A bottom-up robot architecture based on learnt
behaviors driven design

I. Herrero, C. Urdiales, J.M. Peula, and F. Sandoval

Dpt. Tecnologia Electrénica, University of Mélaga,
iherreroQuma.es,
WWW home page: www.grupoisis.uma.es

Abstract. In reactive layers of robotic architectures, behaviors should
learn their operation from experience, following the trends of modern in-
telligence theories. A Case Based Reasoning (CBR) reactive layer could
allow to achieve this goal but, as complexity of behaviors increases, the
curse of dimensionality arises: a too high amount of cases in the behav-
iors casebases deteriorate response times so robot’s reactiveness is finally
too slow for a good performance. In this work we analyze this problem
and propose some improvements in the traditional CBR structure and
retrieval phase, at reactive level, to reduce the impact of scalability prob-
lems when facing complex behaviors design.

Keywords: Case based reasoning, reactive layer, learning architecture,
robotics

1 Introduction

Hybrid architectures are, nowadays, the most successful approach to control
systems in modern robots. Most hybrid systems have a planner layer, related
to abstract knowledge and global objectives of the robot in the long-term, and
a reactive layer, which decides the response of the robot at local short-term
scale, and is composed by primitive behaviors. Diverse implementations differ
in the organization of the layers; the tools used to build them; and the mech-
anisms to manage their interaction. However, behaviors at the reactive layer
are usually designed at earlier stages of the architecture development in a fixed
algorithmic way, with little or no adaptability to changes in environment and
problem evolution. There are some evidences which suggests that these reactive
components should be able to adapt by learning from the robot experiences.
First, Ethology shows us that some animals behaviors, the so called reflex or in-
nate, are acquired from birth; learned behaviors must be trained and developed
by repetitions and experience; but there are also innate-with-memory behaviors
which must be tuned by learning or experience: this is how a baby bee learns its
hive look and how to navigate to and from it[11]. Furthermore, modern theories
about human intelligence claim that even in a complex deliberative response,
just a few neurons are involved, with a not very fast transmission of informa-
tion. So human brain’s calculation power is, a priori, orders of magnitude lower

than modern computers’. Instead, human intelligence appears to be funded on
learning from experience, by storing everyday events, knowledge, and responses
in a powerful data base imprinted on our brain, and retrieving them when in
a similar situation[5]. This view of human intelligence has been assimilated to
research in Artificial Intelligence(AT), especially in the field of Intelligent Robot
Systems(IRS). The traditional (S)ense-(P)lan-(A)ct based paradigms, now in-
clude a new (L)earning primitive, to become a (S,P,A,L) set of primitives, from
which new IRS architectures are being developed[18].

There are many approaches to robotic hybrid architectures which follow these
learning guidelines [14][17][12], but most of them focus this learning on deliber-
ative levels. As the human brain follows a “nest structure”, its different areas
should operate with the same principles no matter what are devoted to; they
only differ in the nature of the information and the abstraction level of the con-
cepts they manage, which defines their situation on the reasoning chain[5]. So,
it seems reasonable to think about an IRS architecture in which different layers
have equivalent operating mechanisms, at least at-a functional and information
processing level. In this sense, all the layers and sub-layers at every level should
be based on some kind of learning by experience, including the low reactive level.
Besides the improvement in flexibility and adaptability at this reactive level, the
architecture would gain in homogeneity and scalability, specially if the same Al
method is used for the layers development. In [13] we proposed a first approach
to a CBR-learning based implementation of the reactive layers for a hybrid ar-
chitecture, which was programmed to an AIBO-ERS7 robot. Despite the good
performance of our previous work, it showed some problems related to the ad-hoc
nature of the behaviors design, such as scalability problems with the increase of
managed information, and retrieval time of the response. In this work, we sug-
gest some improvements to solve these problems, mainly related to changes in
the casebase structure and retrieval process. Furthermore, we propose a change
of the philosophy inherent to our implementation, to switch from numeric to
conceptual knowledge in order to be able to extend the model, in the future, to
higher deliberative layers, following the aforementioned ”nest structure” of the
human intelligence.

