes algorítmicas introducidas en esta tesis también com-
parten esta propiedad.

Adicionalmente, introducimos otras importantes medidas de rendimiento para los
algoritmos de búsqueda multicriterio: el número de comparaciones de dominancia
y la cardinalidad de los conjuntos de etiquetas no dominadas que se utilizan
para descartar nuevas alternativas. Estos nuevos parámetros son la clave del
impresionante rendimiento de los algoritmos que emplean t-discarding, y serán
formalmente analizados en la Sección 5.3.2.

A.3.5 Evaluación empírica en mallas aleatorias

El Capítulo 6 está dividido en seis subsecciones y tiene como principal objetivo la
evaluación de las alternativas algorítmicas propuestas sobre un escenario de problemas
aleatorios en mallas. La Sección 6.1 describe la configuración de los experimentos. Por
un lado, el estudio experimental analiza los siguientes aspectos para la comparación
de NAMOA∗ y LEXGO∗ como función de la profundidad de la solución:

• El número de etiquetas expandidas.

• Los requisitos temporales.

• El porcentaje relativo de soluciones eficientes con respecto a las metas. El con-
junto de soluciones devueltas es comparado con el tamaño completo del conjunto
de soluciones no dominadas del problema.

Por otro lado, para analizar el rendimiento de la técnica de t-discarding, se analizan
los siguientes aspectos como función de la profundidad de la solución:

• El tamaño relativo de los conjuntos de etiquetas truncadas con respecto a los
conjuntos completos de NAMOA∗.

• El porcentaje de etiquetas podadas y filtradas sobre el total de etiquetas descar-
tadas.

152 Resumen

• Los requisitos temporales de los algoritmos que emplean la técnica de t-discarding
(NAMOA∗dr y LEXGO∗dr) con respecto a sus algoritmos de referencia (NAMOA∗
y LEXGO∗).

Los experimentos se dividen en dos clases, que consideran la minimización si-
multánea de tres criterios agrupados en dos niveles. Las metas se definen con respecto
a los puntos óptimos y nadir del espacio de costes vectoriales. Así, la primera clase
propone cinco tipos de experimentos donde las metas son gradualmente más flexibles,
desde situarlas en el punto óptimo, hasta estar localizadas en el punto nadir, y en la
que los dos niveles de prioridad comparten el mismo nivel de dificultad de las metas.
En la segunda clase de experimentos, los valores de las metas del primer nivel se dejan
fijos y se parametrizan gradualmente las metas correspondientes al segundo nivel.

Las Secciones 2 a 5 de este capítulo analizan las diferentes comparaciones entre
algoritmos. Los resultados se pueden ver esquematizados en la Sección A.4. Por
último, se realiza un resumen de todos los resultados obtenidos en esta evaluación
experimental en la Sección 6.6.

A.3.6 Evaluación empírica en mapas de carreteras

El Capítulo 7 de esta tesis analiza el rendimiento en mapas de carreteras de los al-
goritmos estudiados. El banco de pruebas utilizado es el 9th Dimacs Implementation
Challenge. Este concurso estaba compuesto de doce mapas de carreteras de diferentes
tamaños.

Los mapas originales de DIMACS proporcionan dos criterios de coste diferentes:
distancia y tiempo de trayecto. Un coste adicional fue propuesto en Machuca &
Mandow (2011) calculando el coste económico del trayecto. Los experimentos con-
tenidos en este capítulo consideran la minimización simultánea de estos tres atributos
(consultar la Sección 3.2.2 para ver con mayor detalle la descripción de este banco de
pruebas).

La evaluación experimental sobre el mapa de Nueva York se realizó con los veinte
primeros problemas de los propuestos en Machuca et al. (2012). El conjunto experi-
mental sobre el mapa de Vermont se definió de manera análoga. Una explicación más
detallada de la generación de estos problemas puede ser encontrada en la Sección 3.2.2.
El tiempo límite de ejecución para cada problema se estableció en 8 horas.

Con respecto a las dos clases de problemas analizados, estos están definidos de
manera análoga a los problemas del Capítulo 6 sobre mallas aleatorias.

A.4 Conclusiones

Las principales conclusiones de esta tesis doctoral pueden ser enumeradas de la si-
guiente forma:

1. Proponemos un nuevo algoritmo de búsqueda multicriterio, LEXGO∗.
El nuevo algoritmo exacto que presentamos devuelve el conjunto de caminos
óptimos de Pareto que satisface un conjunto de metas lexicográficas agrupadas
en niveles de prioridad, o el subconjunto con la desviación mínima con respecto

Resumen 153

a las metas, si estas no pueden ser completamente satisfechas. LEXGO∗ también
se acompaña de demostraciones formales de su correctitud.

2. LEXGO∗ es más eficiente que una búsqueda completa de todas las
soluciones óptimas de Pareto. LEXGO∗ demuestra formalmente expandir
un subconjunto de las etiquetas expandidas por una búsqueda multicriterio sin
preferencias. Puesto que el número de etiquetas expandidas no corresponde a un
indicador de confianza completamente fiel del rendimiento de los algoritmos de
búsqueda multicriterio, hemos comparado LEXGO∗ y NAMOA∗ en bancos de
pruebas con mallas aleatorias y mapas de carreteras. En ambos casos, se observa
una pequeña sobrecarga de tiempo en LEXGO∗ cuando el conjunto completo de
soluciones de Pareto satisface todas las metas. Por otra parte, el rendimiento
relativo de LEXGO∗ sobre NAMOA∗ mejora progresivamente con la reducción
del conjunto de soluciones que satisface las metas, concretamente, los requisitos
temporales de LEXGO∗ son de alrededor de un orden de magnitud menor cuando
las metas se satisfacen para algunas de las soluciones de Pareto, y de hasta cuatro
órdenes de magnitud menor cuando las metas no pueden ser completamente
satisfechas.

