Lego© Mindstorms NXT and Q-Learning: a Teaching Approach for Robotics in Engineering

Ángel Martínez-Tenor, Juan-Antonio Fernández-Madrigal and Ana Cruz-Martín

Systems Engineering and Automation, University of Málaga (Spain), Andalucía Tech

PROBLEM STATEMENT

Robotics: Common subject in Engineering degrees

Cognitive Robotics: Now covered in Postgraduate programs

Reinforcement Learning (RL): Decision-Making Machine learning

Q-learning algorithm: Simple, effective and well-known RL algorithm

Agent **Environment** action reward new state RL does not require a model of the environment,

overcoming this limitation by making observations

GOAL:

Simulated robots

Embodied agent

- Obstacle avoidance
- Line follower
- Walking
- Phototactic behaviour

Q-learning pseudocode

Q-learning algorithm parameters

Policy % Current Policy

V(s) update()

alpha update()

Policy(s) update()

% Q-matrix

% Value function

V = 0, Q = 0, Policy = INITIAL POLICY

s = sp % update current state

s = Observe state() % sensors-based observation

a = Exploitation exploration strategy()

robot execute action(a), wait(STEP TIME)

sp = observe_state(), R = obtain_Reward()

Q(s,a) = (1-alpha)*Q(s,a) + alpha*(R+GAMMA*V(sp))

for step = 1:N STEPS %---- Main loop ------

N STEPS, STEP TIME

% Initial state

N_STATES, N_ACTIONS, INITIAL_POLICY

% Learning rate parameter

% Discount rate parameter

Develop a teaching framework integrating:

- Q-learning
- Practical activities
- Real Mobile Robots

Allowing the students to get a better understanding of the robotic learning problem

APPROACH

Materials

LEGO MINDSTORMS NXT **Education Base Set**

Offline Q-learning Template Octave / Matlab

Offline

Assembly

Modeling

Simulation

Parameters Tuning

Design & Simulation

Developed work

Q-learning on robot

Robot implementation

CPU limitations studies: Overflow & Precision losses

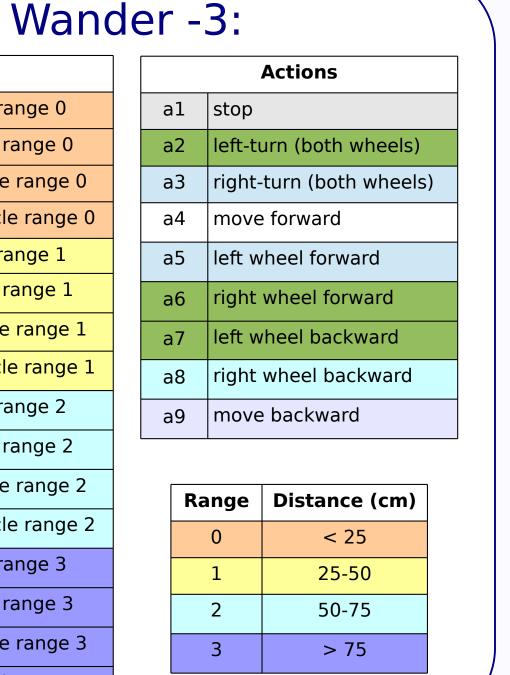
Robot vs Simulation analysis

Parameters Optimization

70 cm

NXT Robot Q-learning NXC (main & NXT io library)

Optimal parameters


Parameter	Value
Robot Speed	50 (of [0,100])
Step Time	250 ms
Number of Steps	2000
Exploration	e-greedy 30%
Discount rate γ	0.9
Learning rate α	0.02
FP	10000 (4 decimals)
Q-matrix cell size	4 bytes (long)

Obstacle-avoidance wandering tasks

move forward Wander -2: **Evolved from Wander-1** s1 | no contact & obstacle near s5 | no contact & obstacle far

Scenarios

RESULTS

Q-learning method for a NXT mobile robot

Simple

Applicable

Stable

All learning tasks were performed successfully leading to an optimal or pseudo-optimal policy

Benefits for students

Simulation templates

Allow a thorough analysis of the Q-learning parameters

Real Robot templates Easily adapted to different tasks with minimal changes

Get a complete vision of the learning problem filling the gap between theory and practice

