
Heuristics for Longest Edge selection in
Simplicial Branch and Bound

Juan F. R. Herrera1, Leocadio G. Casado1, Eligius M. T. Hendrix2, and
Inmaculada Garćıa2

1 University of Almeria (ceiA3), Almeria, Spain
{juanfrh,leo}@ual.es

2 Universidad de Málaga, Málaga, Spain
{eligius,igarciaf}@uma.es

Abstract. Simplicial partitions are suitable to divide a bounded area in
branch and bound. In the iterative refinement process, a popular strategy
is to divide simplices by their longest edge, thus avoiding needle-shaped
simplices. A range of possibilities arises in higher dimensions where the
number of longest edges in a simplex is greater than one. The behaviour
of the search and the resulting binary search tree depend on the se-
lected longest edge. In this work, we investigate different rules to select a
longest edge and study the resulting efficiency of the branch and bound
algorithm.

Keywords: bisection · branching rule · branch and bound · Global Op-
timization · simplices

1 Introduction

Global Optimization (GO) searches for global optima of a nonlinear function on
a non-empty domain that may have local nonglobal minima. Several methods
can be used to find the solution. Within deterministic methods, the branch
and bound method (B&B) guarantees to find a global minimum point up to
a guaranteed accuracy δ. This method iteratively divides the search space into
subsets and discards those that are proven not to contain a global solution. Five
rules define the method:

Branching rule It determines how to divide a problem into subproblems.
Bounding rule It defines how to obtain upper and/or lower bounds of the

objective function on subproblems.
Selection rule It chooses a subproblem among all subproblems stored in a

working set.
Rejection rule It discards subproblems which are proven not to contain a

global solution.
Termination rule It defines when the given accuracy has been reached. Once

a subproblem meets this criterion, it is not further divided. Otherwise, it is
stored in the working set.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62905441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J.F.R. Herrera et al

Every B&B rule plays an important role on the efficiency of the algorithm.
Careless decisions in one of the rules may lead to inefficient algorithms. This
work focuses on the efficiency of the branching rule using longest edge bisection
within simplicial B&B optimization methods.

For some problems like mixture design, the search space is a regular simplex
[5]. Here, we focus on box-constrained problems, where the search space is an n-
dimensional hyper-rectangle that can be partitioned into a set of non-overlapping
n-simplices. An n-simplex is a convex hull of n+1 affinely independent vertices.
A simplex is a polyhedron in a multidimensional space, which has the minimal
number of vertices. Therefore simplicial partitions are preferable in GO when the
values of the objective function at all vertices of partitions are used to evaluate
subregions.

A recent study shows how the number of generated sub-simplices varies when
different heuristics are applied in the iterative bisection of a regular n-simplex
[1] when dimensions are higher than 2. In that study, the complete binary tree
is built by bisecting the heuristically-selected longest edge of a sub-simplex until
the width, determined by the length of their longest edge, is smaller or equal to
a given accuracy ϵ. A large reduction in the number of generated sub-simplices
and therefore the size of the binary tree is achieved when one deviates from
a heuristic that simply bisects the first longest edge found in terms of vertex
indexation.

In this context, our initial question was about the effect when one applies
different heuristics to simplicial B&B on a box constrained area, where the initial
search region is not a regular simplex and the termination criterion is based
on the bounding rule. In a previous study [7], we showed that the number of
evaluated simplices can be reduced by not selecting the first longest edge, but
that which has the smallest sum of angles with the other edges. That study
generated the upper part of a binary tree running a Lipschitz B&B with a rough
accuracy. We focus now on new heuristics and investigate their efficiency for
a B&B algorithm that reaches at least 5% of the function range as accuracy.
The question is which of the rules are most effective when the dimension of the
problem is going up.

Section 2 briefly explains the main features of the used simplicial B&B al-
gorithm. Section 3 describes the studied edge selection heuristics. The resulting
search tree is compared numerically in Section 4 and Section 5 summarizes the
findings.