3. La política de selección de etiquetas afecta el rendimiento temporal. Se
han realizado experimentos con dos políticas de selección de etiquetas, el orden
lexicográfico y la agregación lineal, sobre los algoritmos LEXGO∗ y NAMOA∗. Se
observa que NAMOA∗lin es aproximadamente un 50% más rápido que NAMOA∗lex
en mallas. Sin embargo, LEXGO∗lin solo es más eficiente que LEXGO∗lex cuando
un alto porcentaje de las soluciones Pareto óptimas satisfacen todas las metas.
Con respecto a los experimentos en los que las metas no pueden ser completa-
mente satisfechas, LEXGO∗lex y LEXGO∗lin son prácticamente equivalentes puesto
que no se realiza filtrado.

4. Proponemos una nueva técnica de reducción de dimensionalidad (t-
discarding). El rendimiento temporal, más que el rendimiento de memoria, se
ha mostrado como el factor limitante en el número de problemas que pueden ser
resueltos con búsqueda multicriterio. Así, presentamos una técnica simple, pero
muy efectiva, para reducir el número de etiquetas pertenecientes a los conjuntos
responsables de descartar nuevas alternativas. Esta técnica se aplica bajo condi-
ciones razonables: el uso de una función consistente como límite inferior para
el algoritmo y el orden lexicográfico para seleccionar alternativas de la cola de
ABIERTOS. Cabe la pena reseñar que el cálculo de una función consistente de
límites inferiores puede ser es una tarea simple gracias a Tung & Chew (1992),
que propusieron usar el punto ideal como límite inferior para la búsqueda multi-
criterio.

5. T-discarding se utiliza ampliamente para descartar etiquetas. Se em-
plean conjuntos de etiquetas cerradas, Gcl(n), y etiquetas pertenecientes a caminos
solución, COSTS, para realizar la poda (poda en cerrados) y el proceso de fil-
trado, respectivamente. Sin embargo, los conjuntos de etiquetas abiertas, Gop(n),
no pueden beneficiarse de nuestra técnica de mejora de las comprobaciones de
dominancia (poda en abiertos). Por lo tanto, se han lanzado experimentos para

154 Resumen

medir el porcentaje de etiquetas que son descartadas en los procesos de poda en
abiertos, poda en cerrados y filtrado. En ninguno de los experimentos realiza-
dos, ni sobre mallas ni sobre mapas de carreteras, el proceso de poda en abiertos
fue responsable del descarte de más del 10% de las etiquetas. De esta manera,
podemos asegurar que la técnica de t-discarding es altamente utilizada por los
algoritmos de búsqueda multicriterio para descartar nuevas alternativas y que,
por lo tanto, tendrá un alto grado de impacto en el rendimiento temporal del
algoritmo.

6. T-discarding realiza comprobaciones de dominancia sobre conjuntos
reducidos de etiquetas. El tamaño relativo de los conjuntos de etiquetas
truncadas sobre el tamaño de los conjuntos originales es teóricamente descono-
cido. Sin embargo, hemos realizados una evaluación experimental y este tamaño
en la práctica es alrededor de dos órdenes de magnitud menor para los problemas
más difíciles sobre mallas y de dos a tres órdenes de magnitud para los proble-
mas de mayor dificultad sobre mapas de carreteras. Por otra parte, la ventaja
relativa de los algoritmos que emplean la técnica de t-discarding se incrementa
gradualmente con el tamaño del problema, por lo que esta contribución puede
efectivamente extender el conjunto de problemas de búsqueda multicriterio que
pueden ser resueltos en la práctica.

7. NAMOA∗dr reduce los requisitos temporales de NAMOA∗. La técnica de
t-discarding puede ser aplicada a algoritmos exactos de búsqueda multicriterio
como NAMOA∗. En problemas aleatorios sobre mallas el coeficiente de mejora
para los problemas de mayor dificultad fue de 8.94 para NAMOA∗dr, la versión
eficiente en tiempo de NAMOA∗ que emplea t-discarding, sobre NAMOA∗lin, la
versión estudiada más eficiente de NAMOA∗. En mapas de carreteras el factor
de mejora sobre NAMOA∗lin fue de 26.55, es decir, NAMOA∗dr resolvió el conjunto
experimental en el 3.77% del tiempo necesario por NAMOA∗lin. Para el conjunto
experimental de Nueva York, un conjunto de problemas realistas de elevada di-
ficultad con tres criterios simultáneos, NAMOA∗dr también amplió el número de
problemas resueltos por NAMOA∗lin, del 20% al 70% de los problemas propuestos.

8. LEXGO∗dr reduce los requisitos temporales de LEXGO∗ en algunos ca-
sos. Al contrario que NAMOA∗dr, LEXGO∗dr, la versión eficiente de LEXGO∗
con t-discarding, no puede beneficiarse completamente de esta técnica. Aque-
llos casos donde las metas no pueden ser completamente satisfechas, el orden
lexicográfico impone un orden de expansión de etiquetas que no es compatible
con la corrección de la mencionada técnica. Sin embargo, LEXGO∗dr puede ser
empleado mientras todas las metas puedan ser satisfechas, lo cual, de hecho,
sucede en los problemas de mayor dificultad, y lograr coeficientes de mejora en
los tiempos de ejecución sobre LEXGO∗ de 8.31 y 21.72 para los problemas más
difíciles sobre mallas y mapas de carreteras, respectivamente.