2 CBR based reactive layer

Reactive layer relies on coupling sensors information and actuators response into
a set of low level primitive modules or behaviors. Every behavior deals only with
local, short-term information related to the goals or scope of the module, so it
doesn’t need a complex model of the environment[10]. Reactive Behaviors are
very well suited to fast low-level decisions, so this layer is specially important
in dynamic unstructured environments. These low level behaviors are combined
later in a bottom-up way to produce more complex emergent ones. There are
different methods to achieve this emergence, from combining or switching several
behaviors[6], to using subsumption architectures[3]. But these methods usually
depend on many parameters that need to be optimized for each specific prob-

lem, specially if different robots are used, as they depend on the robot kinematics
and dynamics, sensor calibration, and even mechanical errors. For these reasons
many reactive architectures and layers have included Al tools such as fuzzy-logic
rules [2] or ANNs[9] to fine-tuning the proposed behaviors through experience.
Developing analytical expressions to relate sensor information to motor com-
mands may not be simple, as some reactive behaviors are hard to explain and
may adapt better to one function or another depending on the situations. Fuzzy-
logic methods define a set of rules to map sensor reading and motor actions, rules
whose parameters can be adjusted during the robot execution. But it’s difficult
to accomplish a correct design of such rules, as they need a great knowledge
about both fuzzy-logic and the problem domain. ANNs get over these obstacles
as, once the structure of layers and neurons of the network has been chosen, the
training process is transparent to the user. However, ANNs only provide us of
a better or worse operating system, but are black boxes with no clues of what
has gone wrong when they don’t find a right solution[5]. On the other hand,
Case Based Reasoning (CBR) combined with learning, could allow us to obtain
a fully-working system, as well as to understand the learning process and the
knowledge acquisition which is very useful to debug errors and malfunctioning
of our system.

2.1 Experience Based Learning: CBR

Case-Based Reasoning is a reasoning, learning and adaptation technique to solve
current problems by retrieving and adapting past experiences[1]. CBR systems
rely on remembering old solutions given to situations similar to the current prob-
lem, and adapting them to fit it. The new problem together with its new solution
can also be stored in the casebase,as a new case, to be used later. Thus, better
solutions can be derived when faced against less experienced situations. As we
can see, the philosophy of CBR is quite in tune with the model of intelligence
as prediction, and the learning method to build it. A CBR system cycle to solve
a new problem consists of four steps: (i) retrieve the most similar stored case to
the new current case; (ii) adapt its solution to the new current case; (iii) evaluate
the results of the proposed solution; (iv) learn from the new experience. Conse-
quently, when creating a new CBR application, design decisions often concern:
i) how to describe the problem to solve (ii) which is the casebase or case library
structure; within a particular case structure; (iii) how retrieval process and sim-
ilarity assessment between cases can be evaluated; (iv) how to adapt the old
solution to solve the new current problem, (v) how to evaluate the success of the
proposed solution, and (vi) what to learn and how to learn from solved problems
(new experience gain).

CBR has been widely used in many experience learning frameworks in Robotics
[7][8][15]. In [13], we proposed a reactive CBR-learning layer in which coupling of
visual data and motion commands were learned by low level reactive behaviors.
This way, the robot could know what to do from the perception it had at any
moment. Such learning was done by supervised training, but from the own robot

experience too, so not only the goal of the behavior is learned, but also the en-
vironmental and the own robot physical conditions which affect the attainment
of such goal. Although our method showed a good performance, its advantages
were not evident because it was tested with fairly simple behaviors that could
be implemented analytically.

