
Hardware support for Local Memory
Transactions on GPU Architectures

Alejandro Villegas Ángeles Navarro
Rafael Asenjo Oscar Plata

Universidad de Málaga, Andalucı́a Tech.
Dept. Computer Architecture, 29071 Málaga, Spain
{avillegas, angeles, asenjo, oscar}@ac.uma.es

Rafael Ubal David Kaeli
Department of Electrical and Computer Engineering

Northeastern University, Boston, MA
{ubal, kaeli}@ece.neu.edu

Abstract
Graphics Processing Units (GPUs) are popular hardware accelera-
tors for data-parallel applications, enabling the execution of thou-
sands of threads in a Single Instruction - Multiple Thread (SIMT)
fashion. However, the SIMT execution model is not efficient when
code includes critical sections to protect the access to data shared
by the running threads. In addition, GPUs offer two shared spaces
to the threads, local memory and global memory. Typical solutions
to thread synchronization include the use of atomics to implement
locks, the serialization of the execution of the critical section, or
delegating the execution of the critical section to the host CPU,
leading to suboptimal performance.

In the multi-core CPU world, transactional memory (TM) was
proposed as an alternative to locks to coordinate concurrent threads.
Some solutions for GPUs started to appear in the literature. In con-
trast to these earlier proposals, our approach is to design hardware
support for TM in two levels. The first level is a fast and lightweight
solution for coordinating threads that share the local memory, while
the second level coordinates threads through the global memory. In
this paper we present GPU-LocalTM as a hardware TM (HTM)
support for the first level. GPU-LocalTM offers simple conflict
detection and version management mechanisms that minimize the
hardware resources required for its implementation. For the work-
loads studied, GPU-LocalTM provides between 1.25-80X speedup
over serialized critical sections, while the overhead introduced by
transaction management is lower than 20%.

Categories and Subject Descriptors C.1.4 [Computer System Or-
ganization]: Processor Architectures - Parallel Architectures

Keywords GPU, Hardware Transactional Memory, Local Mem-
ory Transactions

1. Introduction
Graphics Processing Units (GPUs) have been adopted as hard-
ware accelerators for massive data-parallel applications due to
their support of Single Instruction-Multiple Thread (SIMT) exe-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

cution, the availability of hundreds of cores and the inclusion of
a highly-banked memory that offers high memory bandwidth. To
support general purpose processing in GPUs, technologies such as
CUDA [9] and OpenCL [8] were developed. In contrast to CPUs,
GPUs are organized as a set of highly multi-threaded SIMT cores.
Using OpenCL terminology, a SIMT core is called a Compute Unit
(CU). A thread is a work-item and a work-group is group of work-
items that must be scheduled to a single CU. Various work-groups
can be mapped to the same CU, but only if the hardware resources
(such as registers and memory) can be partitioned among them.
Work-groups do not share such resources. Inside the work-group,
work-items are grouped in different wavefronts, that are scheduled
to use the different resources of the CU. An important compo-
nent in GPU programming frameworks is the memory model. This
model consists of two separate address spaces: (1) a local memory,
shared by the work-items belonging to the same work-group, and
(2) a global memory, visible by all the work-items, as well as the
host CPU. The local memory is usually used as a scratchpad due
to its low latency. This way, all work-items belonging to the same
work-group can communicate via a fast local memory. Communi-
cation between work-items mapped to different work-groups must
be done via a slower global memory. Each individual work-item
also has a private memory space, which is typically mapped to
registers.

In general, multithreaded data-parallel applications resort to
explicit synchronization to avoid race conditions when accessing
shared data. Supporting efficient mutual exclusion in a SIMT ar-
chitecture poses a challenge. Several solutions have been proposed
or implemented. A widely-adopted approach is to delegate the ex-
ecution of critical sections to the host CPU. However, CPU-GPU
communication and data transfer consume a large number of clock
cycles. This issue impacts performance when the critical section
protects shared data stored in the local memory, as the data has to
be moved back to the global memory, and then transferred to the
host CPU memory space. An alternative solution is to use barri-
ers to control access to the critical section, allowing only one of
the work-items to make progress. This solution causes a complete
serialization of the execution of work-items, and can significantly
impact performance. Finally, a third option is to use atomic opera-
tions to implement locking, assuring exclusive access to the critical
section. We can define coarse-grained locks that produce the same
serialization safety as barriers or fine-grained locks, while being
less prone to programming errors, deadlocks and livelocks.

Transactional Memory (TM) [6] has emerged as a promising
alternative to locking mechanisms to coordinate concurrent threads.
TM provides the concept of a transaction to wrap a critical section.
A transaction enforces atomicity and isolation during the execution
of a critical section. Transactions are allowed to run concurrently,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62905359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

but the results are the same as if they were executed serially.
Many TM systems have been proposed in the last two decades for
multicore CPU architectures [5]. Recently, TM solutions for GPUs
have started to appear in the literature, both software [2, 7, 11] and
hardware [4].

As modern multicore CPUs started to add hardware TM sup-
port, extending similar support for GPUs will be an important de-
sign decision. This is especially true given recent develops in pro-
gramming models for heterogeneous architectures, as they will de-
mand highly parallel applications to be uniformly deployed across
all available computational engines (both CPU cores and GPU
compute units). To date, TM proposals for GPUs only consider the
GPU architecture and use global memory for synchronization. This
approach offers scalable solutions for thousands of threads, but
at the cost of significant hardware, performance and energy over-
heads [4] (in fact, Fung et al. [3] developed new techniques to im-
prove the inefficiencies found in their earlier work [4]). In contrast,
our approach is different and proceeds in two steps. The first step
is to offer lightweight and fast hardware TM support within work-
groups. More specifically, we will manage concurrent transactional
work-items that belong to the same work-group. The idea is to take
advantage of the fact that those work-items share the same local
memory. We can leverage this fact and design a very efficient TM
system, introducing little new hardware and reducing transaction
handling overhead. The aim is to offer the programmer a method to
write data-parallel applications that require fast local (restricted to
a work-group) synchronization, comparable to fine-grain locking,
but without many of lockings issues. This local TM support, how-
ever, can be combined with other standard techniques for synchro-
nization across work-groups. Support for transactions belonging to
different work-groups using global memory corresponds to a sec-
ond step, and currently it is work-in-progress and beyond the scope
of this paper.