9. Una comparativa final entre NAMOA∗dr y LEXGO∗dr. Por último, se ha
llevado a cabo una evaluación experimental de las alternativas estudiadas que
han demostrado ser más eficientes. En problemas aleatorios sobre mallas, la
inclusión de la técnica de t-discarding ha conseguido que NAMOA∗dr sea la mejor

Resumen 155

alternativa cuando un alto porcentaje de las soluciones eficientes del problema
satisfacen las metas del decisor. Por otro lado, LEXGO∗dr es la mejor alternativa
cuando las metas no pueden ser completamente satisfechas o una pequeña porción
del conjunto de soluciones eficientes es devuelto. Los resultados en problemas
de mapas de carreteras son compatibles, aunque se debe puntualizar que cuando
las metas pueden ser satisfechas existió un número significativo de problemas
que fueron resueltos por NAMOA∗dr que no pudieron ser resueltos por LEXGO∗dr
dentro del límite temporal.

A.5 Trabajo Futuro

Esta tesis doctoral ha realizado contribuciones, en varios campos, con nuevos algo-
ritmos y técnicas de optimización. Estas contribuciones también plantean al mismo
tiempo nuevas líneas de investigación, donde los enfoques actuales pueden ser efecti-
vamente mejorados. Las siguientes líneas merecen ser investigadas con posterioridad
a la lectura de esta tesis:

• La evaluación experimental llevada a cabo en esta tesis ha remarcado la impor-
tancia de la política de selección de etiquetas en los requisitos temporales de
algoritmos de búsqueda multicriterio. La determinación de una política óptima
sería una contribución deseable y merece un estudio más profundo.

• El estudio y desarrollo de estructuras de datos más eficientes para almacenar los
conjuntos de etiquetas abiertas y cerradas, así como la cola de alternativas, son
investigaciones en curso. Todos los algoritmos presentados en esta tesis podrían
beneficiarse de implementaciones más eficientes de estas estructuras de datos.

• LEXGO∗ puede ser extendido para usar otro modelos de programación por metas
u otras fórmulas para medir la desviación con respecto a las metas. Sin embargo,
necesitaríamos probablemente desarrollar nuevas reglas de poda y/o filtrado para
cada caso particular, con el objetivo de mejorar su eficiencia.

• Comprobar la eficacia de la técnica de t-discarding en otros algoritmos de búsqueda
multicriterio con límites inferiores. Hemos aplicado t-discarding a NAMOA∗,
pero podría ser aplicado a otros algoritmos para reducir sus requisitos tempo-
rales.

• Tanto NAMOA∗ como LEXGO∗ devuelven el conjunto de todas las soluciones no
dominadas (y que satisfacen las metas en el caso de LEXGO∗). Ya hemos podido
comprobar en nuestros experimentos que aquellos problemas de mayor dificultad
que buscan la frontera de Pareto completa llevan aparejados altos requisitos
temporales. Sin embargo, hay otras técnicas de decisión multicriterio que buscan
solo una solución eficiente, como es el caso de la búsqueda compromiso. Algunas
de las conclusiones alcanzadas en esta tesis pueden ser útiles y extensibles a otros
modelos de búsqueda multicriterio.

• Aplicar t-discarding a problemas con más de tres criterios simultáneos. Teóri-
camente, la mejora relativa debería ser incluso mayor que en los experimentos

156 Resumen

mostrados en esta tesis. Sin embargo, estaremos probablemente acotados a re-
solver problemas sobre escenarios artificiales o problemas realistas sobre grafos
de menor tamaño, debido principalmente a la extraordinaria dificultad que en-
trañaría resolver problemas significativamente grandes con más de tres criterios.

• La búsqueda multicriterio sobre mapas de carreteras es un tema muy popular
durante los últimos años. Puesto que el tiempo medio de consulta para los pro-
blemas de camino más corto de un solo objetivo se ha reducido al orden de
microsegundos, la evolución natural es la resolución de problemas que involucren
la optimización de más de un criterio simultáneamente. Las técnicas avanzadas
de optimización aplicadas al problema con un solo objetivo, como los grafos mul-
tinivel (Schulz et al., 2002) o la contracción de jerarquías (Geisberger et al.,
2008) representan posibilidades para la búsqueda multicriterio que merecen una
investigación más profunda. Por ejemplo, técnicas de preprocesamiento como
la contracción de jerarquías requieren realizar una búsqueda bidireccional mul-
ticriterio. De hecho, este es otro campo de investigación de interés del autor de
esta tesis (Pulido et al., 2011, 2012), por lo que su aplicación sería uno de los
siguientes desarrollos a realizar.

• Por último, una linea de investigación recurrente es la identificación de nuevos
dominios potenciales de aplicación para la Búsqueda Multicriterio, así como la
combinación con otras disciplinas con las que enfocar el problema desde diversas
perspectivas.

Bibliography

Ahuja, R. K., Mehlhorn, K., Orlin, J., & Tarjan, R. E. (1990). Faster algorithms for
the shortest path problem. Journal of the ACM, 37(2), 213–223.

Aouni, B., Colapinto, C., & La Torre, D. (2014). Financial portfolio management
through the goal programming model: Current state-of-the-art. European Journal
of Operational Research, 234(2), 536–545.

Aouni, B. & Kettani, O. (2001). Goal programming model: A glorious history and a
promising future. European Journal of Operational Research, 133, 225–231.