2 Simplicial B&B Method for Multidimensional GO

We focus on the multidimensional box-constrained global optimization problem.
The goal is to find at least one global minimum point x∗ of

f∗ = f(x∗) = min
x∈X

f(x), (1)

where the feasible area X ⊂ Rn is a nonempty box-constrained area, i.e. it has
simple upper and lower bounds for each variable. The function f is not required

Longest Edge selection in Simplicial B&B 3

Fig. 1. Division of a hypercube into six irregular simplices

to be differentiable nor (Lipschitz) continuous. We will see in this section how
one can subdivide the search space and derive simple bounds on the simplicial
subsets. All ingredients are then collected into an algorithm.

Initial Space

Most B&B methods use hyper-rectangular partitions. However, other types of
partitions may be more suitable for some optimization problems. Compared to
the use of rectangular partitions, simplicial partitions are convenient when the
feasible region is a polytope [11]. Optimization problems with linear constraints
are examples where feasible regions are polytopes which can be vertex triangu-
lated.

For the use of simplicial partitions, the feasible region is partitioned into
simplices. There are two methods: over-covering and face-to-face vertex triangu-
lation. The first strategy covers the hyper-rectangle by one simplex, that can be
a regular one. The disadvantage of this method is that the search space is bigger
than the feasible area and some regions can be out of the function definition. The
most preferable initial covering is face-to-face vertex triangulation. It involves
partitioning the feasible region into a finite number of n-dimensional simplices
with vertices that are also the vertices of the feasible region. A standard method
[12] is triangulation into n! simplices. All simplices share the diagonal of the
feasible region and have the same hyper-volume. Figure 1 depicts a hypercube
of dimension three partitioned into six irregular simplices.

Bounding and Rejection Rules

Consider the objective function f with a global minimum f∗ on box-constrained
area X. Given a global minimum point x∗, let scalar K be such that

K ≥ max
x∈X

|f(x)− f∗|
∥x− x∗∥

, (2)

where ∥ · ∥ denotes the Euclidean norm. Although this is not essential, we will
work with Euclidean distance. The function f∗ +K∥x− x∗∥ is an upper fitting

4 J.F.R. Herrera et al

according to [2] for an arbitrary x ∈ X. Consider a set of evaluated points xi ∈ X
with function values fi = f(xi), then the area below

φ(x) = max
i

{fi −K∥x− xi∥} (3)

cannot contain the global minimum (x∗, f∗). Let fU = mini fi be the best func-
tion value of all evaluated points, i.e., an upper bound of f∗. Then the area
{x ∈ X : φ(x) > fU} cannot contain the global minimum point x∗.

Now consider a simplex S with evaluated vertices v0, v1, . . . , vn, where fi =
f(vi). To determine the existence of optimal solution x∗ in S, each evaluated
vertex (vi, fi) provides a cutting cone:

φi(x) := fi −K∥x− vi∥. (4)

Let Φ be defined by
Φ(S) = min

x∈S
max

i
φi(x). (5)

If fU < Φ(S), then simplex S cannot contain the global minimum point x∗, and
therefore S can be rejected. Notice that Φ(S) is a lower bound of f∗ if S contains
the minimum point x∗.

Equation (5) is not easy to determine as shown by Mladineo [10]. Therefore,
alternative lower bounds of (5) can be generated in a faster way. We use two of
them and take the best (highest) value.

An easy-to-evaluate case is to consider the best value of minx∈S φi(x) over
the vertices i. This results in a lower bound

Φ 1(S) = max
i

{fi −Kmax
j

∥vj − vi∥}. (6)

The second lower bound is based on the more elaborate analysis of infeasibility
spheres in [3] and developed to non-optimality spheres in [6]. It says that S
cannot contain an optimal point if it is covered completely by so-called non-
optimality spheres. According to [3], if there exists a point c ∈ S such that

fi −K∥c− vi∥ > fU i = 0, . . . , n, (7)

then S is completely covered and cannot contain x∗. This means that any interior
point c of S provides a lower bound mini{fi−Kmaxj ∥c−vi∥}. Instead of trying
to optimize the lower bound over c, we generate an easy-to-produce weighted
average based on the radii of the spheres. Consider that fi > fU , otherwise S
can contain an optimum point. Let

λi =
K

fi − fU
(8)

and take

c =
1∑
j λj

∑
i

λivi. (9)

