
Optimizing DSP Circuits by a New Family of
Arithmetic Operators

Javier Hormigo, and Julio Villalba
Dept. Computer Architecture

University of Malaga
Malaga, Spain, E-29071

E-mail: fjhormigo@uma.es

Abstract—A new family of arithmetic operators to optimize
the implementation of circuits for digital signal processing
is presented. Thanks to use of a new technique which
reduces the quantification errors, the proposed operators may
decrease significantly the size of the circuits required for most
applications. That means a simultaneous reduction of area,
delay and power consumption.

Index Terms—Real-number representation,

I. INTRODUCTION

The selection of the adequate representation format for
each variable on a digital signal processing circuit is
one of the most important task to achieve an optimal
trade-off among cost parameters (area, energy,. . .) and
functionality constrains (delay, quantization error,. . .). For
cheaper implementation, fixed-point formats are usually
preferred over floating-point ones, since the latter involve
much more complicated operators. Optimization of fixed-
point implementations requires to find the word-length
combination which presents the minimum cost but, at the
same time, it satisfies the required accuracy (i.e., maximum
quantization rounding error) and dynamic range (i.e., it does
not produce overflow). Signals using less bit-width implies
simpler operator which means less area, delay and power
consumption. However, this simplification is obtained at the
cost of introducing larger quantization error. This error is
introduced when an intermediate or final value have to be
rounded to meet the corresponding bit-width.

Several rounding modes could be used to perform said
rounding, such as round to nearest which is the preferred
mode for floating point format [1]. However, due to the
huge complexity incrementation, in relative terms, required
to implement these rounding modes in fixed point for-
mat, a simple truncation is the rounding mode generally
used in this cases. There is plenty of literature address-
ing worth-length optimization considering truncation as
rounding mode whereas the other modes has been prac-
tically discarded for years[2][3][4][5]. However, a recent
work [6] has demonstrated the beneficial of using other
rounding modes in certain designs. In the work presented
in [6], the optimization of several representative kernels
for digital signal processing were analyzed considering, not
only truncation but round-to-nearest (biased and not biased
version), along with the additional hardware involved for a

single operation. They found that, despite the complexity
introduced for each single rounding operation, the overall
implementation area my be reduced up to 46% by utilizing
the optimal quantization mode combination instead of only
truncation.

In this work we present a new technique to imple-
ment round to nearest for fixed point arithmetic at the
similar cost of truncation. Therefore the expected perfor-
mance gain should largely beat the results of this previous
publication[6].

II. CONVENTIONAL ROUNDING MODES

The word-length optimization is a key tool to reduce the
cost of fixed-point DSP implementations. Its use implies
that each signal is reduced to the minimum feasible number
of bits. Therefore, rounding is required almost after each
operation and the type of rounding (rounding mode) used
influences in two different ways: statistical characteristics
of the rounding error generated and hardware complexity
of its implementation. Generally, better statistical charac-
teristics requires greater hardware complexity.

The rounding mode associated to the simplest hardware
implementation is truncation. Given two fixed-point for-
mats, A and B, with n and m bits, respectively, being
n > m, the rounding of a number represented using A
to format B by truncation is performed just by taking the
m Most Significant Bits (MSBs) of the original number.
This operation is trivial, and it has no hardware cost, but
its rounding error may be up to one Unit-in-the-Last-Place
(ULP), i.e. the weight of the Least Significant Bit (LSB).
Furthermore, it is very biased since it is always positive (for
numbers with the same sign). Despite of those problems,
it is the rounding mode generally used for fixed-point DSP
hardware implementations.

Another rounding mode with a simple hardware imple-
mentation is von Neumann’s rounding or jamming. In this
case, the rounding is performed by selecting the m − 1
MSBs of the original number and setting the LSB of the
final number to one, if the discarded bits are not all zero.
This operation produces an unbiased rounding since the
error may be both positive or negative, but the magnitude
of the error is still up to one ULP. Its implementation need
some logic to compute the sticky bit, but this is relatively

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62902321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ERN

...

...

...

.

non ERN.

...

.... .

.... . .

1.010 1.011 1.100

1.010

1.010

1.011

1.011

Rounded to 1.010

a) Truncation

b) Roundin to nearest

1.100

1.100

Rounded to 1.011

Rounded to 1.011

Rounded to 1.011

Rounded to 1.011

. . .

c) von Neumann’s rounding

..

Fig. 1. Some conventional rounding modes

simply. However, it is not commonly used, since indeed it
duplicates the range of values represented for one number,
as we will see later.