Azevedo, J. & Martins, E. (1991). An algorithm for the multiobjective shortest path
problem on acyclic networks. Investigação Operacional, 11(1), 52–69.

Bankian-Tabrizi, B., Shahanaghi, K., & Saeed Jabalameli, M. (2012). Fuzzy multi-
choice goal programming. Applied Mathematical Modelling, 36(4), 1415–1420.

Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., & Wagner, D. (2014). Speed-
consumption tradeoff for electric vehicle route planning. In 14th Workshop on Algo-
rithmic Approaches for Transportation Modeling, Optimization, and Systems.

Bayili, S. & Polat, F. (2011). Limited-damage A*: A path search algorithm that
considers damage as a feasibility criterion. Knowledge-Based Systems, 24(4), 501 –
512.

Branke, J., Deb, K., Miettinen, K., & Slowinski, R., Eds. (2008). Multiobjective Opti-
mization, Interactive and Evolutionary Approaches [outcome of Dagstuhl seminars].,
volume 5252 of Lecture Notes in Computer Science. Springer.

Brumbaugh-Smith, J. & Shier, D. (1989). An empirical investigation of some bicriterion
shortest path algorithms. European Journal of Operational Research, 43, 216–224.

Caballero, R., Gómez, T., & Ruiz, F. (2009). Goal programming: realistic targets for
the near future. Journal of Multi-Criteria Decision Analysis, 16(3-4), 79–110.

Caramia, M., Giordani, S., & Iovanella, A. (2010). On the selection of k routes in
multiobjective hazmat route planning. IMA Journal of Management Mathematics,
21, 239–251.

157

158 Bibliography

Cazenave, T. (2006). Optimizations of data structures, heuristics and algorithms for
path-finding on maps. 2006 IEEE Symposium on Computational Intelligence and
Games, (pp. 27–33).

Chankong, V. & Haimes, Y. Y. (1983). Multiobjective Decision Making Theory and
Methodology. Elsevier Science, New York.

Charnes, A. & Cooper, W. (1961). Management models and industrial applications of
linear programming. Naval Research Logistics Quarterly, 9(1), 63–64.

Charnes, A. & Cooper, W. (1977). Goal programming and multiple objective opti-
mization. European Journal of Operational Research, 1, 39–54.

Cherkassky, B. V., Goldberg, A., & Silverstein, C. (1999). Buckets, heaps, lists, and
monotone priority queues. SIAM Journal on Computing, (pp. 83–92).

Cherkassky, B. V., Goldberg, A. V., & Radzik, T. (1996). Shortest path algorithms:
Theory and experimental evaluation. Mathematical programming, 73(2), 129–174.

Climaco, J. a. C. N., Craveirinha, J. M. F., & Pascoal, M. M. B. (2003). A bicriterion
approach for routing problems in multimedia networks. Networks, 41(4), 206–220.

Climaco, J. a. C. N. & Martins, E. (1982). A bicriterion shortest path algorithm.
European Journal of Operational Research, (pp. 399–404).

Clímaco, J. C. N. & Pascoal, M. M. B. (2012). Multicriteria path and tree problems:
discussion on exact algorithms and applications. International Transactions in Op-
erational Research, 19(1-2), 63–98.

Cohon, J. L. (1978). Multiobjective programming and planning, volume 140 of Mathe-
matics in Science and Engineering. Academic Press, New York, (Dover Publications
Inc.), Dover edition.

Craveirinha, J., Girão-Silva, R., Clímaco, J., & Martins, L. (2009). A hierarchical
multiobjective routing model for mpls networks with two service classes. In System
Modeling and Optimization (pp. 196–219). Springer.

Current, J. R., Revelle, C. S., & Cohon, J. L. (1990). An interactive approach to
identify the best compromise solution for two objective shortest path problems.
Computers & Operations Research, 17(2), 187–198.

da Silva, A. F. & Marins, F. A. S. (2014). A fuzzy goal programming model for
solving aggregate production-planning problems under uncertainty: A case study in
a brazilian sugar mill. Energy Economics, 45, 196–204.

Deb, K. (1999). Solving goal programming problems using multi-objective genetic
algorithms. Evolutionary Computation, 1999. CEC 99, 1.

Dechter, R. & Pearl, J. (1985). Generalized best-first search strategies and the opti-
mality of A*. Journal of the ACM, 32(3), 505–536.

Bibliography 159

Delle Fave, F. M., Canu, S., Iocchi, L., Nardi, D., & Ziparo, V. a. (2009). Multi-
objective multi-robot surveillance. 2009 4th International Conference on Au-
tonomous Robots and Agents, (pp. 68–73).

Delling, D., Sanders, P., Schultes, D., &Wagner, D. (2009). Engineering route planning
algorithms. In Algorithmics, volume 5515 of Lecture Notes in Computer Science (pp.
117–139). Springer.

Delling, D. & Wagner, D. (2009). Pareto paths with sharc. In Proceedings of the
8th International Symposium on Experimental Algorithms (SEA’09), volume 2 (pp.
125–136).: Springer Verlag.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269–271.

Disser, Y., Müller-Hannemann, M., & Schnee, M. (2008). Multi-criteria shortest paths
in time-dependent train networks. Experimental Algorithms, (pp. 347–361).

Ehrgott, M. (2005). Multicriteria Optimization. Springer, 2nd edition.

Ehrgott, M. & Gandibleux, X. (2000). A survey and annotated bibliography of multi-
objective combinatorial optimization. OR-Spektrum, (pp. 425–460).