In our new proposal we intend to systematize the process of definition of
different behaviors when several visual elements (goals, rival and friend play-
ers,ball, field,..) are included in the CBR casebase which controls the behavior
operation. This means that CBR must learn not only how every individual ob-
ject influences the operation of the behavior, but how their relationship affects
it, too. As there are more components in a CBR case, the number of required
cases increases from nearly a hundred to thousands: scalability problems arise,
as CBR cannot respond as quick as a reactive layer would need. Casebase size
can be reduced by clustering or discretization which also implies a transition
from a numerical representation of the visual information to a conceptual one.
This way, concepts at low levels would combine to develop more abstract com-
plex ones at higher level behaviors, which would emerge from the lower layer in
a bottom-up integration. We propose some changes in the original structure and
operation of the CBR casebase in order to further speed the process of recov-
ering the solution at the module when a new problem or situation is presented
to the behavior: i) from a flat database structure we have switched to a hybrid
hierarchical-flat solution, defining the concept of “context” to traverse the tree
hierarchy; ii) we have also split the CBR, recovering phase in two sub-phases:
one fast scene recognition by indexing objects; and the traditional search of the
most similar case by a distance comparison.

3 CBR Behavior design

The scenario for our experiments is similar to the one described in [13], in which
an AIBO- ERS7 robot, programmed with the Tekkotsu software platform [16].
is used. We have developed a GUI to display the on-board camera image, and
also guide the robot with a joystick. In this work, mainly visual information
will be considered, but we will add a IR chest sensor too, to detect when the
robot is in possession of the ball. The experiments will be run in an Robosoccer
field in which, besides from the ball and two goals, a maximum of two opponent
robots and a friend robot, could appear. The inclusion of all or only some of
these elements in the CBR cases depend on the behavior definition and goals.

3.1 Case Definition

Case definition requires an input instance, related to the necessary knowledge
for the behavior operation; a solution which defines the response of the behavior,
either a concept or a motor action; and some measure of efficiency which is also
related with the performance of the behavior in the fulfillment of its goal.

In our vision-based robot the input cannot be the whole image frame or
a sub-sampled version, as its dimension would be proportional to pixel resolu-
tion. Using Principal Component Analysis(PCA), histograms, or color moments
would help, but redundancy could affect negatively the performance of behav-
iors, as they are supposed to work only with local information. For this reason,
qualitative techniques have been proposed as the better option for active vision
applications. On the bad side, input feature selection in qualitative methods,
depends heavily on the specific domain of the goal or problem to solve: final se-
lected features should be representative, easy to obtain from image, and robust
against artifacts such as changes in light conditions or occlusions. In our ex-
ample, possible input features include descriptions of the objects found at each
image. To obtain that description, images are codified in a-HSV space and a
fast segmentation algorithm is run to obtain different color blobs, represented
by their centroid and area, plus possible clipping in case the object is at the
boundary of the image; data is normalized to their extreme values. Besides ob-
jects description, the case includes a normalized PAN and NOD angle of the
robot head, as it affects the relative positions of objects in a frame (see figure
2).

To reduce the amount of possible cases, input instance components are dis-
cretized /indexed; this process allows us to turn knowledge from numeric-algorithmic
data to qualitative or conceptual information. The area of an object, for example,
is not represented by its normalized number of pixels, but by a description such
as “minimum area” or “medium area” which, besides of making easier to debug
the “reasoning” process of the robot, allows to develop more complex concepts
to describe the state of the environment and robot with respect to the goal of
the behavior, i.e., “minimum area” and “high Y-centroid” would represent a “far
object”. Discretization is a key element for the definition of the input instance,
and is also dependent of the goals and design of the behavior. At the moment a
human expert -heuristically decides the number of indexes and their boundaries
for every component in the considered behavior. In the future would be desirable
that such decisions were automatically taken by means of statistical analysis of
the continuous input data obtained from the supervised learning phase.