The round-to-nearest is the rounding mode which pro-
duces the lowest magnitude of the rounding error. Again,
the m MSBs are selected but, in this case, if the MSB
of the discarded bits is one, one ULP is added to get the
result. Thus, the implementation of this rounding requires to
use an incrementer to perform said addition. This rounding
mode produces a rounding error up to 0.5 ULPs and may be
positive or negative. In spite of the fact that round-to-nearest
produces the lowest rounding error, it is not generally used
in fixed-point DSP application due to its relative complexity
compared to fixed-point operations itself.

Fig. ?? summarizes how the values on a real line are
rounded according to these three rounding modes. The
Exactly Represented Numbers (ERNs) of the target format
is represented, along with the range of inexact values
represented by each ERN for each rounding mode. It is
clearly seen that von Neumann’s rounding duplicates the
range of values represented by an ERN and truncation is
very biased. These provokes that the quantization rounding
error produced by round-to-nearest mode was significantly
lower. In [6], word-length optimization have been studied
considering different combination of rounding modes, and
it has been demonstrate that the utilization of round-to-
nearest may reduce the overall hardware cost, despite of the

−3
2

−3
2

1.0101

Conventional ERN

1.010 1.011 1.100 1.101

1.0111 1.1001 1.1011

new ERN

Fig. 2. ERNs for both conventional and proposed format

individual cost increment of using said rounding mode. This
cost reduction is achieved because the lower rounding error
produces a greater reduction of bit-width which overcome
the cost of implementing the rounding.

III. NEW PROPOSED FIXED-POINT FORMAT

In this section, we present a new binary fixed-point
format which allows performing round-to-nearest in the
same way (and cost) as truncation. Thus, utilizing this
proposed format should produce a reduction on the word-
length similar to the one achieved when round-to-nearest is
used under conventional format, but the overall reduction
should be greater since the rounding is implemented much
more easily.

Based on the same idea as von Neumann’s rounding,
instead of forcing the LSB to one when it is required, we
define a new number representation format which includes
an implicit LSB which is constant and equal to one. This
new implicit bit provokes that the ERNs represented by
a bit vector under a conventional format were shifted by
half ULP when the same bit vector represents a number
under the new format. Fig. ?? shows an example of a
three fractional bits fixed-point format. The ERNs under
the proposed format are always on the middle point of two
ERNs under its corresponding conventional format. The
distance between consecutive ERNs are the same under
both formats, i.e. one ULP. Thus, the precision of both
format is the same. Moreover, the number of bits required
to represent both formats are also the same, since the new
bit is implicit and it is not need to storage or transmit it.
Therefore, both conventional and the proposed formats have
equivalent characteristics but their ERNs are different.

This new location of the ERNs produces that truncation
(i.e., discarding the LSBs of a number to reduce the number
of significant bits) to obtain a number under the new
proposed format is actually a rounding to the nearest ERN.
This fact is easily observed graphically as it is shown
in Fig. 3. When only the 5 MSBs remains, the inexact
values selected for each bit-vector are the same under
both the conventional and the proposed formats, but the
ERN which represents those values are different. Given a
range of inexact values, the ERN representing said values
under the conventional format always means an effective
rounding down, whereas under the new format it always

...

...

ERN nonERN.

1.01111

...

1.10001 1.100111.01101

...

Rounded to 1.01111
Rounded to 1.10001

. . .

1.0111 1.1000 1.1001

a) Rounding by truncation (conventional)

Rounded to 1.0111 Rounded to 1.1000

b) Rounding to nearest (new format)

Fig. 3. Truncation for both conventional and proposed format

means an effective round-to-nearest. Therefore, using the
proposed format, the rounding may be performed with the
statistical characteristic of round-to-nearest and the simple
implementation of truncation.

IV. FIXED-POINT DATA-PATH IMPLEMENTATION USING
THE NEW FORMAT

In the previous section, we have seen how the use of
a new format facilitates the hardware implementation of
round-to-nearest rounding. However, the implementation of
fixed-point DSP data-path requires to use other arithmetic
units which may be different under the new format. In this
section, we study fixed-point arithmetic units for operands
under the proposed format and conversion, since they are
the key building-blocks to design a fixed-point data-path
for DSP applications.

First, the input data may be introduced into the digi-
tal data-path. Ideally the input data should be converted
directly from the real world to a digital number under
the proposed format. In many applications, this requires to
tune in the analog-to-digital converters to give their output
number under the proposed format, which should not be a
real problem.