This paper describes GPU-LocalTM. Our proposal for TM is a
simple and effective hardware system for coordinating transactions
within work-groups executing on a single SIMT core (CU). The
main contributions of GPU-LocalTM are the following:

• It is designed to provide fast hardware-based TM support for
local memory transactions, minimizing the amount of extra
hardware.

• It offers an extension to the GPU ISA to define transactions,
allowing the specification of new constructs in a high-level lan-
guage (such as OpenCL), or at a library level, to use transac-
tions.

• It implements version management and conflict detection tech-
niques per memory bank, ensuring future scalability and ex-
ploitation of data locality and coalesced memory accesses.

The rest of the paper is organized as follows: Section 2, gives
an introduction to GPU architectures and the Multi2sim simula-
tion framework, which is used to implement GPU-LocalTM. Sec-
tion 3 discusses the implementation of GPU-LocalTM and its main
features. Section 4 discusses how GPU-LocalTM is modelled us-
ing the Multi2sim simulation framework. To assess GPU-LocalTM,
we propose some benchmarks whose description and evaluation is
done in Section 5. Sections 6 and 7 discuss the related work, con-
clusions and future work.

2. Background
GPUs, when used as general-purpose processors, consist of sev-
eral SIMT cores or CUs. A CU has several functional blocks, such
as multiple vector units, a scalar unit, branch units, a local data
share (LDS) unit and a memory interface to global memory. Reg-
isters are allocated in the scalar and vector units. The LDS is a

low-capacity, low-latency and highly-banked memory that is able
to service multiple coalesced memory requests. Programmers de-
fine compute kernels which can be dispatched to run on the GPU.
A kernel is divided into work-groups that are assigned to a sin-
gle CU. However, a CU may process multiple work-groups. Each
work-group preallocates its registers and the amount of local mem-
ory needed in the LDS. The work-group is composed of several
work-items, that are arranged in wavefronts of a fixed size. The
work-items of a wavefront execute in lockstep. Inside the CU, a
wavefront is always assigned to the same vector unit. This preal-
location of resources helps to reduce the overheads of a context
switch among wavefronts.

As the baseline GPU to implement GPU-LocalTM, we have
chosen the AMD’s Southern Islands. This architecture supports a
maximum of 256 work-items per work group, and 64 work-items
per wavefront (i.e., 4 wavefronts per work-group). Each of the 32
CUs contains 4 SIMD units. The LDS unit, which contains the
local memory, deserves special attention as it is heavily involved
in the GPU-LocalTM design. AMD’s GPU architecture includes
64KB of LDS (viewed by the programmers as local memory)
distributed across 32 banks. Consecutive local memory words map
to consecutive LDS banks. The LDS unit is in charge of managing
this local memory. Whenever a wavefront requests to access the
local memory, the LDS unit schedules the access of the wavefront,
allowing up to 32 coalesced (i.e., without bank conflicts) accesses
simultaneously. Uncoalesced memory accesses are serialized by
the LDS unit. Coalesced/uncoalesced address detection by the LDS
unit ensures that, at a given point of time, each of the 32 banks is
accessed by only a single work-item at time.

The control flow of the SIMT programming model is imple-
mented by using two masks managed by hardware and the com-
piler. The execution mask (EXEC) indicates, per wavefront, the
work-items that are running or disabled. The vector comparison
mask (VCC) stores the results of certain arithmetic operations, sim-
ilar to the “vectorized” Z flag used in some CPUs. For the Southern
Islands architecture, the size of these masks are of 64 bits, as the
number of work-items per wavefront is 64. The VCC and EXEC
masks are mapped into the general purpose scalar registers.

The implementation of GPU-LocalTM requires changes to
the GPU architecture. We implemented these changes using the
Multi2sim 4.2 hardware simulator. Multi2sim [10] is a simulation
framework for CPU-GPU heterogeneous computing that includes
models for superscalar, multithreaded, and multicore CPUs, as well
as GPU architectures. It features a functional simulator which exe-
cutes the instructions found in a given binary, and a detailed timing
simulator which features the full hardware pipeline for multiple
architectures providing a cycle-precise simulation. The current ver-
sion of Multi2sim 4.2 provides the implementation of the AMD’s
Southern Islands architecture, as described above.

3. GPU-LocalTM
GPU-LocalTM is a hardware TM system designed to allow for ex-
plicit synchronization of work-items through local memory using
transactions. With this proposal, we aim to reuse the existing mem-
ory resources present with a CU and minimize the amount of new
hardware required.

GPU-LocalTM extends the GPU ISA with two new instructions,
TX Begin and TX Commit. Even though individual work-groups
could execute both instructions, they are designed to work at a
wavefront granularity, since wavefronts are the schedulable unit of
the CU resources. This way, while a wavefront is executing a trans-
action, other wavefronts can be executing different transactions or
a non-transactional code region. All the local memory operations
executed by a wavefront inside a transaction are considered trans-
actional. When the wavefront reaches the TX Commit instruction,

Bl
oo

m
 E

va
lu

at
io

n

256 filters

8 Bytes

Local Memory Bank (2 KBytes)

32 Local Memory Banks

Version Management HW

Space for other WGs

1 Word (4 Bytes)

Vars.

Backup

Owner

N

Bloom
Filters

Shadow
AreaN/4

N

Ve
ct

or
 R

eg
ist

er

TCM

TCM

TCM

TCM

Scalar Reg.

1 Byte

Figure 1: Hardware in the LDS unit to implement GPU-LocalTM.

for those work-items within the wavefront that were not able to
complete their memory accesses due to conflicts, the transaction
rolls-back and re-executes from the TX Begin instruction. Other-
wise, the wavefront continues execution of the next instruction after
the TX Commit. The reasons to consider all local memory accesses
inside a transaction as transactional are: 1) to be able to reuse func-
tions that can be called either inside and outside a transaction, 2)
to minimize the number of new ISA instructions needed, easing
the hardware and reducing compiler complexity, and 3) to simplify
memory consistency, as there could be no transactional and non-
transactional accesses to the same local memory address inside
transactions. The main drawback of this proposal is that the pro-
grammer is not able to optimize the code by differentiating trans-
actional and non-transactional memory accesses.