Longest Edge selection in Simplicial B&B 5

Algorithm 1 Simplicial B&B algorithm, bisection

Require: X, f, K, δ
1: Partition X into simplices Sk, k = 1, . . . , n!
2: Start the working list as Λ := {Sk : k = 1, . . . , n!}
3: The set of evaluated vertices V := {vi ∈ Sk ∈ Λ}
4: Set fU := minv∈V f(v) and xU := argminv∈V f(v)
5: Determine lower bounds fL

k = fL(Sk) based on K
6: while Λ ̸= ∅ do
7: Extract a simplex S = Sk from Λ
8: Bisect S into S1 and S2 generating x
9: if x /∈ V then
10: Add x to V
11: if f(x) < fU then
12: Set fU := f(x) and xU := x
13: Remove all Sk from Λ with fL

k > fU − δ
14: end if
15: end if
16: Determine lower bounds LB(S1) and LB(S2)
17: Store S1 in Λ if fL(S1) ≤ fU − δ
18: Store S2 in Λ if fL(S2) ≤ fU − δ
19: end while
20: return xU , fU

A second lower bound based on (7) is

Φ 2(S) = min
i
{fi −K∥c− vi∥}. (10)

The final lower bound we consider in this paper for the B&B is the best value
fL(S) = max{Φ 1(S), Φ 2(S)}.

Selection and Termination Rules

The algorithm performs a depth-first search by selecting the sub-simplex with the
smallest fL(S) value among those generated in the last division, until the final
accuracy is reached or both new sub-simplices are rejected. In general, depth-
first search minimizes the memory requirement of the algorithm. A simplex S is
discarded when fL(S) + δ > fU for an accuracy δ > 0. The steps of the B&B
algorithm are described in Algorithm 1.

3 Longest Edge Bisection

Literature discusses many methods to subdivide a simplex [8]. One of them is
the Longest Edge Bisection (LEB), which is a popular way of iterative division
in the finite element method, since it is very simple and can easily be applied
in higher dimensions [4]. This method consists of splitting a simplex using the
hyperplane that connects the middle point of the longest edge of a simplex with

6 J.F.R. Herrera et al

the opposite vertices. This is illustrated in Figure 2 that also shows that in
higher dimensions there can be several longest edges. For our study, we should
notice that due to the initial partition as sketched in Figure 1, for n = 3 the
longest edge is unique in all generated subsets. This means that to observe what
happens with a choice of the longest edge to the search tree, we should focus on
dimensions higher than 3. We formulate several rules to select the longest edge.

Longest
 edges

Fig. 2. Longest Edge Bisection generating a sub-simplex with three longest edges

The most common edge selection rule in LEB is the following:

LEB1 Natural coding implicitly selects a longest edge being the first one found.
The sequence depends on the coding and storing of the vertices and edges,
i.e. the index number assigned to each vertex of the simplex. When a simplex
is split into two new sub-simplices, the new vertex of each sub-simplex has
the same index as the one it substitutes.

Our preliminary studies show the existence of many sub-simplices having more
than one longest edge when LEB is used as iterative partition rule in a simplicial
B&B algorithm.

In order to reduce the search tree size, other heuristics for selecting the
longest edge in the division of a regular n-simplex are investigated to be used to
simplicial B&B algorithms. They are summarized below:

LEBα For each vertex in a longest edge, the sum of the angles between edges
ending at that vertex is determined and the longest edge corresponding to
the smallest sum is selected.

LEBC Bisects the longest edge with the largest distance from its middle point
to the centroid of the simplex.

LEBM Determines the distance from a longest edge midpoint to the other ver-
tices. It then selects that longest edge that has the maximum sum of distances
to the other vertices.

Longest Edge selection in Simplicial B&B 7

LEBW Selects an edge that has not been involved in many bisections yet via
a weight system. The initial set of evaluated vertices (line 3 of Algorithm
1) are set to wi := 0. A new vertex vi (generated by the branching rule,
line 8 of Algorithm 1) is initiated with weight wi := 1. Each time vertex vi
belongs to a divided edge, its weight is updated to wi := wi +1 mod n. For
each longest edge defined by vertices (vi, vj), the two weights (wi, wj) are
summed and the one with smallest sum is selected.

The research goal is to determine a LEB rule that minimizes the search tree gen-
erated by a simplicial B&B algorithm measured as the total number of generated
nodes (subsimplices).