If the input values are already digital numbers under a
conventional format, a conversion is required. This conver-
sion requires just truncating to the amount of bits desired,
since this operation produces a round-to-nearest rounding
when targeting a number under the proposed format. But,
this initial conversion may introduce additional rounding
errors, due to double rounding problems. On the contrary,
for this last case, another option is to operate using con-
ventional formats as long as a rounding operation is not
required. In the point a rounding is needed, this rounding is
performed by truncation and generating a number under the

new proposed format. In this way, the amount of rounding
error introduced is minimized.

Once there are numbers represented under the proposed
format, the design of arithmetic units to operate with these
numbers is required. Taking into account the definition of
the new format, it is easily seen that the conversion of a
number under the new format to a conventional one could
be easily obtained by extending explicitly its bit-vector
with its implicit LSD. Therefore, arithmetic units to operate
numbers under the proposed format could be design just by
extend each input operand by a constant LSB set to one.
After this trivial conversion, the extended operands may be
operate using a conventional logic. The conversion of the
result back to the input format also could be performed
trivially by truncating it to the desired number of bits. An
arithmetic unit designed in this way produces the results
rounded to the nearest. This is a general procedure which
is valid for any operation. Nevertheless, taking into account
that this new LSB is a constant value, a more optimal design
could be obtained by studying each operation in detail.

On the other hand, the equivalent arithmetic unit for
conventional formats, has input operands with one bit less,
but it requires a rounding unit at the end to perform
the round-to-nearest of the result. Therefore, to determine
whether the new arithmetic units are most costly than its
equivalent conventional, each concrete arithmetic operation
has to be studied particularly. Next, we analyze addition and
multiplication since they are the mos important arithmetic
operation for DSP. However, although one particular opera-
tion may result less efficient under the proposed format, the
important matter is whether or not, the overall efficiency of
the data-path is improved under the new format.

V. RESULTS AND COMPARISON

To test the performance of the proposed formats and cir-
cuits, several FIR filter examples have been design, word–
length optimized and implemented on FPGA. This process
has been performed using both the new proposed arithmetic
with round-to-nearest and a standard one with truncation.
The main results of these FPGA implementations have
given in this section.

Let us give more details about the process we have fol-
lowed. First, we have computed the coefficients of several
low–pass and high–pass FIR filters for different number
of taps using Matlab. Then, the floating-point version of
the filters, considering the direct-form structure, has been
optimized for fixed-point computation using ”Floating-
Point to Fixed-Point Transformation Toolbox” [7]. For a
given error threshold, this Matlab toolbox optimizes the
worth–length combination of the given DSP data-path to
minimize the estimated area cost of the circuit when im-
plemented it on FPGA. It uses a well-known gradient based
methods to achieve this goal, although this methods does
not guarantee to obtain the global minimum. For each filter,
the optimum combination word-length has been computed
for both versions, the one using our proposed arithmetic

Filtro Q1 Q2 (MED) Q3
New std New std New std

LFIR3 2 4.5 5.5 7 7 11
HFIR3 4 3.5 5 6 7 8.75
LFIR5 3 4 6 7 6.75 12.75
HFIR5 4 4 6 9.5 7.75 13
LFIR8 2.25 4 5 7 7 10
HFIR8 3.25 4 5 7 8 10

LFIR10 2 4 4.5 6 6 8.75
HFIR10 2.25 4 5 9 7 12

TABLE I
STATISTICAL PARAMETERS OF WORD-LENGTH OPTIMIZATION

units and round-to-nearest as rounding mode and standard
arithmetic circuits with truncation. The range of sizes
utilized to look for the optimum word-length combination
goes from 1 bit to 16 bits for each signal within the filter
data-path. These signal include all coefficients of the filter
and all input, output and internal signals. In Table I, the
results of this word-length optimization are summarized.
We have grouped together all signal word-lengths within
the same filter and then, some statistical parameters have
been calculated. Table I shows the quartile values for the
word-length (in bits) of all signals within each filter. For all
cases, it is clearly observed a significant reduction of the
number of bits when round-to-nearest is used instead of
truncation. For example, according to Table I, in the High-
pass filter with 5 taps, a 25% of signals have 4 bits or less
for both versions. But, half of the signals have less than
10 bits whereas they have 6 bits or less for the proposed
version. Similarly, a 25 % of signals has 13 or more bits but
they have only more than 7 bits for the proposed version.
Looking at the table. it is seen that the amount of reduction
depends on the concrete filter observed, and apparently it
does not show any pattern.