Barrier instructions are not allowed within a transaction, as
the transaction itself causes wavefront divergence, and not all the
work-items may reach the barrier. Furthermore, the TX Begin and
TX Commit instructions do not impose an implicit barrier, delegat-
ing the use of a barrier to the programmer. The reason is that there
might be transactions used in divergent paths of the code, and not
all the work-items within the work-group will execute the transac-
tion. In addition, we consider that nested transactions are flattened.

Figure 1 shows a local memory bank in the LDS unit, with
the extra hardware added by GPU-LocalTM. The following sub-
sections discuss the main characteristics of GPU-LocalTM: the
transactional execution model, memory-bank based version man-
agement and conflict detection.

3.1 Transactional SIMT Execution Model
The GPU SIMT execution model relies on the existence of exe-
cution masks. The EXEC execution mask contains a bit for each
work-item within the wavefront indicating if it is active (or inac-
tive). The VCC mask stores the results of a vector comparison in-
struction. By combining the EXEC and VCC masks, compilers im-
plement conditionals, loops and other features using the GPU ISA.

However, modifying these masks inside a transaction can create
inconsistencies. If a work-item conflicts in a conditional statement,
and the EXEC mask is modified by the TM system, it can be
activated by another instruction later in the code, despite the fact
it has to be quiesced until the transaction is re-started. For this
reason, we implemented a transaction conflict mask (TCM) per
wavefront, which stores a 1 for work-items that have a detected
memory conflict, or 0 otherwise. This new TCM mask is mapped
to a scalar register (see Figure 1), as well as the existing EXEC and
VCC masks. The SIMT execution model must be modified to only
allow the execution of a work-item whose EXEC bit is set to 1 and
whose TCM bit is set to 0. The main advantage is that the use of this
mask only requires hardware changes in the execution model, but

1 // Before the transaction
2 s_tx_begin // Begin transaction
3 v_cmp_gt_f32 v2, v1 //VCC=(v2 >v1)
4 s_mov_b64 s0, exec //s0=EXEC
5 s_and_b64 exec , exec , vcc //EXEC=EXEC and VCC
6 s_cbranch_vccz label0 //Jump to "else" if no VCC
7 //Code "if" with possible conflicts:
8 //{...}
9 label0:

10 s_andn2_b64 exec , s0, exec //EXEC=s0 and not(EXEC)
11 s_cbranch_execz label1 //Jump to end if VCC
12 //Code "else" with possible conflicts:
13 //{...}
14 label1:
15 s_mov_b64 exec , s0 //EXEC=s0
16 s_tx_commit //End transaction

Figure 2: Example of an if-then-else statement inside a transaction
implemented using the AMD’s Southern Islands ISA.

the compiler and ISA remains unmodified (i.e., the compiler does
not need the TCM mask to implement conditionals with the EXEC
and VCC masks, or use new instructions to manage TCM). When a
wavefront executes the TX Begin instruction, the TCM mask is set
to 0, and whenever a memory conflict is detected by a work-item,
its corresponding bit in TCM is set to 1. During the execution of
the TX Commit instruction, if the TCM mask contains at least one
bit set to 1, the transaction is re-started for those conflicted work-
items, by copying TCM into EXEC, clearing TCM and returning
to the TX Begin instruction. If, otherwise, all the bits of TCM are
0 by the end of the transaction, this means that every work-item
was able to complete without conflicts, and thus the wavefront can
commit the transaction and continue normal execution. As a work-
group consists of several wavefronts, each wavefront has its own
TCM, EXEC and VCC masks and they can be in different stages of
execution (i.e., while some wavefronts may execute a transaction,
others can be executing non-transactional code). Figure 2 shows an
assembly code level example of an if-then-else statement inside a
transaction.

Progress is not guaranteed by this method, as some of the work-
items may conflict an unlimited number of times, rolling back the
transaction indefinitely. This situation can be detected at the end
of the transaction if the TCM mask does not change in two con-
secutive transaction re-executions. In such cases, we propose an
execution model with a two-level serialization process in order to
provide forward progress guarantees. Whenever two consecutive
re-executions of a transaction finish with the same TCM mask, the
transaction is retried assuming that all of the conflicting work-items
but one are going to conflict again during the next execution. To im-
plement this policy, instead of clearing the TCM at the beginning
of the next retry, only one of its active bits is reset. This results
in the execution of only one of the work-items within the wave-
front during the next transaction execution. We refer to this mecha-
nism as wavefront serialization mode. Nevertheless, even executing
only one work-item per wavefront, we can observe conflicts with
work-items in other wavefronts, leading to the same situation. In
case a transaction ends in the wavefront serialization mode and the
TCM mask has not changed since the last execution, work-group
serialization mode is enabled. In this mode, only the current wave-
front executes a transaction, just as in wavefront serialization mode.
Transactions executing in other wavefronts are aborted and stalled
at the TX Begin instruction until the current wavefront finishes its
transaction. This procedure guarantees progress, as executing a sin-
gle work-item within the work-group does not conflict with other
work-items.

