

SUBJECTIVE QUALITY in UNDERWATER ACOUSTIC NETWORKS

Dr. Javier Poncela

TELECOMMUNICATIONS TECHNOLOGIES RESEARCH GROUP UNIVERSITY OF MALAGA, SPAIN

1. Introduction

- 2. Underwater Acoustic Channel
- 3. Quality Assessment in Underwater Video

- Oceans cover about 70 percent of the Earth's surface, and much of this vast resource remains to be explored
 - It is possible to chat from the International Space Station and make phone calls from the summit of Mount Everest, so why can't we check our email from the ocean floor?
- The volume below the sea surface has been traditionally ignored
 - It's a harsh environment that requires advanced technology
 - Resources are much easier to collect on the surface
 - Expansion has been possible without much effort
 - Even now, space resources look more tempting

INMIC'14

3

UAC Applications

- Scientific
 - Submarine life monitoring
 - Natural phenomena forecasting
- Industrial
 - Aquaculture
 - Exploitation of mineral resources
- Environmental
 - Pollution control
 - Climate parameters recording
- Safety
 - Search and rescue missions,
 - Communication between divers and vehicles

Málaga

- Phoenicians, Greeks, • Romans, Arabs, ...
 - Multicultural city
- Metropolitan Area ${\bullet}$ > 700.000 people

Sevilla •

Dos

Hermanas

Jerez de

la Frontera

Cadiz

- **Important Airport & Harbour**
- **Coastal City**

Polar

Wireless Underwater Waves

- Traditionally, underwater communication is achieved via cables
 - Cables are expensive and heavy-weighted: several tens or hundreds of meters
 - Movement constraints for vehicles and divers
 - Safety issues as cables may pose dangers
 - ➔ Wireless underwater communications is a must

6

Wireless Underwater Waves

- Radio-Electromagnetic waves
 - EM waves do not travel well through thick electrical conductors like salt water
 - Strong absorption + Huge attenuation with distance
 - \Rightarrow Only for very short range communications
- Optical communication
 - Blue-green region (450-550 nm)
 - + High bandwidth (~Mbps)
 - + Negligible delay
 - Short distance (<100 m)
 - Alignment of transmitter/receiver

Light Depth Attenuation

Underwater Acoustics

- Used by submarine fauna
- Frequency range: 1 Hz 500 kHz
 - A 30 kHz frequency (ultrasound) = 6 GHz in air (microwave) (wavelength = 5 cm)
- Negative propagation characteristics
 - Limited bandwidth: 8kHz to 48-78 kHz
 - Time-varying multipath propagation:
 Reflections from surface, sea floor
 - Low speed of sound underwater: ~1500 m/s

Contents

- 1. Introduction
- 2. Underwater Acoustic Channel
- 3. Quality Assessment in Underwater Video

Underwater Acoustic Channel

- The underwater acoustic channel is affected by many factors
 - Salinity
 - Temperature

- Speed of sound
- Surface wind-speed
- Seabed topology

- ...
- This causes multi-paths, reverberation, Doppler, timevarying paths, ...
- The result: the communication channel has poor quality and high latency
 - Challenges are very different from terrestrial wireless

Propagation Speed

- Typical: 1500 m/s Range: 1450m/s – 1540 m/s
- As depth increases, speed decreases
- After 500-600 meters the increasing pressure causes an increase in speed

Scattering

- When the surface of the water is in movement, it causes a dispersal of the delays of the multiple reflections
- Time of coherence decreases
- Experimental measurements show that scattering increases with frequency, distance and wind speed

Bubbles are not So Funny

- Bubbles that appear on the surface may have a big influence on high frequency acoustic signals
- Effect: Increased attenuation of reflected signals
- Bubble density increases with wind speed
 At 10 m/s, attenuation due to bubbles is up to 20 dB
- Bubbles underwater also create additional scattering

Noise

- Impacts the choice of carrier frequencies
- Natural and human-origin sources of noise:

waves, turbulences, animals, ships

• Frequency ranges

Low (< 10 Hz):</th>seismic, storm, turbulencesMedium (50 ~ 300 Hz):shipsHigh (> 500 Hz):wind, cavitation, bubbles

- Discontinuous biological noise (in time and space)
- Decreasing power spectral density:

< 10Hz: 8 ~ 10 dB/octave Above 10 Hz: 5 dB/octave

Submarine Environment

Submarine Environment

Contents

- 1. Introduction
- 2. Underwater Acoustic Channel
- 3. Quality Assessment in Underwater Video

Motivations

- Ocean scientists often need not only sensor measures (temperature, salinity...) but also they need to watch underwater environments.
- Images from oceanic resources are currently difficult and expensive to obtain.
 - Exploration expeditions with divers or robots submerging with cameras are needed.
- Video services in USNs would allow to reduce these costs.

Problems and research targets

- Main problem for underwater video services is the highly limited bitrate available with current technology.
 - State of the art acoustic modems reach **31,2 kbps** peak data rate at physical layer.

 It is necessary to study if video services are possible and what QoS could be achieved in these low bitrate conditions.

ITU-T G.1070 model – Definition

- Mean Opinion Score (MOS) is a subjective parameter
 - Perceived quality is usually scored in a five rank scale.
- The only ITU model for parametric MOS estimation in video services.
 - Oriented to video-conference services but de-facto used for other services too.
- Network parameter as **variables** in the model:
 - Video coding bitrate.
 - Frame rate.
 - End to end loss rate for IP packets, (packet loss).
- Model also needs a set of **coefficients** depending on: video codec, resolution and screen size.

Subjective quality assessment

- ITU Recommendation for subjective video quality assessment for multimedia applications. It describes:
 - Source signal.
 - Test methods.
 - Evaluation procedures.
 - Statistical analysis and reporting of results.
- In absolute category rating (ACR) test method, several video sequences are presented to human viewers who score them within a qualitative scale.

Encoding - Experiment

- Configurations for video services need to be adapted to bitrate limitation.
- Since low frame rate video must be considered, both still image sequence transmission and regular video encoding are under study.
- Work settings:

Setting	Values	Unit
Resolution	320x180 160x90	рх
Encoding	JPEG, JPEG2000 H.264	-
Frame rate	1-25	fps
Bitrate	6, 12	kbps

- Underwater channel is very unfriendly
- Terrestrial wireless techniques must be adapted
- Quality is not perceived by viewer the same way as in videoconferencing/TV
- Video, even with low resolution and fewer frames per second, is considered better than still images

