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Abstract— Mobility assistance for wheelchair navigation is
typically based on the shared control paradigm. Traditionally,
control swaps from user to machine depending either on a
trigger mechanism or on a explicit user request. Alternatively, in
collaborative control approaches both user and robot contribute
to control at the same time. However, in this case it is
necessary to decide how much impact the user has in the
emergent command. User weight has been estimated based on
his/her command efficiency or on the environment complexity.
However, the user’s command efficiency may change abruptly,
whereas the environment complexity depends on the user’s
skills. In this work we propose a collaborative control approach
where this weight is determined by the user’s ability to cope
with the situation at hand with respect to an average person.
This estimation relies on an standard navigation skill profile
extracted from a large number of traces from real users. This
approach has two major advantages: i) the user receives more
assistance only when needed according to his/her own skills; and
ii) we avoid an excess of assistance to prevent loss of residual
skills. The proposed system has been tested with a group of
people with disabilities. Tests prove that resulting efficiencies
are similar to other collaborative control approaches although
the amount of assistance is reduced.

I. INTRODUCTION

Mobility is a key factor to cope with Activities of Daily
Living (ADL). According to 2012 statistics, the highest
percentage (6.9%) of the more than 36 million Americans
with disabilities indicated their disability was related to
ambulation [1]. People whose mobility is affected by a
disability may require assistance to remain autonomous.
Statistics demonstrate the growing needs for experienced
personal care attendants (PCA) by persons with disabilities.
However, due to the increasing unavailability and cost of
experienced PCAs, the rapidly-growing needs for more
personal assistance in this population are unmet [2]. When
an on-site professional PCA is not available, a persistent
demand exists for quality alternative assistance. In some
cases, robotic power wheelchairs may help. As reported
in [3], assistive technology may empower users to live
independently and safely by allowing them to manipulate
their natural environments either independently or through
assisted-control mobility. It was estimated that in 2003 7,1
Million people depended permanently or temporarily on a
wheelchair. Analyses in the USA have shown that only 50%
to 60% of people in need of a power wheelchair are in fact
able to use state-of-the-art equipment. An additional 20% to
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25% could be accommodated if more intelligent controls and
user interfaces were available1.

In order to combine what the user and the robot propose
to do, robot wheelchairs typically follow the so called
Shared Control paradigm, also known as Dynamic Autonomy
or Mixed-Initiative [4]. There are different approaches to
shared control. In safeguarded navigation, the mobile is
controlled by the human except when a potentially dangerous
situation is detected [5] [6] [7]. Frequently, shared control
approaches [8] [9] [10] rely on a basic set of primitives
like AvoidObstacle, FollowWall and PassDoorway to
assist the user in difficult maneuvers. These primitives can
be triggered manually, by the user, or automatically, when
sensors detect a specific situation. In extreme, the user just
points a destination and gives all control to the robot [11].
In these cases, systems try to predict the user’s intention
-and minimize the cognitive load of the process-, but many
authors agree that prediction of human intention often fails
and users prefer to contribute more to control [4] [12]. In [13]
it is proposed to introduce a third source of control -a remote
PCA- in the loop to cope with more complex situations.

In all approaches above, only human or robot are in
control at a given time instant. This means that users never
deal with difficult situations. Lack of practice with these
maneuvers may lead to loss of residual skills. Besides,
control switches provoke discontinuities that may lead to
anxiety and frustration. In order to avoid this problem, in
collaborative control approaches [14] [15] [16] [17], user’s
and robot’s commands are mixed in a continuous way so that
people may contribute as much as possible to every decision.

Purely reactive collaborative control approaches [14] [15]
[16] basically rely on weighting user’s and robot’s commands
according to local efficiency metrics and then combining
them into a single vector. The emergent command is closer
to the user depending on how well he/she is coping with
the situation at hand. These systems adapt to the user
in the sense that they provide more help when needed.
In order to gain more inertia towards sudden movements
or punctual changes, other methods rely on modeling the
user’s intention. Parametric models specify the user’s driving
behavior in a fixed a priori structure to predict intention [18].
However, clear definition and adequate tuning of parameters
related to human behavior is usually complex. Alternatively,
implicit models rely on learning the adequate response to a
given situation for each user [17]. This approach requires
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training. Proposed training methods include driving the
wheelchair through a standard test course and comparing
user’s commands with a so-called ideal input signal. This
signal basically depends on the environment and the target
at the moment. Help is provided depending on the difference
between the user’s input and the ideal one. It takes time
to train the wheelchair for each user. Besides, there is no
ideal command to solve a situation: as long as the user can
cope with the problem adequately, no assistance needs to be
provided. In order to cope with these problems, we propose
to a novel methodology to modulate assistance depending on
the user’s skill profile. The main advantages of the proposed
method is that it requires no training and user’s performance
is not compared to an ideal. Instead, we use the standard
user skill profile that we proposed in [19].