In our original proposal the final output of a case was a single vector of in-
stant motion, expressed by components of rotation, translation and strafe, which
defined the robot trajectory until a new CBR consultation was done. This single
vector output has a lot of inconveniences regarding a possible combination of sev-
eral behaviors output in a similar way to the Potential Fields approach(PFAs),
as is very prone to result in a null vector motion in legged robots. For this reason
we use now a chain of vectors (figure 2), to represent a more complex movement
pattern, but also easier to combine with other patterns from other low level be-
haviors. Size of the chain would depend on the desired granularity of the output
but also on the reactiveness of the robot response as, with a too long chain, CBR
consultations would be too sparse in time to obtain a fast enough reactive over-
all behavior. Output also includes additional values to represent special actions
(shoot, dive,..) triggered in specific situations. Finally, an efficiency function at

the behavior module weights the utility of the output of a case, related to the
goal of the behavior. Specific components of efficiency functions are behavior
dependent, so they are usually defined by human experts, considering not only
the objects and elements linked to the behavior, but also concepts as “softness”
or “security” in the robot motion. Aspects related to efficiency function an case
adaption will be addressed in future works.

3.2 Casebase structure and case learning

Casebase structure defines the organization of the cases at the database, and
plays an important role in the retrieval phase of the CBR cycle. Stored cases are
usually organized either on a flat memory or a hierarchical one:

— In a flat memory, cases are stored in a simple list, and the retrieval of a case
is done by comparing the problem case with every case stored at the case-
base, and retrieving the case best matching the problem description. This
comparison is done using a distance or similarity function over the compo-
nents of both the problem and each stored case. Despite the simplicity of
this implementation and the easiness of addition of new cases, there are scal-
ability problems when the number of stored cases grow up, as the recovery
time is proportional to such amount.

— In hierarchical memories, cases are stored in the form of a graph or tree,
in which every branch and leaf corresponds to a component of the case.
Hierarchical memories provide a more efficient case retrieval, but the retrieval
process could miss some adequate cases while searching, because once you
have choose a path (depending on the content of the nodes), the cases you
can access to are a subgroup of the total, thus making impossible to retrieve
a case included in other area of the tree.

While in [13] we used a flat structure for the casebase of our behaviors, the
increase in_complexity of the cases at the new proposed behaviors, drove us to
find another type of structure which allows to manage a great number of cases
without being detrimental to the speed of retrieval phase. A purely hierarchical
structure would suffer from the aforesaid problem of taking a wrong path which
wouldn’t allow to obtain the most suitable case. So, instead we have considered
a compounded structure that mixes both viewpoints: our database is distributed
over a tree in which final leafs are flat sub-casebases (see figure 3 for an example).

Traversing trough the tree is done by means of specific context information,
which can be obtained from the problem presented to the behavior. This in-
formation is mutually exclusive, so there is no possibility of ending in a wrong
leaf-casebase. This information context could be, for example, the presence of
the own goal or the rival goal, which would be related to a very different set of
cases, which could be separated in different leaf casebases. As we can access the
right casebase very fast, we achieve a great improvement in casebase organiza-
tion and retrieval with a minimum cost. Nevertheless, we must point out that is
not always possible to find “context” components which allow to build the tree
part of this mixed structure, so not all behaviors could enjoy this benefit.

Knowledge at the CBR casebase is obtained in a two stage procedure(figure
4). First, a learning by observation approach is taken to seed the casebase with a
set of initial cases. In this training phase, a human trainer guides the robot using
a conventional joystick to operate the desired behavior. The casebase is seeded
from the cases learned during the different runs. The main advantage of this
learning approach is that humans implicitly cope with kinematics and dynamics
related to the robot, which are not easy to parameterize. So the robot, through
this learning, can absorb them as well. Also, the intrinsic mechanisms related to
the behavior are automatically incorporated to the robot knowledge without the
necessity to fully understand their rules and parameters. This type of learning is
typical in human education, as when a tennis trainer handle the arms of a pupil to
show him how to play a forehand shot. Additionally, it’s possible to manually add
cases to the casebase, but a good understanding of the case components influence
over the behavior operation is needed to do so. When a primary casebase has been
obtained and the robot can run a basic operation of the behavior, a second stage
of learning-by-own-experience is performed. The robot works in autonomous
mode with no external control or supervision; retrieving from the behavior’s
casebase the most similar case to the current situation of the environment and
robot state. This retrieval return not only the most similar stored case, but a
measure of the similarity to the given problem. If the dissimilarity is over a
threshold, it means that the robot.is facing a new problem, so the output of
the retrieved case should not be directly applied, but adapted instead. When
adapted, output is applied and its performance is evaluated using a efficiency
function which decides if the new case is good enough to be incorporated to the
casebase.