Table 1 shows an example of the execution with the different
serialization modes and mask management for a particular trace of
the sample code in Figure 2. For simplicity, we evaluated wave-

Instr EXEC TCM TCM OLD Mode Conflicts
1 1111 - - NORMAL -
2 1111 0000 - TX -
5 1100 0000 - TX -
10 0011 0000 - TX -
13 0011 0011 - TX WI2 and WI3
15 1111 0011 - TX -
16 0011 0011 - TX -
2 0011 0000 0011 TX -
5 0000 0000 0011 TX -
10 0011 0000 0011 TX -
13 0011 0011 0011 TX WI2 and WI3
15 0011 0011 0011 TX -
16 0011 0011 0011 TX -
2 0011 0001 0011 WF Serial. -
5 0000 0001 0011 WF Serial. -
10 0011 0001 0011 WF Serial. -
13 0011 0001 0011 WF Serial. -
15 0011 0001 0011 WF Serial. -
16 0001 0001 0011 WF Serial. -
2 0001 0000 0001 TX -
5 0000 0000 0001 TX -
10 0001 0000 0001 TX -
13 0001 0000 0001 TX -
15 0001 0000 0001 TX -
16 0001 0000 0001 TX -

Table 1: Example of the execution model applied to the code in
Figure 2. The double lines separate transaction retries. It is assumed
that register v1 contains the work-item ID (0, 1, 2 or 3) and register
v2 contains the value 2. This example considers 4 work-items.

fronts consisting of 4 work-items (WI0, WI1, WI2 and WI3) and
only the lines where the EXEC and TCM masks are modified are
presented. Line 2 denotes the beginning of the transaction. The
comparison instruction in Line 3 updates the VCC mask to set the
bits corresponding to the work-items that evaluated the condition as
one. In our example, this condition evaluates that the work-item ID
is smaller than 2 (i.e., VCC sets the bits corresponding to WI0 and
WI1 to 1, leaving the bits corresponding to WI2 and WI3 as 0). The
EXEC mask is updated in Line 5 with the information stored in the
VCC mask. The instructions in Lines 6 and 11 implement jumps to
the “else” section of the code and the end of the conditional. It is
assumed that execution of the code in the “if” leg of the conditional
(Line 8) does not cause any conflicts, but the code in the “else” leg
of the conditional (Line 13) presents a conflict between work-items
WI2 and WI3. This conflict has to be resolved via wavefront se-
rialization. The instruction in Line 15 restores the original EXEC
mask after the conditional statement. The TX Commit instruction
in Line 16 denotes the end of the transaction. The TCM mask is up-
dated whenever a conflict is detected in the execution of the code in
Line 13. As two consecutive transaction re-executions were started
with the same TCM mask, the execution is then serialized inside
the wavefront, allowing the transaction to finally commit one of its
work-items.

3.2 Version Management
Version management handles the memory and register updates dur-
ing transactional accesses to local memory. In the specific case of
the simulated architecture, local memory is distributed across 32
banks. In GPU-LocalTM, we propose a bank-level version man-
agement mechanism. The main advantages of this proposal are: i)
it provides scalable performance as GPUs add more memory banks,

and ii) version management and conflict detection can be executed
in parallel in different banks.

GPU-LocalTM follows an eager schema: all the accesses to
local memory or registers within a transaction have to save the old
values and write the new values in their actual locations. In case of
a transaction abort, the stored values must be restored.

To backup memory values, a local memory area called shadow
memory is used. The shadow memory consists of a table of
<owner, value> pairs, which is private to each memory bank.
This table must have enough room to store backups for all the lo-
cal memory variables declared within the kernel allocated in each
bank. The advantage, as we will see, is that it requires simple man-
agement. The main drawback is that it allocates room for every
variable in local memory, consuming a large amount of memory
resources in local memory. Variables in local memory are statically
allocated by the compiler in consecutive positions [1, 10]. In our
proposal, shadow memory is also allocated by the compiler, adding
space to backup all the variables in local memory and an extra byte
to store the index of the 256 possible owners. The organization of
this table is as follows: if there is a set of N words in local memory,
a contiguous section of N words is allocated to backup the values
and, after this section, N additional bytes are reserved to store the
owner. Given this layout, when we encounter a memory access to
location k, we will have stored a backup value at position k+N,
and its owner is stored k bytes after the backup. By adopting this
model, the hardware required to backup a memory value and store
its owner is minimal, as only the calculation of two offsets is re-
quired. In addition, capacity conflicts are avoided, as each memory
location is ensured to have space for its backup. Lastly, the use of
an offset does not force us to save <owner, address, value> triples,
but only the pair <owner, value> (i.e., the address can be calcu-
lated using the offset). Figure 1 shows the organization of a local
memory bank for version management.

Vector registers, which are used individually by each work-
item, are backed up using other vector registers. This set of backup
registers are called shadow registers. We propose the architectural
implementation of the vector registers in pairs: two registers are
connected and a signal can enable a copy of the contents of the first
register to be written to the second whenever a backup is needed.
Kernels that execute transactions must preallocate these registers
for its work-items. Kernels that do not include transactions are not
affected by this new layout of the registers.

Scalar registers are used to store common information for an
entire wavefront, such as a loop index. When this occurs, the use
of scalar registers creates inconsistencies when a transaction aborts
inside a loop. For instance, the loop index of a while loop might be
updated inside a transaction. As this index is shared by committed
and aborted work-items, the value of this shared scalar register is
inconsistent. For this reason, the compiler must promote the use
of private vector registers instead of scalar registers to implement
loops in kernels that execute transactions.

Register backup is performed at the beginning of the transac-
tion. Memory backups are preformed in each individual memory
access. Whenever a conflict is detected, a work-item must restore
the backup values from the shadow registers and shadow memory.

3.3 Conflict Detection
Conflict detection implements a strategy that detects conflicting
transactional accesses to the same memory location, and deter-
mines if a work-item must continue execution or abort its trans-
action. During an access to memory by a wavefront, the LDS unit
serializes memory accesses so that at a given time, each bank is ac-
cessed by only one work-item. Parallel accesses to different mem-
ory banks do not present conflicts, as the memory banks have dif-
ferent address ranges. Signatures based on Bloom filters are used to

detect conflicts. Signatures are private per work-item and per bank
(i.e., there are 256 Bloom filters per bank). In our initial design,
a single signature is used for both, reads and writes, and an 8-bit
Bloom filter performs the hash for conflict detection. Since there
is a large number of filters, 8-bit Bloom filters are used to con-
sume lower memory resources to store them. For the hash function,
we have found that a simple address%8 operation work well on
GPU local memory. The reason is that usually GPU programmers
allocate variables in a coalesced way: in a given bank, the access
of an address by a work-item is usually followed by the access to
the following address by the same or a different work-item. The
address%8 hash minimizes the number of false conflicts caused
when consecutive addresses are referenced. Bloom filters, stored in
vector registers, are accessed by the memory banks when required.
As an example, let us consider that the work-item 3 intends to ac-
cess the memory location 35. This memory location is stored in the
bank 35%32 = 3, and inside this bank it is stored in the position
35/32 = 1. Then work-item 3 must check the bit 1%8 = 1 of the
256 Bloom filters assigned to bank 3. Bloom filters may result in
false positives, which are treated as conflicts.