4 Comparison of the Selection Rules

A set of several test functions has been built to measure the tree generated by
the set of LEB strategies discussed in the previous section. A complete suite of
test functions can be found in [9]. From this set, we select a subset of functions
that allow varying the dimension of the problem. We remind the reader that
the often-used low dimensional instances are not appropriate to measure the
difference of the generated tree as for dimensions n ≤ 3 there is no choice on the
selected longest edge to be bisected.

For each test function, at least one global minimum point is known and we
determined the sharpest value of parameter K in (2) that we could find using
a multistart approach. For instances like MaxMod or Zakharov, a value for K
can be determined analytically. The data of the corresponding test-bed is given
in Table 1. A description of the test instances with the considered minimum
point and the function range [f∗, f] on the given domain is provided in the
appendix, where f is the maximum function value on the domain. The depth
of the generated B&B tree is mainly determined by the accuracy δ. To obtain
reasonable size trees, in the experiments the value of the accuracy δ is set on
δ = 0.05 (f − f∗).

Table 2 shows the numerical results for a search domain defined in a four-
dimensional space. The computational effort is captured in terms of the number
of generated and evaluated simplices in the corresponding B&B tree, see lines
5 and 16 of Algorithm 1. Column LEB1 denotes the total number of evaluated
simplices and the other columns provide the reduction with respect to LEB1

generated by the remaining rules, expressed as a percentage. Rules LEBα and
LEBM provide higher reductions than LEBC and LEBW , which in some cases
perform more simplex evaluations than LEB1. The interesting aspect is that
selection rule LEBM is easier to generate than selection rule LEBα in terms of
computational operations.

A side result not related to our original question is the effectiveness of the
bounding rule. We measured that the more sophisticated bound Φ 2 is lower for
75% of the evaluated sub-simplices than the simpler lower bound Φ 1.

Table 3 contains the results for dimension n = 5. In this case, LEBM provides
a higher reduction than the rest of rules. LEBα shows reductions similar to LEBC

8 J.F.R. Herrera et al

Table 1. Test instances for dimension n = 4, 5, 6, and the corresponding Kn values

No. Test problem Domain K4 K5 K6

1 Ackley [−30, 30]n 5.4 4.9 4.4
2 Dixon & Price [−10, 10]n 21,646.5 29,086.1 37,248.8
3 Holzman [−10, 10]n 5,196.2 7,000.0 9,000.0
4 MaxMod [−10, 10]n 1.0 1.0 1.0
5 Perm [−n, n]n 183,998.1 31,159,684.8 7,746,536,437.2
6 Pinter [−10, 10]n 60.0 75.3 88.7
7 Quintic [−10, 10]n 29,712.0 33,219.0 36,389.7
8 Rastrigin [−5.12, 5.12]n 91.8 102.7 112.5
9 Rosenbrock [−5, 10]n 168,005.3 190,517.7 210,669.4
10 Schwefel 1.2 [−10, 10]n 176.8 176.8 444.6
11 Zakharov [−5, 10]n 312,645.0 1,415,285.7 4,962,758.1

Table 2. Experimental results for n = 4, number of evaluated simplices by LEB1 and
the reduction by the other rules

No. Test problem LEB1 LEBα LEBC LEBM LEBW

1 Ackley 8,467,608 35% −3% 35% 0%
2 Dixon & Price 2,312,132 28% 8% 28% 5%
3 Holzman 3,419,030 25% 4% 25% 2%
4 MaxMod 5,742,672 54% 9% 54% 5%
5 Perm 39,987,438 3% 2% 31% 0%
6 Pinter 4,896,640 26% −2% 26% −1%
7 Quintic 2,527,376 29% 8% 29% 6%
8 Rastrigin 117,620,808 12% 0% 13% 1%
9 Rosenbrock 2,806,400 27% 0% 27% −1%
10 Schwefel 1.2 1,857,322 30% 6% 30% 3%
11 Zakharov 5,299,018 30% −6% 30% −3%

and LEBW , in contrast with dimension n = 4 reported in Table 2. Interesting is
also the contrast with earlier findings where the rules were applied for refining
a unit simplex in [1]. There the LEBα rule clearly dominates other rules.