Erkut, E., Tjandra, S., & Verter, V. (2007). Hazardous materials transportation.
Handbooks in operations research and management science, 14, 539–621.

Fujimura, K. (1996). Path planning with multiple objectives. Robotics & Automation
Magazine, IEEE, 3(March), 33–38.

Gabrel, V. & Vanderpooten, D. (2002). Enumeration and interactive selection of
efficient paths in a multiple criteria graph for scheduling an earth observing satellite.
European Journal of Operational Research, 139(3), 533–542.

Galand, L., Ismaili, A., Perny, P., & Spanjaard, O. (2013). Bidirectional preference-
based search for multiobjective state space graph problems. In 6th Annual Sympo-
sium on Combinatorial Search (SoCS) (pp. 80–88).

Galand, L. & Perny, P. (2006). Search for compromise solutions in multiobjective state
space graphs. 17th European Conference on Artificial Intelligence, ECAI’2006.

Galand, L., Perny, P., & Spanjaard, O. (2010). Choquet-based optimisation in multiob-
jective shortest path and spanning tree problems. European Journal of Operational
Research, 204(2), 303–315.

Galand, L. & Spanjaard, O. (2007). OWA-Based search in state space graphs with
multiple cost functions. In 20th International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2007 (pp. 86–91).

Gallo, G. & Pallottino, S. (1988). Shortest path algorithms. Annals of Operations
Research, 13(1), 1–79.

160 Bibliography

Gandibleux, X., Beugnies, F., & Randriamasy, S. (2006). Martins’ algorithm revisited
for multi-objective shortest path problems with a maxmin cost function. 4OR: A
Quarterly Journal of Operations Research, 4(1), 47–59.

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. Experimental Algorithms,
2.

Goodrich, M. & Pszona, P. (2014). Two-phase bicriterion search for finding fast and ef-
ficient electric vehicle routes. In 22nd ACM SIGSPATIAL International Conference
on Advancesin Geographic Information Systems.

Granat, J. & Guerriero, F. (2003). The interactive analysis of the multicriteria shortest
path problem by the reference point method. European Journal of Operational
Research, 151(1), 103–118.

Guerriero, F. & Musmanno, R. (2001). Label correcting methods to solve multicriteria
shortest path problems. Journal of Optimization Theory and Applications, 111(3),
589–613.

Guerriero, F., Musmanno, R., Lacagnina, V., & Pecorella, A. (2001). A class of label-
correcting methods for the k shortest paths problem. Operations Research, 49(3),
423–429.

Hansen, P. (1980). Bicriterion path problems. In Lecture Notes in Economics and
Mathematical Systems, volume 177 (pp. 109–127).: Springer.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107.

Huarng, F., Pulat, P., & Shih, L. (1996). A computational comparison of some bi-
criterion shortest path algorithms. Journal of the Chinese Institute of Industrial
Engineers, 13(2), 121–125.

Ignizio, J. (1976). An approach to the capital budgeting problem with multiple objec-
tives. The Engineering Economist, 21(4), 259–272.

Ignizio, J. (1978). A review of goal programming: A tool for multiobjective analysis.
Journal of the Operational Research Society, 29(11), 1109–1119.

Ignizio, J. & Thomas, L. (1984). An enhanced conversion scheme for lexicographic,
multiobjective integer programs. European journal of Operational Research, 18, 57–
61.

Iori, M., Martello, S., & Pretolani, D. (2010). An aggregate label setting policy for the
multi-objective shortest path problem. European Journal of Operational Research,
207(3), 1489–1496.

Bibliography 161

Johnson, D. S. (2002). A theoretician‘s guide to the experimental analysis of algo-
rithms. In Data Structures, Near Neighbor Searches, and Methodology: Fifth and
Sixth DIMACS Implementation Challenges (pp. 215–250).: American Mathematical
Society.

Jones, D. & Tamiz, M. (2010). Practical goal programming, volume 141 of International
Series in Operations Research & Management Science. Springer.

Jozefowiez, N., Semet, F., & Talbi, E.-G. (2008). Multi-objective vehicle routing
problems. European Journal of Operational Research, 189(2), 293–309.

Klingman, D., Napier, A., & Stutz, J. (1974). Netgen: A program for generating
large scale capacitated assignment, transportation, and minimum cost flow network
problems. Management Science, 20(5), 814 –821.

Klunder, G. & Post, H. (2006). The shortest path problem on large scale real road
networks. Networks, 48(4), 182–194.

Korf, R., Zhang, W., Thayer, I., & Hohwald, H. (2005). Frontier search. Journal of
the ACM, 52(5), 715–748.

Korf, R. E. (1985). Depth-first iterative-deepening an optimal admissible tree search.
Artificial Intelligence, 27(1), 97–109.

Korf, R. E. (1997). Finding optimal solutions to rubik’s cube using pattern databases.

Korf, R. E. (2010). Artificial intelligence search algorithms. In M. J. Atallah & M.
Blanton (Eds.), Algorithms and theory of computation handbook, chapter 22, (pp.
22.1–22.23). Chapman & Hall/CRC.

Korf, R. E. & Taylor, L. (1996). Finding optimal solutions to the twenty-four puzzle.

Larbani, M. & Aouni, B. (2007). On the pareto optimality in goal programming.
ASAC, 2(1961), 127–131.

Machuca, E. (2011). An analysis of multiobjective search algorithms and heuristics.
Proceedings of the Twenty-Second international joint Conference on Artificial Intel-
ligence.

Machuca, E. (2012). An Analysis of Some Algorithms and Heuristics for Multiobjective
Graph Search. PhD thesis, Universidad de Málaga.