II. A STANDARD SKILL BASED NAVIGATION PROFILE

In order to decide how much assistance a person needs,
it is necessary to compare his/her performance to an
expectation. Typically, the expected performance is an
analytical solution to the on-going navigation problem or to
some ideal trajectory2. However, a person does not need to
achieve an ideal to cope with ADL. It is enough to reach a
standard efficiency, that needs to be determined. However,
people tend to solve the same problem in different ways and
no standard individual exists.

In [19] we proposed a method to build a standard
navigation profile. In order to cope with variability, the
proposed profile was skill-based and reactive. We did not
work with full trajectories or complex maneuvers: we only
dealt with instant solutions to local situations. Besides, we
did not set any ideal or analytic solution to the problem.
Instead, we clustered data from 3 years of tests with more
than 80 volunteers at Fondazione Santa Lucia (FSL), a
large rehabilitation hospital in Rome. Most volunteers were
inpatients presenting a different degree of disability, both
physical and cognitive. All volunteers were asked to drive a
Meyra 2 Runner wheelchair equipped with a frontal Hokuyo
laser using a joystick in different indoor environments
without assistance. Data stored in our traces included
laser sensor readings (millimeters), relative goal location
with respect to the wheelchair (millimeters), user joystick
command (radians), and wheelchair heading (normalized
radians). All data was local and relative to the robot position.

All gathered data was employed to decide how efficiently
an average user would cope with all the different situations
that may be faced during indoor navigation. First, we
determined how many different situations our volunteers had
found. Any complex situation can be decomposed into a set
of simpler ones, so we defined situations at local level to
avoid complexity. It is stated in [20], that all maneuvering
situations can be categorized into six possible configurations
that: i) fully describe all possible obstacle configurations
(mobile and goal locations) and; ii) are mutually exclusive.

2Some authors simply compare the user’s performance to a healthy
person’s in the same situation. This approach has been reported as not
representative

After we clustered our raw data into these situations
using a binary decision tree, each bin included a large
number of cases coming from very different people facing
similar situations during their respective trajectories. These
situations include High Safety or Low Safety Goal in Region
(HSGR and LSGR), High Safety Wide or Narrow Region
(HSWR and HSNR) and Low Safety Wide or Narrow Region
(LSWR and LSNR).

Then, we unsupervisedly split each bin into as many
subclasses as needed depending on the wheelchair heading
with respect to the (local) goal. We used a k-medoid
clustering algorithm based on Euclidean distance and the
Davies-Bouldin index [21] to choose the appropriate number
of subclasses (k(i)) for each bin i.

Resulting subclasses represent how many different
situations an individual may face depending on his/her
relative position to the goal and local environment. Solutions
provided by the different individuals to each situation could
be very different, depending on their driving habits and
preferences and also on their (potential) disability. To obtain
the prototype of each subclass, we averaged all elements in
the subclass, weighting them by their respective efficiency.
This process filtered out low efficient solutions and outlayers:

CP (i) =

N(i)∑
j=1

ηjcj
N(i)

(1)

N(i) being the number of commands in class i, cj the vector
command and ηj the efficiency of command cj . This average
tends to be close to the most efficient and frequent command
in the subclass.

Since we are working at reactive level, η must be
calculated locally, at each given location/time instant. In [22],
we defined η as the average of three different factors roughly
corresponding to the properties of a navigation function [23]:

ηsm = e|αdif | (2a)

ηdir = e|αdest−αdif | (2b)

ηsf = 1 − e|αmin| (2c)

Smoothness (ηsm) is locally evaluated (Eq. 2a) as the
angle (αdif ) between the robot heading and the input
motion vector (Fig. 2). Directness (ηdir) is locally measured
(Eq. 2b) in terms of the angle (αdest) formed by the
provided motion vector and the direction towards the next
partial goal provided by a global planner (Fig. 2). Safety
(ηsf ), is evaluated (Eq. 2c) in terms of the angle to the
obstacle (αmin) whose distance is minimum with respect
to the heading direction (Fig. 2). All resulting prototypes are
presented in Fig. 1.