Table 4 provides numerical results for a subset of the test instances that
could be run within a reasonable computation time for dimension n = 6. One
can observe that LEBM provides a larger reduction than the other rules.

In all of the experiments we found that the longest edge is not unique in about
70% of the sub-simplices providing the opportunity for a selection rule. Moreover,
heuristics LEBα and LEBW sometimes provide not unique criterion values to
the multiple longest edges. This calls for a second criterion to be evaluated.
Interesting enough, it appeared that additional criteria lead to worse reductions,
such that one best takes the first edge with the smallest sum of angles or smallest
sum of weights for heuristics LEBα and LEBW respectively.

Longest Edge selection in Simplicial B&B 9

Table 3. Experimental results for n = 5, number of evaluated simplices by LEB1 and
the reduction by the other rules

No. Test problem LEB1 LEBα LEBC LEBM LEBW

1 Ackley 1,010,945,400 1% 6% 26% 7%
2 Dixon & Price 123,575,850 9% 14% 25% 13%
3 Holzman 219,996,634 10% 12% 24% 11%
4 MaxMod 1,877,094,680 12% 7% 20% 3%
5 Perm 166,831,502 13% 5% 19% 3%
6 Pinter 989,052,844 10% 5% 20% 4%
7 Quintic 261,009,818 9% 13% 25% 14%
8 Rastrigin 23,085,565,464 4% 7% 18% 8%
9 Rosenbrock 175,613,436 0% 7% 22% 7%
10 Schwefel 1.2 87,628,502 12% 13% 25% 10%
11 Zakharov 603,678,276 0% 3% 18% 5%

Table 4. Experimental results for n = 6, number of evaluated simplices by LEB1 and
the reduction by the other rules

No. Test problem LEB1 LEBα LEBC LEBM LEBW

2 Dixon & Price 8,203,852,060 9% 14% 24% 13%
3 Holzman 16,628,924,978 17% 13% 26% 6%
7 Quintic 24,424,636,700 16% 12% 26% 4%
9 Rosenbrock 11,689,814,082 10% 9% 24% 6%
10 Schwefel 1.2 5,154,080,906 20% 16% 37% 20%

5 Conclusion

The question in this paper is how different selection rules for selecting the appro-
priate longest edge in simplicial B&B algorithms may influence the size of the
generated search tree. To investigate this question, a simplicial B&B algorithm
is used where non-optimal area is cut away via the concept of an upper fitting.
Evaluating five LEB heuristics on a set of test instances in dimensions n = 4, 5, 6,
shows that a rule called LEBM gives the best performance. The search tree can
be reduced up to about 25% compared to the rule that selects the first longest
edge as stored in an implementation of the simplicial B&B.

Acknowledgments. This work has been funded by grants from the Spanish
Ministry (TIN2012-37483) and Junta de Andalućıa (P11-TIC-7176 and P12-
TIC-301), in part financed by the European Regional Development Fund (ERDF).
J.F.R. Herrera is a fellow of the Spanish FPU program.

10 J.F.R. Herrera et al

References

1. Aparicio, G., Casado, L.G., Hendrix, E.M.T., Garcia, I., Toth, B.G.: On compu-
tational aspects of a regular n-simplex bisection. In: P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), 2013 Eighth International Conference on. pp.
513–518 (2013)

2. Baritompa, W.: Customizing methods for global optimization, a geometric view-
point. Journal of Global Optimization 3(2), 193–212 (1993)

3. Casado, L.G., Hendrix, E.M., Garćıa, I.: Infeasibility spheres for finding robust
solutions of blending problems with quadratic constraints. Journal of Global Op-
timization 39(4), 577–593 (2007)

4. Hannukainen, A., Korotov, S., Kek, M.: On numerical regularity of the face-to-face
longest-edge bisection algorithm for tetrahedral partitions. Science of Computer
Programming 90, 34 – 41 (2014)

5. Hendrix, E.M.T., Casado, L.G., Garćıa, I.: The semi-continuous quadratic mixture
design problem: Description and branch-and-bound approach. Eur. J. Oper. Res.
191(3), 803–815 (2008)