Machuca, E. & Mandow, L. (2011). Multiobjective route planning with precalculated
heuristics. Proc. of the 15th Portuguese Conference on Artificial Intelligence (EPIA
2011), (pp. 98–107).

Machuca, E. & Mandow, L. (2012). Multiobjective heuristic search in road maps.
Expert Systems with Applications, 39(7), 6435–6445.

Machuca, E., Mandow, L., & Galand, L. (2013). An evaluation of best compromise
search in graphs. Advances in Artificial Intelligence, 8109(2013), 1–11.

162 Bibliography

Machuca, E., Mandow, L., Pérez de la Cruz, J., & Ruiz-Sepulveda, A. (2010). An
empirical comparison of some multiobjective graph search algorithms. KI 2010, (pp.
238–245).

Machuca, E., Mandow, L., Pérez de la Cruz, J., & Ruiz-Sepulveda, A. (2012). A
comparison of heuristic best-first algorithms for bicriterion shortest path problems.
European Journal of Operational Research, 217(1), 44–53.

Machuca, E., Mandow, L., & Pérez de la Cruz, J. L. (2009). An evaluation of heuristic
functions for bicriterion shortest path problems. In L. Seabra Lopes, N. Lau, P.
Mariano, & L. Rocha (Eds.), New Trends in Artificial Intelligence, Proc. of 14th
Portuguese Conference on Artificial Intelligence, EPIA’09 (pp. 205–216).

Machuca, E., Mandow, L., Pérez De La Cruz, J. L., & Iovanella, A. (2011). Heuristic
multiobjective search for hazmat transportation problems. In J. Lozano, J. Gómez,
& J. Moreno (Eds.), 14th international conference of the Spanish association for ar-
tificial intelligence, CAEPIA’11, volume 7023 of Lecture Notes in Computer Science
(pp. 243–252). Berlin, Heidelberg: Springer-Verlag.

Mali, G., Michail, P., Paraskevopoulos, A., & Zaroliagis, C. (2013). A new dynamic
graph structure for large-scale transportation networks. In Algorithms and Com-
plexity, volume 7878 of Lecture Notes in Computer Science (pp. 312–323). Springer
Berlin Heidelberg.

Mali, G., Michail, P., & Zaroliagis, C. (2012). Faster multiobjective heuristic search in
road maps. In Proc. of Int. Conf. on Advances in Information and Communication
Technologies, volume 3 (pp. 67–72).

Mandow, L. & Pérez de la Cruz, J. (2007). A multiobjective frontier search algorithm.
In Proceedings of the 20th international joint conference on Artifical intelligence (pp.
2340–2345).: Morgan Kaufmann Publishers Inc.

Mandow, L. & Pérez de la Cruz, J. (2008a). Frontier search for bicriterion shortest
path problems. In 18th European Conference on Artificial Intelligence, ECAI 2008
(pp. 480–484).

Mandow, L. & Pérez de la Cruz, J. (2008b). Path recovery in frontier search for
multiobjective shortest path problems. Journal of Intelligent Manufacturing, 21(1),
89–99.

Mandow, L. & Pérez de la Cruz, J. (2009). A memory-efficient search strategy for
multiobjective shortest path problems. KI 2009: Advances in Artificial Intelligence,
5803, 25–32.

Mandow, L. & Pérez de la Cruz, J. (2010). Multiobjective a * search with consistent
heuristics. Journal of the ACM, 57(5), 1–25.

Mandow, L. & Pérez De La Cruz, J. L. (2001). A heuristic search algorithm with
lexicographic goals. Engineering Applications of Artificial Intelligence, 14, 751–762.

Bibliography 163

Mandow, L. & Pérez de la Cruz, J. L. (2005). A new approach to multiobjective A*
search. In 19th International Joint Conference on Artificial Intelligence, IJCAI’05
(pp. 218–223). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Martins, E. (1984a). On a multicriteria shortest path problem. European Journal of
Operational Research, 16, 236–245.

Martins, E. (1984b). On a special class of bicriterion path problems. European Journal
of Operational Research, 17(1), 85–94.

Martins, E., Paixão, J.M. Rosa, M., & Santos, J. L. E. (2007). Ranking multiobjective
shortest paths. Technical Report 2007/011, Centre for Mathematics, University of
Coimbra.

Martins, E. Q. V. (1984c). An algorithm for ranking paths that may contain cycles.
European Journal of Operational Research, 18(1), 123 – 130.

Mehlhorn, K. & Sanders, P. (2008). Algorithms and Data Structures. Springer.

Miettinen, K. (1998). Nonlinear multiobjective optimization, volume 12 of International
Series in Operations Research & Management Science. Kluwer Academic Publishers,
Dordrecht.

Modesti, P. & Sciomachen, A. (1998). A utility measure for finding multiobjective
shortest paths in urban multimodal transportation networks. European Journal of
Operational Research, 111, 495–508.

Mote, J., Murthy, I., & Olson, D. (1991). A parametric approach to solving bicriterion
shortest path problems. European Journal of Operational Research, 53, 81–92.

Müller-Hannemann, M. & Schnee, M. (2004). Finding all attractive train connections
by multi-criteria pareto search. Railway Optimization 2004. LNCS, 4359, 246–263.

Müller-Hannemann, M. & Weihe, K. (2006). On the cardinality of the pareto set in
bicriteria shortest path problems. Annals of Operations Research, 147(1), 269–286.

Nance, R., Moose, R., & Foutz, R. (1987). A statistical technique for comparing
heuristics: an example from capacity assignment strategies in computer network
design. Communications of the ACM, 30(5), 430–442.