Conflict detection operates in 3 stages when a local memory
access is issued by a work-item. This mechanism proceeds simul-
taneously in each one of the 32 memory banks, as follows:

1. Fast conflict detection. Bloom filters are used to detect conflicts
during the first stage, since the query is fast. When issuing a
local memory operation, a work-item checks its address against
the 256 Bloom filters assigned to the current bank. The outcome
of this stage can be: i) a conflict (the Bloom filter assigned
to a different work-item returns a positive), ii) a new access
(no Bloom filter returns a positive), and iii) no conflict (only
the Bloom filter assigned to the current work-item returns a
positive, but we cannot determine if it is a new access or not). In
case i), the backed up values associated with the current work-
item must be restored and the entries in the shadow memory
table must be cleared. TCM is updated to mark that the current
work-item had a conflict while performing a memory access.
In this case, we can directly proceed to the third stage of the
conflict detection mechanism (conflict broadcast). In case ii),
the work-item performs a backup with the old value and sets
its ownership in the shadow memory. Next, we proceed to
the third stage of the conflict detection mechanism. In case
iii), the current work-item claims ownership of the memory
address. In this case we must proceed to the second stage of
the conflict detection mechanism to distinguish a new access
from a previous access to the same address.

2. Ownership detection. This stage is carried out only if the first
stage returned a no-conflict outcome. In this case, the current
work-item must examine the shadow entry for the current ad-
dress. If the owner is the same, no action is required. Other-
wise, the work-item must proceed as if it was a new access (i.e.,
the work-item performs a backup and sets its ownership in the
shadow memory).

3. Conflict broadcast. Once a conflict is detected, it must be broad-
cast to all memory banks in order to clear the shadow mem-
ory entries that the current work-item has previously allocated
in other memory banks. During this stage, each memory bank
loads the TCM mask, which has been modified in parallel by all
the memory banks during the fast conflict detection stage. For
each work-item with its bit set to 1 in TCM, all the backups are
restored and associated shadow memory is cleared.

This conflict detection system uses TCM both to update mem-
ory banks with information about a conflict without requiring an
expensive broadcast bus, and to inform the execution model of a

Feature Value
Compute Units (CU) 32
Vector Registers per CU 65536
Scalar Registers per CU 2048
SIMD Units per CU 4
SIMD Lanes 16
LDS Size per CU 65546 bytes
LDS Banks 32
LDS Latency 2 cycles

Table 2: Relevant features of the AMS’s Southern Islands GPU
implementation on Multi2sim 4.2 used by GPU-LocalTM.

conflict. One drawback is that conflict detection using Bloom fil-
ters suffers from false conflicts, that can be avoided if we imple-
ment ownership detection. However, the hardware needed to detect
a conflict using Bloom filters is much simpler than the one required
to examine the shadow memory. It is a scalable and faster solution,
because the evaluation of multiple Bloom filters can be performed
in parallel.

4. GPU-LocalTM Modeling
The baseline architecture used to implement GPU-LocalTM is the
AMD Southern Islands GPU provided with the Multi2sim 4.2 sim-
ulation framework. Table 2 shows key features of this architecture.

4.1 Functional Simulation
We add the TX Begin and TX Commit instructions to the AMD’s
Southern Islands ISA supported in Multi2sim, and we also update
the wavefront execution model. The conflict detection and version
management are implemented as a common part for all existing
LDS instructions for the wavefronts running in transactional mode.

4.2 Timing Simulation
The detailed simulator has been used to model the clock cy-
cles needed by each GPU-LocalTM feature. The TX Begin and
TX Commit instructions are modeled as scalar instructions as
they affect the whole wavefront. In addition to the standard cy-
cles needed to execute a scalar instruction, we need to calculate the
latency added by the version management process performed by
these instructions.

The TX Begin instruction has to evaluate the EXEC and TCM,
and backup the vector registers. As explained previously, we as-
sume that vector registers are implemented in pairs, and the backup
can be done in one cycle. Evaluating EXEC, TCM and performing
the backup of the registers can be done in parallel, which adds a
cycle. Starting a transaction in the work-group serialization mode
requires clearing the ownership records of the shadow memory.
We model that the version management hardware added to support
the GPU-LocalTM to be able to modify an entry in memory every
clock cycle. This way, in each bank, we need to add an extra cycle
per memory location accessed by the wavefront. As the banks are
cleared in parallel, the number of cycles to add to the TX Begin in-
struction includes the number of cycles that the slowest bank needs
to clear all its entries. Summarizing, the TX Begin instruction re-
quires at least 1 extra cycle, and as many cycles as needed to clear
the most occupied bank, in case of a work-group serialization.

Similar reasoning is used to model the TX Commit instruction.
This instruction needs one cycle to clear the Bloom filters of the
committing work-items. In addition, the ownership records of the
shadow memory must be cleared, adding one cycle per entry. As
with the TX Begin instruction, we evaluate the number of cycles

needed in the different banks, and assume that the TX Commit
instructions need as many cycles as the slowest bank.

We need to consider the extra memory accesses required to
query the Bloom filters and modify entries in the shadow memory.
As with the TX Begin and TX Commit instructions, we assume
that the Bloom filters can be evaluated in a clock cycle. Manage-
ment of the shadow entries depends on the outcome provided by
the Bloom filters, so these operations cannot be overlapped. Dur-
ing conflict detection, case i) in stage 1 (a conflict) requires clearing
the ownership records for the conflicting work-item. This takes as
many cycles as the needed to clear the slowest memory bank. If the
conflict detection results in case ii) (a new access), the actions to
be performed include a backup of the memory location and modi-
fication the ownership records. As only one access to memory per
clock cycle can be done, we assume that these modifications add 2
cycles to the memory instruction latency. If the conflict detection
results in case iii) (no conflict), we add the same number of cycles
as we did in the new access case (in case it was a false positive),
or only a single cycle to check the ownership records (in case of a
second access to the same memory location). In addition, the last
step of a local memory access requires the broadcast of the con-
flicts across the different banks to clear the ownership records. As
in the previous stage, we account for this latency which is equal to
the latency of the slowest bank.