3.3 Retrieval algorithm and similarity functions

One of the key aspect for the success of a CBR based reactive system depends
on having a good retrieval algorithm which can recover the more suitable case
to the presented problem, but also fast enough to allow a good response time.
Flat casebases have a scalability problem because the problem must be com-
pared to every case stored at the casebase so, when its size grows up too much,
the response time can be too high for a good reactiveness of the module. Al-
though discretization and/or clustering or the input instances can relieve this
problem lowering the total amount of cases, complex behaviors could still end
with a high number of stored cases. The proposed mixed tree-flat structure of
the casebase contributes to improve the retrieval time, as total knowledge is dis-
tributed among the leaf casebases, reducing the number of cases to compare in
the retrieval stage. Once in the right leaf-casebase, and to further improve the
retrieval operation at the CBR casebase we have introduced a two stage sim-
ilarity function. Traditional similarity functions quantify the similarity of two
cases by computing the distance between each of its components in a multidi-
mensional space, weighting every local distance according to the influence of the
component on the case representation, and aggregating weighted component dis-
tances using different functions. The choice of the distance function is problem

dependent, and there is not a clear translation from one domain to other. An
influential hypothesis has been that Euclidean distance is valid when stimulus
dimensions are perceptually integral(such as the brightness and saturation of
a color), whereas city-block distance is appropriate when stimulus dimensions
are perceptually separable (such as the color and shape of an object)[4]. In our
proposal we use a Manhattan normalized distance to compare problem and case
similarity, but previously we do a pre-filtering stage in order to reduce the possi-
ble candidates to the recovered solution by means of a feature based distance, a
retrieval by objects in scene. In this first stage, objects in scene are identified and
a binary index with their presence(1) or not(0) is build. In our input instance,
the descriptors of the elements related to the behavior are placed always in the
same position, which is also used to represent the presence of the object in a
string. Every case in the casebase has an associated index string representing the
objects in the associated scene. When a problem is presented, the corresponding
index string is generated and compared to the cases’ ones using a Jaccard dis-
tance. A list with the most similar cases is generated, so the second retrieving
stage carries out only on a subset of the casebase contents, thus improving the
speed of the overall retrieving operation (figure 5).

4 Experiments and results

In this section we present an example of behavior design following the guidelines
given above. The behavior is defined in the controlled framework of a Robosoccer
application in which two goals, a ball, maximum of two rival players and one
team player are considered. The goal of the proposed behavior will be reach the
ball with the presence of other players in the field. This behavior is quite more
complex than the original one of just reaching the ball alone, as it is not enough
to aim the ball and walk straight to it; depending of the rivals and friend position
more complex maneuvers must be achieved in order to, not only reach the ball,
but circle’an obstacle, block the rival and/or face open field when the ball is
finally captured. The input instance is defined by the presence of ball and player
objects; goals won’t be included as we consider they don’t affect the performance
of this specific behavior. The case input includes also pan and nod of the robot
head, as stated in section 3.1. As behavior is driven by visual information, a
tracking function has been developed to automatically move the head in order
to maintain on-board camera focused on objects which are significant to the
behavior. Case output will be a chain of three temporally consecutive motion
vectors. Learn by observation is achieved through several runs from different
starting positions of our robot, ball and obstacles. In figure 6 we can see a set of
diverse scenarios trained for the considered behavior, together with an example
of a run experiment.