Orumie, U. & Ebong, D. (2014). A glorious literature on linear goal programming
algorithms. American Journal of Operations Research, (pp. 59–71).

Paixão, J. & Santos, J. (2013). Labelling methods for the general case of the multi-
objective shortest path problem-a computational study. In Computational Intelli-
gence and Decision Making, volume 61 of Intelligent Systems, Control and Automa-
tion: Science and Engineering (pp. 489–502). Springer Netherlands.

Paixão, J. & Santos, J. L. E. (2008). A new ranking path algorithm for the multi-
objective shortest path problem. Technical Report 2008/027, Centre for Mathematics,
University of Coimbra.

164 Bibliography

Pal, B., Biswas, P., & Mukhopadhyay, A. (2012). Using genetic algorithm to goal pro-
gramming model of solving economic-environmental electric power generation pro-
blem with interval-valued target goals. In P. Balasubramaniam & R. Uthayakumar
(Eds.), Mathematical Modelling and Scientific Computation, volume 283 of Com-
munications in Computer and Information Science (pp. 156–169). Springer Berlin
Heidelberg.

Pareto, V. (1897). Course d’économie politique. F. Pichou, Lausanne and Paris.

Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Pérez de la Cruz, J., Mandow, L., & Machuca, E. (2013). A case of pathology in
multiobjective heuristic search. Journal of Artificial Intelligence Research, 48, 717–
732.

Perny, P. & Spanjaard, O. (2005). A preference-based approach to spanning trees and
shortest paths problems. European Journal of Operational Research, 23.

Perny, P. & Weng, P. (2010). On finding compromise solutions in multiobjective
markov decision processes. ECAI, (pp. 969–970).

Pulido, F. J., Mandow, L., & Pérez de la Cruz, J. (2011). An analysis of bidirectional
heuristic search in game maps. aepia.aic.uniovi.es, 1.

Pulido, F. J., Mandow, L., & Pérez de la Cruz, J. (2014). Multiobjective shortest path
problems with lexicographic goal-based preferences. European Journal of Operational
Research, 239(1), 89–101.

Pulido, F. J., Mandow, L., & Pérez de la Cruz, J. (2015). Dimensionality reduction in
multiobjective shortest path search. Computers & Operations Research, 64, 60–70.

Pulido, F. J., Mandow, L., & Pérez de la Cruz, J. L. (2012). A two-phase bidirectional
heuristic search algorithm. In K. Kersting & M. Toussaint (Eds.), Frontiers in
Artificial Intelligence and Applications, Volume 241: STAIRS 2012 (pp. 240 – 251).:
IOS Press.

Pyrga, E., Schulz, F., Wagner, D., & Zaroliagis, C. (2008). Efficient models for
timetable information in public transportation systems. ACM Journal of Experi-
mental Algorithmics, 12(2), 1.

Raith, A. (2009). Multiobjective Routing and Transportation Problems. PhD thesis,
University of Auckland.

Raith, A. & Ehrgott, M. (2009). A comparison of solution strategies for biobjective
shortest path problems. Computers & Operations Research, 36(4), 1299–1331.

Romero, C. (1986). A survey of generalized goal programming (1970 - 1982). European
Journal of Operational Research, 25(2), 183–191.

Romero, C. (1991). Handbook of critical issues in goal programming. Mathematical
Social Sciences, 22(2), 185.

Bibliography 165

Romero, C. (1993). Teoría de la decisión multicriterio: conceptos, técnicas y aplica-
ciones. Alianza universidad textos. Alianza Editorial.

Rosenthal, R. (1983). Goal programming- a critique. NZOR, 11(1), 1–8.

Sanders, P. & Mandow, L. (2013). Parallel label-setting multi-objective shortest path
search. 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing, (pp. 215–224).

Sauvanet, G. & Néron, E. (2010). Search for the best compromise solution on mul-
tiobjective shortest path problem. Electronic Notes in Discrete Mathematics, 36,
615–622.

Schniederjans, M. (1995). Goal programming: methodology and applications. Springer
US.

Schultes, D. (2008). Route Planning in Road Networks. PhD thesis, KIT.

Schulz, F., Wagner, D., & Zaroliagis, C. (2002). Using multi-level graphs for timetable
information in railway systems. In D. M. Mount & C. Stein (Eds.), 4th International
Workshop on Algorithm Engineering and Experiments, ALENEX 2002, volume 2409
of Lecture Notes in Computer Science (pp. 43–59). Springer Berlin / Heidelberg.

Sen, S. & Pal, B. B. (2013). Interval goal programming approach to multiobjective
fuzzy goal programming problem with interval weights. Procedia Technology, 10,
587–595.

Shahnazari-Shahrezaei, P., Tavakkoli-Moghaddam, R., & Kazemipoor, H. (2013). Solv-
ing a multi-objective multi-skilled manpower scheduling model by a fuzzy goal pro-
gramming approach. Applied Mathematical Modelling, 37(7), 5424–5443.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psycho-
logical Review, 63(2), 129–138.

Skriver, a. & Andersen, K. (2000). A label correcting approach for solving bicriterion
shortest-path problems. Computers & Operations Research, 27(6), 507–524.

Stewart, B. S. & White, C. C. (1991). Multiobjective a*. Journal of the ACM, 38(4),
775–814.

Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision mak-
ing: An overview of the current state-of-the-art. European Journal of Operational
Research, 111(3), 569–581.