4.3 Hardware Resources and Limitations
As previously discussed, the resources needed by a work-group on
a given CU must be preallocated before starting execution. This
preallocation limits the execution of work-groups whose require-
ments exceed the available resources. These limitations are: 1) the
number of work-groups assigned to the same CU, 2) the number
of vector and scalar registers needed, and 3) the amount of local
memory allocated. For instance, using the data from Table 2, a
work-group cannot run on this architecture if the number of vec-
tor registers needed by all its work-items exceeds 65,536.

GPU-LocalTM introduces new constraints to resource alloca-
tion. The use of vector registers to map Bloom filters reduces the
number of available vector registers to 8192 (256 Bloom filters per
bank, and 32 banks per CU) per work-group. Each wavefront re-
quires its own TCM mask, which is mapped into scalar registers.
Each work-group is composed by 4 wavefronts, so the number of
vectors registers available is reduced by 4 per running work-group.
The amount of local memory available for the work-group depends
on the size of the shadow memory. In the simulated architecture,
with 64KB of local memory, the use of GPU-LocalTM reduces
the amount of local memory available for a single work-group to
a maximum of 29,127 bytes. The same amount of memory is allo-
cated for backups for the speculative accesses, and 7282 bytes are
used for the ownership records.

GPU-LocalTM is designed to be fully configurable via the com-
piler and runtime. Memory resources required by the shadow mem-
ory, shadow registers and masks are allocated by the compiler.
Hence, kernels that do not require transactional execution do not
suffer from the resource limitations introduced by GPU-LocalTM.

5. Evaluation
We propose 3 benchmarks with different inputs in order to analyze
the different features of GPU-LocalTM.

5.1 Benchmarks
5.1.1 Hash Table
In the Hash Table (HT) benchmark, each work-item inserts its own
ID in a shared hash table consisting of N buckets. Each bucket is
sized so all the inserts will fit. Once the work-item calculates the

target bucket with a simple hash function, we try to find an empty
location to store its ID. A transaction comprises reading a loca-
tion, checking if it is empty and inserting the corresponding value
(i.e., a read-modify-write set of operations on a single memory ad-
dress). To test scenarios with a range of conflict probabilities, we
conducted experiments doubling the number of buckets from 2,
and increasing the number up to 256. The scenario HT2 contains
2 buckets and presents a high probability of conflict, while the sce-
nario HT256 contains 256 buckets with no conflicts.

5.1.2 K-Means
In the K-Means (KM) benchmark, for each point belonging to a set
of N points, we calculate its closest center from a set of K centers.
Then, each center is modified based on the geometrical center of its
closest points. This is done for a set number of iterations, or until
the system converges. In our implementation, each work-item pro-
cesses a point. Calculating the closest center is executed in parallel,
as there are no dependencies. The transactional region comprises
updating the values of the centers, as several work-items will try to
modify the same center speculatively. For KM, we considered hav-
ing 256 3-dimensional random points (one per work-item within
the work-group) and a single iteration. This is a memory bound
application that features read-modify-write operations on multiple
memory addresses within a transaction. For this benchmark, we ex-
ecuted a range of experiments, modifying the number of centers in
order to test GPU-LocalTM under scenarios with different conflict
probabilities and to change the number of memory locations ac-
cessed. The experiment KM2 considers 2 centers, and includes a
high probability of conflicts. The number of centers is doubled in
each experiment up to KM256. This last scenario presents a small
probability of conflict, but the number of addresses shared among
the different transactions is high (producing a high false positive
rate in the Bloom filters).

5.1.3 Genetic Algorithm
The Genetic Algorithm (GA) benchmark solves the knapsack prob-
lem. This problem aims to fit objects characterized by a weight and
a price into a bag with a maximum capacity. The goal is to maxi-
mize the value of the bag. We simplified the problem, considering
that the ratio weight/price is the same for all the objects. Thus, our
goal is fit the bag as closest as possible to its maximum capacity.
GA starts from a set of N random solutions to this problem. Each
work-item randomly picks two solutions from this set and evaluates
their fitness, as the solution closest to the bag capacity. A crossover
operation is performed, transforming the solution with the lowest
fitness into the solution with the highest fitness. Then, both solu-
tions are added to the set, replacing the previous ones. After a cer-
tain number of iterations, most of the solutions will represent the
objects that fit in the bag. In our experiments, we considered a set
with a different number of initial solutions and 8 possible objects,
in order to analyze transactions with a higher number of operations
than the other benchmarks. The set of solutions is composed by in-
tegers, whose 8 least significant bits represent a mask. If an object
is included in the solution, the mask will have its corresponding bit
set to 1; otherwise the bit will be 0. A transaction comprises reading
two random solutions from the set, running the previous algorithm,
and replacing the solutions.

5.1.4 Performance Evaluation
To assess the potential for our proposal, we implemented 2 versions
of GPU-LocalTM. The first version is GPU-LocalTM as described
in this paper. The second version, Perfect GPU-LocalTM, has the
same behavior as GPU-LocalTM, but avoids the extra clock cycles
needed by conflict detection and version management. This version
allows us to measure the overheads introduced by GPU-LocalTM.