Cases are acquired at a rate of 4 for second, and intervals of discretization
were chosen analyzing the evolution of the continuous data taken at the training
phase. Initially we considered five equally spaced intervals or classes at each case
component; but after an analysis of some runs one more class was added to the

Pan component to break symmetry in its description; and area of objects was
finally categorized into seven classes with interval size increasing in a quadratic
form. Categorization allowed to compress knowledge from about twenty five
thousand cases to barely three thousands. Categorized cases with the same input
and different output were grouped by a majority vote.

Robot performance in autonomous mode was almost perfect from the same
trained situations, but also in a great variety of similar ones(figure 7). Neverthe-
less, a few scenarios that included input instances too different to the stored at
the casebase showed a poor attainment, proving the necessity of a second stage
of learn-by-own-experience case acquisition, as a complete supervised training
at all possible situations is neither possible nor desirable. Also, categorization
of the database allowed us to debug the execution of the experiments in a easy
way.

In figure 8 we can see the improvement in retrieval time using our casebase
structure and modified CBR retrieval method, with respect to the original flat
casebase, under different situations. We gradually increased the complexity of
the learned behavior by adding more objects and situations to the scenario, thus
increasing the amount of knowledge needed at the behavior. We can see the
evolution when space dimension of discretized case components grows, which
increase also the dimensionality of possible cases at the behavior’s casebase. We
tested two discretization levels for the case components: a coarse one, as stated
in the previous paragraph; and a fine one; in which we doubled the categories or
discretization levels of each component, with respect to the coarse one. Retrieval
time at the flat casebase is O(cn), where ¢is the number of components of a case,
and n the amount of cases at the casebase. Using our two stage procedure we can
reduce the set of candidates to the second stage, thus improving the final retrieval
time. The enhancement is proportional to the amount of cases in the sub-sets
after stage one. As first stage filtering is'a O(n) operation, only situations with all
cases in just one sub-set would show a worse performance. Increase in complexity
of the behavior, with more objects and case components; and/or a finer-grained
discretization, would magnify the advantages of our approach, as dimensionality
of the space of possible cases would be greater.

5 Conclusions and future work

In this work we have presented an approach to design CBR-learning reactive
behaviors for vision-based autonomous robots, when complexity of the target
behavior increases, as there are more elements involved in the behavior’s design,
and scalability problems arise. This complexity affects the dimensionality of the
possible cases which hold the knowledge of the behavior, and increases retrieval
time which is directly related to this aspect. A good reactive behavior should
respond quick enough to changes in environment and problem conditions, so a
too-long retrieval time is unacceptable in any reactive layer. In order to solve
these problems we have proposed a qualitative representation of the case compo-
nents, by means of a indexation/discretization process which allow us to reduce

10

the maximum amount of possible cases at the CBR casebase, and also describe
the behavior’s scenario using abstract concepts instead of numbers. This de-
scription, besides making easier the design and debug process of the behavior,
would allow us to build more and more complex concepts by aggregating simpler
ones, in a “nest-structure” fashion, which agrees with modern theories or human
intelligence structure and organization. We have verified the good performance
of our previous work, under more tight conditions, with the development of an
example of a complex behavior. This complex behavior allowed us to show how
scalability problems could arise and compromise the good performance of the
behavior reactiveness. We have proposed a new mixed hierarchical-flat casebase
structure and a two stage case retrieval algorithm, in order to speed up the CBR
operation and allow a good behavior response, despite the increasing of infor-
mation inside the casebase. We have proved the validity of this-scheme, whose
benefits become more evident when the size of the casebase increases, as we have
shown in different experiments.

Future work will focus on combination of different reactive behaviors to ob-
tain an emergent complex one, which would both represent a higher level concept
build from its compounding behaviors, but also an instruction of the actions the
robot should take at this emergent behavior, derived from the corresponding
actions at the low-level behaviors. Furthermore, we want to study more exhaus-
tively the learning-by-experience stage, to improve new knowledge acquisition
and casebase maintenance at the behaviors. In order to do so, we must develop
better case adaption algorithms and adequate efficiency functions for the new
adapted cases.