6. Hendrix, E.M.T., Casado, L.G., Amaral, P.: Global optimization simplex bisec-
tion revisited based on considerations by Reiner Horst. In: Murgante, B., et al.
(eds.) Computational Science and Its Applications – ICCSA 2012, Lecture Notes
in Computer Science, vol. 7335, pp. 159–173. Springer (2012)

7. Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., Garćıa, I.: On simplicial longest
edge bisection in Lipschitz global optimization. In: Murgante, B., et al. (eds.) Com-
putational Science and Its Applications – ICCSA 2014, Lecture Notes in Computer
Science, vol. 8580, pp. 104–114. Springer (2014)

8. Horst, R., Tuy, H.: Global Optimization (Deterministic Approaches). Springer,
Berlin (1990)

9. Jamil, M., Yang, X.: A literature survey of benchmark functions for global opti-
mization problems. Int. Journal of Mathematical Modelling and Numerical Opti-
misation 4(2), 150–194 (2013)

10. Mladineo, R.H.: An algorithm for finding the global maximum of a multimodal
multivariate function. Math. Program. 34, 188–200 (1986)

11. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in
Optimization, Springer New York (2014)

12. Todd, M.J.: The computation of fixed points and applications, Lecture Notes in
Economics and Mathematical Systems, vol. 24. Springer-Verlag (1976)

Appendix: Function Definitions

The test function description is given with the considered minimum point x∗,
minimum value f∗ and maximum value f over the domain in Table 1 for dimen-
sions n = 4, 5, 6.

Ackley

f(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i − exp

(
1

n

n∑
i=1

cos(2πxi

)+ 20 + e

x∗ = 0, f∗ = 0, f4 = 22.2, f5 = 22.2, f6 = 22.2

Longest Edge selection in Simplicial B&B 11

Dixon & Price

f(x) = (x1 − 1)2 +
D∑
i=2

i(2x2
i − xi−1)

2

x∗
i = 2

2−2i

2i , f∗ = 0, f4 = 397,021, f5 = 617,521, f6 = 88,212

Holzman

f(x) =
n∑

i=1

ix4
i

x∗ = 0, f∗ = 0, f4 = 100,000, f5 = 150,000, f6 = 210,000

MaxMod

f(x) = max(|xi|)

x∗ = 0, f∗ = 0, f4 = 10, f5 = 10, f6 = 10

Perm

f(x) =
n∑

i=1

 n∑
j=1

(ji + β)

((
xj

j

)i

− 1

)2

x∗
i = i, f∗ = 0, f4 = 809,249, f5 = 476,712,082, f6 = 59,926,724,566

Pinter

f(x) =
n∑

i=1

ix2
i +

n∑
i=1

20i sin2 A+
n∑

i=1

i log 10(1 + iB2)

where {
A = (xi−1 sinxi + sinxi+1)
B = (x2

i−1 − 2xi + 3xi+1 − cosxi + 1)

where x0 = xn and xn+1 = x0.
x∗ = 0, f∗ = 0, f4 = 500, f5 = 625, f6 = 751

Quintic

f(x) =
n∑

i=1

|x5
i − 3x4

i + 4x3
i + 2x2

i − 10xi − 4|

x∗
i = −1, f∗ = 0, f4 = 532,816, f5 = 668,520, f6 = 802,224

12 J.F.R. Herrera et al

Rastrigin

f(x) = 10n+
n∑

i=1

(x2
i − 10 cos(2πxi))

x∗ = 0, f∗ = 0, f4 = 153, f5 = 190, f6 = 231

Rosenbrock

f(x) =
n−1∑
i=1

[100
(
xi+1 − x2

i

)2
+ (xi − 1)2]

x∗
i = 1, f∗ = 0, f4 = 2,722,743, f5 = 3,532,824, f6 = 4,342,905

Schwefel 1.2

f(x) =
n∑

i=1

 i∑
j=1

xi

2

x∗ = 0, f∗ = 0, f4 = 3,000, f5 = 5,500, f6 = 9,100

Zakharov

f(x) =

n∑
i=1

x2
i +

(
1

2

n∑
i=1

ixi

)2

+

(
1

2

n∑
i=1

ixi

)4

x∗ = 0, f∗ = 0, f4 = 6,252,900, f5 = 31,646,750, f6 = 121,562,250