Tarapata, Z. (2007). Selected multicriteria shortest path problems: An analysis of
complexity, models and adaptation of standard algorithms. International Journal
of Applied Mathematics and Computer Science, 17(2), 269–287.

Tung, C. T. & Chew, K. L. (1992). Theory and methodology a multicriteria pareto-
optimal path algorithm. European Journal of Operational Research, 62, 203–209.

166 Bibliography

Tzeng, G. & Huang, J. (2011). Multiple Attribute Decision Making: Methods and
Applications. A Chapman & Hall book. Taylor & Francis.

Wierzbicki, A. (1986). On the completeness and constructiveness of parametric char-
acterizations to vector optimization problems. Operations-Research-Spektrum, 8,
73–87.

Wu, P., Campbell, D., & Merz, T. (2011). Multi-objective four-dimensional vehicle
motion planning in large dynamic environments. IEEE Transactions on Systems,
Man and Cybernetics, 41(3), 621–634.

Wu, Q. & Hartley, J. (2004). Using k-shortest paths algorithms to accommodate user
preferences in the optimization of public transport travel. Applications of Advanced
Technologies in Transportation Engineering (2004), (pp. 181–186).

Yu, P.-L. (1985). Multiple criteria decision making, volume 30 of Mathematical Con-
cepts and Methods in Science and Engineering. Springer.

Zanakis, S. H. & Gupta, S. K. (1985). A categorized bibliographic survey of goal
programming. Omega, 13(3), 211–222.

Zeleny, M. (1981). The pros and cons of goal programming. Computers & Operations
Research, (pp. 357–359).

Zeleny, M. (1982). Multiple criteria decision making. McGraw-Hill, New York.

Zeleny, M. (1984). (MCDM) Past Decade and Future Trends, A Source Book of Multiple
Criteria Decision Making. London: JAI Press.

Zhan, F. (1997). Three fastest shortest path algorithms on real road networks: Data
structures and procedures. Journal of Geographic Information and Decision Analy-
sis, 1(1), 69–82.

Zhan, F. & Noon, C. E. (1998). Shortest path algorithms: An evaluation using real
road networks. Transportation Science, 32(1), 65–73.

Zhan, F. B. & Noon, C. E. (2000). A comparison between label-setting and label-
correcting algorithms for computing one-to-one shortest paths. Journal of Geo-
graphic Information and Decision Analysis, 4(2), 1–11.

	Indexes
	Table of Contents
	List of Figures
	List of Tables

	I Motivation and Fundamentals
	Introduction
	Motivation
	Scope and Orientation
	Research Goals
	Contributions
	Related Publications
	Outline

	MultiCriteria Graph Search
	Multicriteria Decision Making
	Multiobjective optimization
	Goal Programming
	Variants of goal-based preferences
	Lexicographic goal-based preferences

	The Shortest Path Problem
	The Multicriteria Search Problem
	Exact a posteriori algorithms
	Extensions of A* to the multiobjective case
	Algorithm NAMOA*
	The ideal point as lower bound

	Exact a priori algorithms
	Compromise Search
	Goal Programming

	Summary and motivation

	Benchmarks
	Multiobjective Search benchmarks
	Benchmarks used in this thesis
	Random grids
	Road maps
	Significance of the test sets
	Evaluation of preferences based on goals

	Evaluation of performance in Multicriteria Search

	II Contributions
	New techniques for multiobjective and goal-based search
	Algorithm LEXGO*
	Pruning conditions
	Filtering conditions
	Example

	A dimensionality reduction technique for MSP
	Algorithm NAMOA*te
	Algorithm LEXGO*te

	Formal Analysis of Multicriteria Algorithms
	Formal characterization of NAMOA*
	Admissibility
	Efficiency of lower bounds and optimality

	Formal characterization of LEXGO*
	Efficiency
	Admissibility

	Formal characterization of NAMOA*te
	Admissibility
	Efficiency

	Formal characterization of LEXGO*te
	Admissibility

	Discussion

	Empirical Analysis on Grid Problems
	Experimental setup
	LEXGO* vs NAMOA*
	Analysis on class I experiments
	Analysis on class II experiments
	Analysis on the pruning condition
	Summary

	NAMOA*dr vs NAMOA*
	Analysis
	Summary

	LEXGO*dr vs LEXGO*
	Analysis on class I experiments
	Analysis on class II experiments
	Summary

	LEXGO*dr vs NAMOA*dr
	Analysis on class I experiments
	Analysis on class II experiments
	Summary

	Summary on random grid experiments
	Summary on class I experiments
	Summary on class II experiments

	Empirical Analysis On Road Map Problems
	LEXGO* vs NAMOA*
	Analysis on class I experiments
	Analysis on class II experiments
	Summary

	NAMOA*dr vs NAMOA*
	Analysis
	Summary

	LEXGO*dr vs LEXGO*
	Analysis on class I experiments
	Analysis on class II experiments
	Summary

	LEXGO*dr vs NAMOA*dr
	Analysis on class I experiments
	Analysis on class II experiments
	Summary

	Summary on road map problems

	III Conclusions
	Conclusions and Future Work
	Conclusions
	Future Work

	IV Appendix
	Resumen
	Objetivos
	Contribuciones
	Resumen de los capítulos de la Tesis
	Búsqueda Multicriterio en Grafos: Problemas y Algoritmos
	Bancos de pruebas para búsqueda multicriterio
	Contribuciones
	Análisis formal de los algoritmos de búsqueda multicriterio
	Evaluación empírica en mallas aleatorias
	Evaluación empírica en mapas de carreteras

	Conclusiones
	Trabajo Futuro

	Bibliography