6 Acknowledgements

This work has been partially supported by the Spanish Ministerio de Educacion
y Ciencia(MEC), Projeet n. TEC2011-29106 and Andalucia TECH:Campus of
International Excellence.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. AT Communications, 7(1):39-52, 1994.

2. E. Aguirre and A. Gonzélez. Fuzzy behaviors for mobile robot navigation: design,
coordination and fusion. Int J Approx Reason, 25(3):255 — 289, 2000.

3. R. Brooks. A robust layered control system for a mobile robot. IEEE J Robot
Automat, 2(1):14 — 23, 1986.

4. W.R. Garner. The processing of information and structure. The Experimental
Psychology Series. L. Erlbaum Ass.; Halsted Press, NYC, 1974.

5. J. Hawkins and S. Blakeslee. On Intelligence. Owl Books, 2004.

6. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In
IEEFE 1985 Int Conf Robot, volume 2, p. 500-505, Mar 1985.

7. M. Kruusmaa. Global navigation in dynamic environments using case-based rea-
soning. Autonomous Robots, 14(1):71 — 91, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

11

H. Liu and H. Iba. Genetic and Evolutionary Computation, GECCO 2004, chapter
Humanoid Robot Programming Based on CBR Augmented GP, p. 708-709. Lect
Notes Comput SC.. Springer Berlin/Heidelberg, 2004.

K. H. Low, W. K. Leow, and M. H. Ang, Jr. A hybrid mobile robot architec-
ture with integrated planning and control. In Int J Conf Auton Agent Multi Ag
(AAMAS 02), pages 219-226 , NY, USA, 2002.

Maja J. Mataric. Interaction and Intelligent Behavior. PhD thesis, Department
of Electronic Engineering and Computer Sciencie, 1994.

R. Murphy. Introduction to AI Robotics. MIT Press, Cambridge, MA, USA, 2000.
J. C. Murray, H. R. Erwin, and S. Wermter. Robotic sound-source localization
architecture using cross-correlation and recurrent neural networks. Neural Net-
works, 22(2):173-189, 2009.

J. M. Peula, C. Urdiales, I. Herrero, I. Sanchez-Tato, and F. Sandoval. Pure
reactive behavior learning using case based reasoning for a vision based 4-legged
robot. Robot Auton Syst, 57(6-7):688-699, June 2009.

C. Urdiales and A. Poncela and F. Sandoval. A CBR approach to behaviour-
based navigation for an autonomous mobile robot. In 2007 IEEE Int Conf Robot,
Rome, Italy, 2007.

R. Ros, R.Lépez De Mantaras, J. Arcos, and M. Veloso. Team playing behavior
in robot soccer: A case-based reasoning approach. In Springer-Verlag, ed., Lect
Notes Comput SC., Proc. of the EICCBR 2007, n. 4626, p. 46—60, 2007.

E. Tira-Thompson. Tekkotsu: a rapid development framework for Robotics. PhD
thesis, Carnegie Mellon University, Pennsilvania, 2004.

M. Wang and J. N. K. Liu. Fuzzy logic-based real-time robot navigation in
unknown environment with dead ends Robot Auton Syst, 56(7):625-643, 2008.
W. Xie, J. Ma, M. Yang, and Q. Zhang. Research on classification of intelligent
robotic architecture. Journal of Computers, 7(2), 2012.