HT2 HT4 HT8 HT16 HT32 HT64 HT128 HT256
Workload

0

20

40

60

80

100

Sp
ee

du
p

w
.r.

t.
TX

. S
er

ia
liz

at
io

n

GPU-LocalTM
Perfect GPU-LocalTM

(a) Speedup w.r.t. TX. Serialization

HT2 HT4 HT8 HT16 HT32 HT64 HT128 HT256
Workload

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
br

ea
kd

ow
n

TXBegin
TXCommit
Mem. Overheads
TX Code
Non-TX Code

(b) Normalized Exec. Breakdown

HT2 HT4 HT8 HT16 HT32 HT64 HT128 HT256
Workload

0.0

0.2

0.4

0.6

0.8

1.0

Ty
pe

 o
f t

ra
ns

ac
tio

n

Wavefront Serialization
Transactional Execution

(c) Transaction Type
Figure 3: Hash Table benchmark

KM2 KM4 KM8 KM16 KM32 KM64 KM128 KM256
Workload

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

w
.r.

t.
TX

. S
er

ia
liz

at
io

n

GPU-LocalTM
Perfect GPU-LocalTM

(a) Speedup w.r.t. TX. Serialization

KM2 KM4 KM8 KM16 KM32 KM64 KM128 KM256
Workload

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
br

ea
kd

ow
n

TXBegin
TXCommit
Mem. Overheads
TX Code
Non-TX Code

(b) Normalized Exec. Breakdown

KM2 KM4 KM8 KM16 KM32 KM64 KM128 KM256
Workload

0.0

0.2

0.4

0.6

0.8

1.0

Ty
pe

 o
f t

ra
ns

ac
tio

n

Wavefront Serialization
Transactional Execution

(c) Transaction Type
Figure 4: K-Means benchmark

GA2 GA4 GA8 GA16 GA32 GA64 GA128 GA256
Workload

0

5

10

15

20

25

Sp
ee

du
p

w
.r.

t.
TX

. S
er

ia
liz

at
io

n GPU-LocalTM
Perfect GPU-LocalTM

(a) Speedup w.r.t. TX. Serialization

GA2 GA4 GA8 GA16 GA32 GA64 GA128 GA256
Workload

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
br

ea
kd

ow
n

TXBegin
TXCommit
Mem. Overheads
TX Code
Non-TX Code

(b) Normalized Exec. Breakdown

GA2 GA4 GA8 GA16 GA32 GA64 GA128 GA256
Workload

0.0

0.2

0.4

0.6

0.8

1.0

Ty
pe

 o
f t

ra
ns

ac
tio

n

Wavefront Serialization
Transactional Execution

(c) Transaction Type
Figure 5: Genetic Algorithm benchmark

For each benchmark, we analyzed the following metrics:

• Speedup. We compare the performance of the two versions of
GPU-LocalTM as compared against a version of the bench-
marks where each transaction is serialized and executed by
a single work item (TX. Serialization). This version of the
code requires a programming effort similar to the use of GPU-
LocalTM and presents similar performance as the use of coarse-
grained locks.

• Execution Breakdown. The execution breakdown measures the
portion of the total number of clock cycles spent in the follow-
ing stages: native code outside the transactional region (Non-TX
Code), native code inside the transactional region (TX Code),
memory access overheads caused by conflict detection and ver-
sion management (Mem. Overheads), and the overheads caused
by the TX Begin and TX Commit instructions.

• Transaction Type. A transaction that conflicts many times enters
either the wavefront or work-group serialization mode. This
metric measures the percentage of the transactions that needed
to be serialized over the total amount of transactions. We only
represent wavefront serialization since work-group serialization
never occurs in these benchmarks.

• Commit Ratio. This metric computes the quotient commit-
s/aborts. We do not plot this since we found uniform values
for all the benchmarks, but is important metric and we will
discuss it with the other results.

5.2 Results
5.2.1 Hash Table
In all the scenarios, the speedup obtained by GPU-LocalTM (Fig-
ure 3a) significant as compare to TX Serialization execution mode,
and close to the the ideal speedup obtained by the optimized GPU-
LocalTM scenario. This implies that GPU-LocalTM introduces low
overhead in the presence of small read-modify-write transactions.

The execution breakdown (Figure 3b) shows that the overhead
introduced by GPU-LocalTM does not exceed 16% of the exe-
cution time of the native GPU code. The overhead due to the
TX Commit instructions appears in all the scenarios, as some extra
cycles are required in order to clear the shadow memory entries.
In the HT2 scenarios, this is a scenario with a high probability of
conflict, so we observe that most of the cycles are wasted execut-
ing inside a transaction due to an increasing number of retries. In
addition, the overhead resulting from accesses to memory starts to
become noticeable due to the cycles spent in conflict detection and
version management.

Figure 3c shows that many transactions serialize as the proba-
bility of conflict increases. This is also related to the commit ratio,
which ranges from 4.9% in HT2 up to 100% in HT256. The relative
number of transactions that have to be serialized is smaller in ex-
periments with a higher probability of conflict (e.g., HT2), as com-
pared to experiments with an medium probability of conflict (e.g.,
HT32). However, the absolute number of transactions that have to
be serialized is 189 out of 3801 in HT2 (4.9%) and 9 of 36 in HT32
(25%), which is a result consistent with the expected probability of
conflict.

5.2.2 K-Means
Figure 4a shows the speedup obtained for K-Means. In scenarios
with a higher number of centers (e.g., from KM64 to KM256)
the Bloom filters are too small to store all the memory accesses
performed by all the work-items, incurring a high number of false
positives. The speedup obtained is relatively small (1.5X), but we
should consider that the portion of code that benefits from the
transactional execution consumes about 5% of the total cycle count
and represents less than 10% of the complete code. We can also
observe that, in some cases, GPU-LocalTM outperforms its perfect
version. The reason is that with the extra cycles associated with
the TX Begin and TX Commit instructions add some divergence
that avoids future conflicts. This scenario also occurs in the GA
benchmark.

In Figure 4b we also observe that the overhead introduced dur-
ing conflict detection and version management by the TM system
is lower than 10% of the total cycles in the benchmark.

In addition, as each one of the K 3-dimensional centers is
stored in a single bank, the probability that different dimensions
from different centers produce a false positive is high. As a result,
many of the transactions serialized their execution (Figure 4c). Our
analysis shows that about 39% of the memory accesses result in
false conflicts when checking the Bloom filters. This also causes the
commit ratio to never grow higher than 4%, except in the scenario
KM256, where it rises to 15%.