This profile in Fig. 1 covers how a ”standard” user
would cope with all possible situations faced in an indoor
environment, so we can compare the performance of any
given person to the average profile in each of them. In order
to do so, we simply compare the user and the standard
prototype efficiency (ηu and ηSP ) at the current situation.



LSGR
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61% 72% 51% 63% 79%

LS01

1 2

66% 66%

Fig. 1. Classes resulting for each of the 4 non-empty bins and their prototype efficiency

Fig. 2. Local factors (αmin, αdif and αdest) used to calculate local
efficiency (η) depending on the robot heading, provided command ~vinput

and obstacle repulsion force ~vobs.

This provides an estimation on how much help the input user
needs to reach the standard and, hence, modulate assistance
in collaborative control approaches. Next section presents the
proposed algorithm to adapt assistance to each user on the
fly.

III. ADAPTIVE COLLABORATIVE ASSISTANCE BASED ON
A STANDARD SKILL PROFILE

Our new system is based on the collaborative control
scheme proposed by the authors in [22]. In our previous
system, user’s and robot’s commands (~vu and ~vr) were
combined into an emergent command ~ve at reactive level,
weighted by their respective efficiency (ηu and ηr) as
defined in Eq. 2. The robot command were obtained via a
Potential Field Approach (PFA). The main advantage of this
system is that users receive more or less control depending
on how efficiently they are controlling the wheelchair. Its
main drawback is its purely reactive nature, that leads to
control discontinuities. However, the most important issue is
that control is not adapted to the user’s nature, but rather
to his/her punctual commands. Help modulation is well
accepted by users and actually it improves user performance
[24]. In order to improve adaptation, we can use the skill
profile described in previous section to modulate our control
function (~ve) originally described at [22]. At location i, it
would be:

TABLE I
VOLUNTEERS

Patients CIRS MMSE GDS Barthel IADL Diagnosis
806 2 21.9 2 41 2 Left hemiplegia

(Ictus)
808 2 22.7 12 68 2 Ictus

(Left hemisphere)
907 1.9 28 9 58 3 Left hemiplegia

(Ischemic ictus)
814 1.38 23 NA 28 1 Ictus
904 1.5 28 NA 92 7 Hyposthenia
905 1.38 30 NA 28 7 Tetraplegia

(Guillain-Barré
syndrome)

813 1.9 23 NA 28 1 Right hemiplegia
(Epilepsy)

815 1.8 20 NA 96 8 Right hemiplegia
(Mixed aphasia)

816 NA 23.2 12 62 2 Right hemiplegia
(Mixed aphasia)

~ve(i) = K(i)ηu(i)~vu(i) + (1 −K(i))ηr(i)~vr(i) (3)

where k is modeled after Fig. 3 depending on how far the
user performance is from the standard. It can be noted that
the envelope is equal to 0.5 if ηu and ηSP are the same.

The emergent command gains additional inertia to work
proactively. The overall effect of this new approach is that
users globally receive more control in areas they can cope
with, despite punctual corrections to their less efficient
commands.

IV. EXPERIMENTS

In order to test the proposed approach, 9 volunteering
inpatients at FSL tried to complete the same path (Fig. 4)
in collaborative control mode, both with and without K
modulation. The volunteers’ profiles are described in Table I.
It can be noted that they had different conditions that did not
affect equally their driving skills (e.g. left hemiplegia affects
right maneuvers and viceversa). As in our previous works
[14] [22], we characterized their disability profile using
well known clinical scales: CIRS (Cumulative Illness Rating
Scale, 0-4), MMSE (Mini-Mental State Examination (0-30)),



TABLE III
AVERAGE ESTIMATED HELP (%) ON EMULATIONS

Diagnosis

K Mode Hemiplegia OtherRight Left
K fixed 70.85 63.40 66.23

K variable 58.31 52.54 53.87

TABLE IV
ANOVA TEST BETWEEN ESTIMATED HELP AND K MODE

Df Sum Sq Mean Sq F value Pr(> F )
Mode 1 605.63 605.63 15.938 0.0003

Residuals 34 1291.94 38.00

GDS (Geriatric Depression Scale (0-30)), Barthel (0-100)
and IADL (Instrumental Activities of Daily Living, 0-8). It is
usually necessary to use them together to describe each user.
For example, volunteer 808 has a mild comorbidity, minor
cognitive issues (MMSE lower than 26), signs of geriatric
depression and mild physical challenges. Indeed, she needs
help with her ADL. Volunteer 815 is significantly worse from
a cognitive point of view, but physically much better and
needs no help at all with her ADL (IADL=8).

