IN SITU HIGH PRESSURE POWDER DIFFRACTION STUDY OF PROTON CONDUCTORS BASED ON METAL PHOSPHONATES

<u>M. Bazaga-García</u>,¹ R. M. P. Colodrero,² P. Olivera-Pastor,¹ E. R. Losilla,¹ I. R. Salcedo,¹ P. A. Wright,³ M. A. G. Aranda,^{1,4} and A. Cabeza¹

 ¹ Dpto Química Inorgánica, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, SPAIN
 ²Dpto. de Química Inorgánica, Universidad de Sevilla, 41071, Sevilla, SPAIN
 ³ School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews, Fife, KY16 9ST U.K.
 ⁴ CELLS-ALBA Synchrotron Radiation Facility, Ctra. BP1413 km 3.3, 08290 Cerdanyola del Vallès, Barcelona, SPAIN

Email: m.bazaga@uma.es

Soft Porous Metal Organic frameworks (MOFs) are referred to as a class of coordination polymers that exhibit structural flexibility in response to guest interactions or physical stimuli [1]. By combining softness and regularity, the responsive crystalline frameworks show, for instance, unique mechanisms of separation and storage of gases.

Here we report the effects of high pressures of CO₂ on the frameworks of two types of coordination polymers based on multifunctional metal phosphonates, which exhibit proton conductivity at high relative humidity in addition to porous properties. The first one, Ni₂(H₂O)₂(O₃PCH₂N(C₄H₈)NCH₂PO₃)·8H₂O (Ni-STA-12) is a wellknown MOF material structural featured by 1D channels build from MO5N octahedra linked by the piperazinyl moieties [2]. The second solid. Mg[(HO₃PCH₂)₂NHCH₂C₆H₄CH₂NH-(CH₂PO₃H)₂]·2H₂O, (MgHDTMP·2H₂O), is a pillared layer metal phosphonate containing flexible alkyldiaminetetraphosphonate as linker of the inorganic layers. For both solids, in situ synchrotron powder diffraction data were collected on BL04-MSPD under different pressures of CO_2 (up to ~10 bar) and temperatures at ALBA (Barcelona, Spain). The resulting structural changes observed on their frameworks as well as their proton conductivities will be discussed.

Figure 1. X-ray diffraction patterns of MgHDTMP at different CO₂ pressures. The inset shows the evolution of the peaks upon CO₂ adsorption/desorption. (*desorption).

References

[1] S. Horike, S. Shimomura, S. Kitagawa, *Nature Chemistry* 2009, *1*, 695-704.
[2] S.R. Miller, G.M. Pearce, P.A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margiolaki, N. Guillou, G. Férey, S. Bourrelly and P.L. Llewellyn, *J. Am. Chem. Soc.* 2008, *130*, 15967–15981.