5.2.3 Genetic Algorithm
Figure 5a shows the speedup obtained over serial execution for
the GA benchmark. As we can observe, we see an improvement
in the speedup as the conflict probability decreases. However, we
should note that in some cases, GPU-LocalTM outperforms the
ideal version, and these cases deserve special attention. In these
cases, the cycles added by GPU-LocalTM introduced divergence in
the wavefront due to the conflict detection mechanism during the
LDS operations and the TX Begin and TX Commit instructions.
These divergences are the explanation of why interactions between
work-items that occurred in the perfect GPU-LocalTM version
are absent in our non-ideal version. As a result, the number of
conflicts decreases with the number of wavefront serializations.
In the particular case of GA8, the GPU-LocalTM version has to
serialize 134 wavefronts, while the perfect GPU-LocalTM version
had to serialize 177 times. In this case, we also observe differences
in the number of conflicts: while GPU-LocalTM suffers a total of
2578 conflicts, the perfect version experiences 3126 conflicts.

In Figure 5b we observe that most of the execution time is spent
inside a transaction and most of the overhead is due to conflict de-
tection and version management. This benchmark also presents a
low commit ratio: the best scenario, GA256, has a commit ratio of
15%. The ratio decreases, reaching about 1% in GA2. The com-
mit ratio is related to the breakdown. As the commit ratio is low,
the overhead of the conflict detection and version management is
significant as compared to the TX Begin and TX Commit instruc-
tion overhead. This trend is also related to the type of transaction
(Figure 5c). In scenarios with a higher probability of conflict and a

lower commit ratio, a higher percentage of transactions are serial-
ized.

6. Related Work
Cederman et al. propose two STMs for graphics processors [2],
but focused on conflicts produced between different thread-blocks
(work-groups) and not considering possible interactions of the sin-
gle threads (work-items). Their two proposals are a blocking STM
that prevents another transaction to commit if a committing one is
updating its values to memory, and a non-blocking STM that al-
lows transactions to use values that committing transactions have
to write to memory.

Another STM is GPU-STM [11] proposed by Xu et al.. GPU-
STM works at the granularity of a work-item, includes a hierarchi-
cal validation based on a timestamp, followed by a value-based val-
idation. GPU-STM is aimed at transactions that make use of global
memory, while GPU-LocalTM focuses on the use of local memory.
In addition, GPU-LocalTM is designed to minimize the required
hardware resources, as well as to keep transaction overhead down
as low as possible.

Holey et al. also propose the use of STM at a work-item granu-
larity and focus on the global memory [7]. They propose an Eager
STM (ESTM), which detects conflicts eagerly, a Pessimistic STM
(PSTM), that simplifies conflict detection by not treating reads and
writes differently, and an Invisible Read STM (ISTM) that validates
reads during the commit of a transaction. Our proposal is similar to
their PSTM, which in many cases was the best performing of the
STMs that they proposed.

KILO TM [3, 4] is a hardware TM for GPU architectures that
operates at a thread-level and considers global memory. KILO TM
describes commit units that perform a value-based conflict de-
tection, in contrast to GPU-LocalTM that uses Bloom filters, lo-
cated within the local memory banks to speedup conflict detec-
tion. In addition, GPU-LocalTM proposes the automatic serializa-
tion of conflicting transactions, which is not present in KILO TM.
While KILO TM aims to applications that require synchronization
at global memory, GPU-LocalTM aims to those synchronizing at
local memory. Both memory spaces serve at different purposes and,
thus, a comparison is not possible. However, in the future, GPU-
LocalTM will be extended to provide support for transactions at
global memory. In that moment, a comparison between both ap-
proaches is unavoidable.

7. Conclusions and Future Work
In this paper we present GPU-LocalTM as a hardware TM for GPU
architectures focusing on the use of local memory. GPU-LocalTM
is intended to add minimal additional hardware to an existing GPU
and minimizes transaction overheads. Our experiments show that
GPU-LocalTM outperforms the execution of kernels that rely on
serialization to solve memory conflicts. In addition, GPU-LocalTM
introduces a serialization mechanism to ensure progress within a
transaction.

Future research will focus study alternative organizations of the
Bloom filters and explore alternatives that use local memory as
a shadow memory, in order to decrease the amount of memory
resources needed by GPU-LocalTM. In addition, future work will
consider the global memory space in our transactional memory
mechanism.

Acknowledgments
Thanks to the student Oliver Fishstein from Northeastern Univer-
sity for providing a base implementation of the genetic algorithm
benchmark. In addition, the authors would like to thank the anony-
mous reviewers for their useful comments.

References
[1] AMD. Southern Islands Series Instruction Set Architecture. 2012.
[2] D. Cederman, P. Tsigas, and M. T. Chaudhry. Towards a software

transactional memory for graphics processors. In 10th Eurographics
Conf. on Parallel Graphics and Visualization (EG PGV’10), pages
121–129, 2010.

[3] W. W. L. Fung and T. M. Aamodt. Energy efficient GPU transactional
memory via space-time optimizations. In 46th Ann. IEEE/ACM Int’l.
Symp. on Microarchitecture (MICRO’13), pages 408–420, 2013.

[4] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. Hard-
ware transactional memory for GPU architectures. In 44th Ann.
IEEE/ACM Int’l. Symp. on Microarchitecture (MICRO’11), pages
296–307, 2011.

[5] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd.
Morgan & Claypool Publishers, USA, 2010.

[6] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In 20th Ann. Int’l. Symp. on
Computer Architecture (ISCA’93), pages 289–300, 1993.

[7] A. Holey and A. Zhai. Lightweight software transactions on GPUs.
In 43rd Int’l Conf. on Parallel Processing (ICPP’14), pages 461–470,
2014.

[8] Khronos. The OpenCL Specification. Version 2.0.
[9] NVIDIA. NVIDIA CUDA Programming Guide.

[10] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A
Simulation Framework for CPU-GPU Computing. In 21st Int’l. Conf.
on Parallel Architectures and Compilation Techniques (PACT’12),
2012.

[11] Y. Xu, R. Wang, N. Goswami, T. Li, L. Gao, and D. Qian. Software
transactional memory for GPU architectures. In Ann. IEEE/ACM Int’l.
Symp. on Code Generation and Optimization (CGO’14), pages 1:1–
1:10, 2014.

