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Soft Porous Metal Organic frameworks (MOFs) are referred to as a class of
coordination polymers that exhibit structural flexibility in response to guest interactions
or physical stimuli [1]. By combining softness and regularity, the responsive crystalline
frameworks show, for instance, unique mechanisms of separation and storage of gases.

Here we report the effects of high pressures of CO2 on the frameworks of two
types of coordination polymers based on multifunctional metal phosphonates, which
exhibit proton conductivity at high relative humidity in addition to porous properties.
The first one, Ni2(H20)2(0OsPCH2N(C4Hs)NCH2PO3)-8H20 (Ni-STA-12) is a well-
known MOF material structural featured by 1D channels build from MOsN octahedra
linked by  the piperazinyl moieties [2]. The  second solid,
Mg[(HO3PCH2)2NHCH2CsH4CH2NH-(CH2PO3sH)2]-2H20, (MgHDTMP-2H20), is a
pillared layer metal phosphonate containing flexible alkyldiaminetetraphosphonate as
linker of the inorganic layers. For both solids, in situ synchrotron powder diffraction
data were collected on BL04-MSPD under different pressures of CO2 (up to ~10 bar)
and temperatures at ALBA (Barcelona, Spain). The resulting structural changes
observed on their frameworks as well as their proton conductivities will be discussed.
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Figure 1. X-ray diffraction patterns of MgHDTMP at different CO2 pressures. The inset
shows the evolution of the peaks upon CO:2 adsorption/desorption. (*desorption).
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