12

List of Figures

3N
N
X

FIGURES

Define problem
instance

Compute
efficiency

Outpu%&l

Fig. 1. CBR cycle

JL

CBR
casebase

Retrieve
most similar
case

Adapt/apply
Case output

13

14 FIGURES

e /

L

RAW (numeric)

= Object: [Cx,Cy,Area,clipping]

Case Input:
[01,02,..0n, Pan, Nod]

CONCEPTUAL

Ball
right, Ycentered,

rightC, YcenterTop
smallArea, NoClipping smallArea, NoClipping

CBR Retrievam—

Discretization
~_

Rival

PanCenter HighNod]

< -
CONCEPTUAL v
[Turn Right & Advance]
. N 1/\
RAW (numeric)
Case Output: + Triggered
(example: vector size 3) Action

Fig. 2. Case definition: Input instance elements and output response

INPUT

OUTPUT

FIGURES

Hierarchical-flat casebase

(example) I
Context ,,L\\ ‘I:/L\
Component_1 /Own) / arget\}
- \ Goal / \ Goal /
N o2
Context [I I
Component_2 ’/’ ™~ TN Ve \\\)
[Yes) [No | [Yes | (
R N N
) — T 1
D?ff‘éei“ ’ [V FlatCBR | | FlatCBR | | FlatCBR | | FlatCBR | | FlatCBR | | FlatCBR
KIS rllude \ Base Base Base Base Base Base
nowledge \

Fig. 3. Mixed Hierarchical-Flat casebase structure

15

16

FIGURES

)

imagé‘/
=" info

Data
processing

Behavior
CBR
casebase

@

new case

(a) Learning by Observation

build

Behavior
CBR
casebase

retrieve
asge

Lj\ ply
wtpu adapt
— solution

/

J

(b) Learning by own-experience

Fig. 4. Two stage learning in our proposal framework

FIGURES 17

Rival1 Friend

Rival2
Ball

AN

Goal

XXXXX

Problem (Case Components)

STAGE2 Retrieval by siﬁwilarity distance
————- - [m—— =W —————

|

|

fég i 10010 J;CASE‘I X 11011 |(Case Components) :CASE34
i% : 11011 }CASE34 v 11011 E(Case Components) pASE157
%E '[10010 ICASE53 | x 11011 l(Case Components) CASE N
®§ |[11010 [CASE9Q |x Reduced [J

B & | [10011 [CASE157|y casebase @

x| T

,,,,,, Most similar case
Leaf CBR Casebase

Fig. 5. Two stage retrieval operation at the CBR casebase

18

00z

009

osz 000

005

FIGURES

Q)

RIVAL GOAL

@4 cer

&

Team

Player

1000

Fig. 6. Set of trained situations. Exa \ learned

o

250

250

FIGURES 19

T T T T 2500
CBR ---oovov
Rival () 0
Ball
T ' T T 2500 | 2000
Trained 2000
CBR ~---e-or
Rival ()
L Bal .
2000 | 1 1500
- 41500 | 1 1000
- o 41000 | 1500
- 4500 | 1o
1 1 1 0
1000 500 0 -500 -1000 -1500 L L ! 1 -500
1000 500 0 500 -1000 -1500
(a) Trained situation (b) Untrained situation

Fig. 7. Performance example of designed behavior for both trained and untrained sit-
uations

20

3 B

time (ms)
el

FIGURES

Comparison of CBR retrieval methods with Fine discretization

Comparison of CBR retrieval methods with Coarse discretization
Index b'y Objecls' --- T i ! T Index by Objects --- ! +
No Ind. by Objects s No Ind. by Objects Joe]
" B] ;D
w = . B3
2 = @ B
&g 2 | 2 2
b < 2 S|
s D & [
= kA + W %
2 %o _50 1 .3 e
A e) o = 3 ppur|
@ 4 1 E o & D 2|
5 ; | 2 = @ =
£ & |E D =2 : ®
o ® - Do é) :
=2] =1 : H .
S g 1 < : e
o 2rg -
i H o _
1 10}
: L H L n L P oLZ . L L L " " " H
0 1000 1500 2000 2500 3000 3500 0 1000 2000 3000 4000 5000 6000 7000 8000
Num. Cases —— Complexity of Behavio Num. Cases —— Complexity of Behavior

Fig. 8. Comparison of retrieval times using a two stage retrieval method