ηu − ηSP

K
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Fig. 3. Command weight K(∆η) function.

Start
PointGoal

Fig. 4. Test scenario at FSL.

Our standard skill profile models all indoors local
navigation situations. It links a local situation with a
navigation command and efficiency, so it can be used

TABLE V
ANOVA TEST BETWEEN ESTIMATED HELP VARIANCE AND K MODE

Df Sum Sq Mean Sq F value Pr(> F )
Mode 1 0.0035 0.00359 52.907 2.016e-08

Residuals 34 0.0023 0.00006

in any indoors experiment set-up. We can compare user
and standard profile solutions at the same situations, and
study user performance. Table II briefs the results of the
proposed tests. It includes average emergent efficiency η̄e
and completion time t̄. We have also estimated the average
amount of help provided in terms of the contribution of
the robot to the resulting command at each point. We also
provide Disagreement, the angular difference between ve and
vu, that provides an estimation about how comfortable users
are with assistance [14]. As a whole, it was expected that
volunteers with poorer scales performed worse. Since the
proposed path involved mostly left maneuvers, it was also
expected that people with right hemiplegia performed worse
in general. We can observe that this is mostly true: η̄e for
volunteers 813, 815 and 816 is under 30% in non-modulated
mode and it takes them more than 150s to finish the proposed
path, that other volunteers completed in approximately one
minute. Volunteer 814 has similar difficulties because his
physical skills are severely affected (Barthel=28, IADL=1).
Volunteer 904 also yields a poor performance but, in his
case, it obeys to a large disagreement: he is fighting
assistance more than a 20% of the time. This effect was
reported in [14] for people with excellent cognitive skills that
rejected assistance when they noticed their trajectories were
corrected. It can be immediately noticed that modulation
clearly improves results, but not equally: people with worse
performance clearly benefit more from adaptation. Efficiency
for volunteers with right hemiplegia, for example, grows over
a 60%. People who were already above a 60% improve just a
4-5% instead. This reflects how adaptation helps to equalize
performance and move towards a (non-perfect) standard. Our
goal, however, was not just to boost performance, but to
help as less as possible and only when necessary to avoid
frustration and loss of residual skills.
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Fig. 5. Assistance provided to volunteer 904.

It can also be observed in Table II that H̄elp is lower in
adaptive mode in all cases. Table III shows how assistance



TABLE II
EXPERIMENT RESULTS

User K Mode η̄e % σ(η) t (secs) Help% σ(Help) Disagreement (%) σ(Disagreement) K̄ σ(K)
806 Fixed (50) 28.274 0.008 65.521 67.155 0.013 19.715 0.02 50 0

Variable 67.687 0.035 49.601 52.962 0.037 1.507 0.001 50.427 0.028
808 Fixed (50) 30.043 0.014 65.924 68.173 0.014 19.048 0.023 50 0

Variable 62.706 0.041 65.239 52.65 0.039 2.724 0.001 51.743 0.028
813 Fixed (50) 27.912 0.011 158.683 71.687 0.013 19.195 0.011 50 0

Variable 61.156 0.03 58.807 52.811 0.025 2.666 0.002 50.699 0.018
814 Fixed (50) 29.168 0.011 179.181 69.064 0.019 18.395 0.014 50 0

Variable 61.108 0.043 51.441 59.5 0.041 0.836 0.001 45.381 0.032
815 Fixed (50) 28.622 0.015 167.218 69.727 0.018 17.255 0.016 50 0

Variable 60.908 0.044 63.007 59.438 0.036 0.369 0.002 43.339 0.032
816 Fixed (50) 27.846 0.01 154.686 71.146 0.017 19.626 0.012 50 0

Variable 69.721 0.041 47.506 62.683 0.013 0.863 0.001 40.353 0.009
904 Fixed (50) 25.226 0.007 189.855 74.206 0.011 21.524 0.009 50 0