Using these optimum combinations of different signal
sizes calculated for each filter and rounding method, the
corresponding VHDL circuits have been design. Then,
they have been synthesized for a XILINX Virtex-6 family
FPGA, using ISE v14.3 software. The results of area
and delay obtained for all different filters are shown in
table II. We should clarify several important points about
these FPGA implementations. To isolate the delay of the
filter from communication, all input and output signal have
been registered. In contrast, the data-path of the filters is
combinational (except the delays lines, for input signal that
have to be stored). Thus, the delay presented refers to the
one between the input signal and the output signal.

On the other hand, the embedded multipliers presented
on the FPGAs have not been utilized to implement multipli-
cations, since their use may difficult a precise comparison,
specially due to the small sizes of multipliers required.
Thus, regular slice logic has been used to implement the
multipliers, but this implementation may be in to different
form: standard multiplier o multiplier to a constant. The
synthesis software only use dedicated implementation of
multiplication to a constant for unsigned operators. Then,

Filter Area (LUTs)
New std(KCM) std min(std) %

LFIR3 82 184 129 129 57
HFIR3 75 207 116 116 55
LFIR5 123 240 381 240 95
HFIR5 149 383 247 247 66
LFIR8 168 269 431 269 60
HFIR8 178 219 369 219 23

LFIR10 153 488 312 312 104
HFIR10 233 569 299 299 28

Filter Delay (ns)
New std(KCM) std min (std) speedup

LFIR3 4.694 6.695 6.648 6.648 1.42
HFIR3 5.953 8.752 6.715 6.715 1.13
LFIR5 7.728 8.67 9.859 8.67 1.12
HFIR5 7.716 10.64 8.597 8.597 1.11
LFIR8 8.592 11.692 11.7 11.692 1.36
HFIR8 8.698 9.693 12.268 9.693 1.11

LFIR10 10.153 12.235 11.546 11.546 1.14
HFIR10 10.888 12.693 11.598 11.598 1.07

TABLE II
IMPLEMENTATION RESULTS

a conversion from signed to unsigned number is required
to take advantage of the optimization due to constant
coefficients. This conversion may introduced a cost which
overcome the advantage of use multipliers to a constant.
Thus, the overall results depends on the constant value itself
and the sizes of the operands. For this reason, we have
implemented the two versions, i.e. using standard multipli-
ers logic and using canonical signed digit multiplier with
conversion. Since the conversion between unsigned and
signed numbers is very easy for the proposed arithmetic,
the multiplier to a constant version is always better for our
proposal. However, it depends on the case for the truncation
version and both results are shown.

VI. CONCLUSION

A new family of arithmetic operators to optimize the
implementation of circuits for digital signal processing
has been presented. They are based on the use of a new
fixed-point format for real numbers, which allow perform-
ing round to the nearest in a very simple way. Using
rounding instead of truncation, as it is generally do it,
allows reducing the overall bit-width of the DSP circuit
when performing word-length optimization for a given error
threshold. In contrast, arithmetic operations using the new
format may require to add and constant extra-bit to the
operands. However, the benefits of using the new format
clearly outperform the cost of this extra-bit, as it has been
demonstrate using FIR filter examples.

REFERENCES

[1] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[2] Y. C. Lim, Y. J. Yu, K. L. Teo, and T. Saramaki, “Frm-based fir filters
with optimum finite word-length performance,” Signal Processing,
IEEE Transactions on, vol. 55, no. 6, pp. 2914–2924, June 2007.

[3] G. Caffarena, G. Constantinides, P. Cheung, C. Carreras, and O. Nieto-
Taladriz, “Optimal combined word-length allocation and architectural
synthesis of digital signal processing circuits,” Circuits and Systems
II: Express Briefs, IEEE Transactions on, vol. 53, no. 5, pp. 339–343,
May 2006.

[4] O. Sarbishei, K. Radecka, and Z. Zilic, “Analytical optimization
of bit-widths in fixed-point lti systems,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 31, no. 3,
pp. 343–355, March 2012.

[5] S. Vakili, J. Langlois, and G. Bois, “Enhanced precision analysis
for accuracy-aware bit-width optimization using affine arithmetic,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 32, no. 12, pp. 1853–1865, Dec 2013.

[6] D. Menard, D. Novo, R. Rocher, F. Catthoor, and O. Sentiey, “Quan-
tization mode opportunities in fixed-point system design,” 2010, pp.
542–546.

[7] K. Han and B. L. Evans. (2006) Floating-point
to fixed-point transformation toolbox. [Online]. Available:
http://users.ece.utexas.edu/ bevans/projects/wordlength/converter/