Variable 67.171 0.042 44.679 50.482 0.031 0.828 0.007 52.961 0.021
905 Fixed (50) 60.934 0.013 113.286 55.436 0.005 1.984 0.003 50 0

Variable 64.645 0.037 40.319 51.645 0.025 1.292 0.003 51.99 0.018
907 Fixed (50) 60.265 0.033 98.159 54.873 0.006 1.2 0.005 50 0

Variable 66.608 0.024 49.479 52.021 0.022 0.888 0.001 50.279 0.019

is indeed adapted to the user’s condition. These results
were validated using an ANOVA test, proving that provided
help significantly depends on K mode (table IV). It can be
observed in Table II that provided help is clearly lower in
K-variable mode. The variance of assistance is also related
to the k-mode (Table V). This variance grows in k-variable
mode, because assistance is more adapted to the user’s
local needs (Table II ). This fact affects Disagreement -and,
hence, acceptance- very positively. In order to illustrate
the importance of this effect, Fig. IV shows assistance
provided through the whole path in both modulated and
non-modulated mode to volunteer 904. As commented, his
performance was severely affected by a high Disagreement.
It can be noted in Fig. IV that the frequency of the
assistance signal is clearly lower under modulation. We
provide significantly less help, but also more consistently,
depending on how well the user copes with the challenges
in the path. His Disagrement reduces drastically from 21.5%
to 0.82% and his efficiency improves to 67.1%. Besides,
received help is reduced from 74.206 to 50.482%: assistance
peaks are higher with respect to the plot average and also
wider, but less frequent. Help is also consistently reduced
in some areas that the user can negotiate on his own. The
benefits of adaptation are obvious even in volunteers that did
well in fixed k mode. For example, Fig. IV shows the same
plots for user 907, who already had an efficiency equal to
60.2% in fixed k mode. Assistance is only reduced a 2.8%
in this case, but it can be clearly appreciated that the adapted
signal is much slower. This improves the resulting efficiency
a 6%, and reduces Disagreement slightly, but consistently.

A final conclusion extracted from these experiments can
be observed in the ANOVA test in Table IV. In previous
works using collaborative control with fixed K we tried
to correlate the amount of assistance provided with every
clinical scale we had and only obtained a minor relationship
between help and MMSE (cognitive condition). However,
we could not find relationships with physical-condition/ADL
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Fig. 6. Assistance provided to volunteer 907.

TABLE VI
ANOVA TEST BETWEEN K̄ AND DIAGNOSIS

Df Sum Sq Mean Sq F value Pr(> F )
IADL:Barthel:MMSE 1 86.299 86.299 8.223 0.007

Residuals 28 293.827 10.494

related scales. In modulated collaborative control we have
found a clear relationship between the modulation factor and
a combination of IADL, Barthel and MMSE. This means that
the envelope of the human control signal depends on his/her
condition as a whole, both from the physical and cognitive
point of view. In brief, we are adapting assistance to the
user’s condition as a whole.

V. CONCLUSIONS

In this work we have proposed a methodology to adapt
assistance to the user’s needs and condition in shared control
based robot wheelchairs. The proposed system is based on a
standard skill profile, that we proposed in [19]. This profile
shows how efficiently a standard user -modeled using real
navigation tests- copes with every possible local situation
in indoor environments. Our shared control algorithms
combines the robot and user’s response to a given situation



in terms of their respective local efficiency. The main novelly
of this work is that the control function is modulated by a
factor that depends on the difference in efficiency between
the user’s response to a situation and what the standard
user would do in his/her place. This process improves user’s
acceptance and provides better adaptation to the user’s needs
and condition. We have checked that the variation of the
modulation factor is indeed related to the user’s disability
profile modeled after three different well known clinical
scales combinedly: MMSE, Barthel and IADL, that take into
account both cognitive and physical aspects. Tests with users
presenting different disability profiles prove that modulation:
i) improves average efficiency; ii) reduces the amount of help
provided and its variance; and iii) improves user’s acceptance
(reduces Disagreement and its variation). In brief, help is
provided only when needed depending on each user’s skills.

Since the proposed approach is purely reactive, future
work will focus on integration of this system into a hybrid
architecture. The full system would allow us to work
proactively and predict the best trajectories to receive the
minimum amount of help in any given environment. Our goal
in all cases is to empower people to achieve their ADL by
providing the minimum amount of help, so loss of residual
skills can be avoided.
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