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Abstract—The SNR associated with the different users in large-
scale MIMO systems depends on the magnitude of the eigenvalues
of the channel power matrix HHH. While it is known that the
spread between the best and worst channels is reduced when the
number of antennas N at the BS grows, there is little known
about how these channels change due to the user mobility. Do all
parallel channels change at the same rate, or conversely is their
dynamic behavior different for the best and worst channels? We
evaluate the interplay between the number of BS antennas N
and the number of (single-antenna) users K in MIMO systems,
and investigate the effect of letting N grow on the dynamics of
the best and worst channels in this multiuser set-up.

I. INTRODUCTION

In conventional MIMO systems the channel is described as
a random matrix H whose size is determined by the number
of transmit and receive antennas. This technique has been
incorporated in current wireless communication standards such
as LTE or Wi-Fi as a means of increasing the system capacity.

In order to boost the performance of cellular networks to
a much higher level, a new variation of MIMO systems is
being considered [1]: in massive MIMO systems, a cellular
base station (BS) with N antennas serves K single-antenna
user terminals over the same time-frequency interval. If the
number of BS antennas is much larger than the number of
users, the spectral efficiency is dramatically increased.

Just like in conventional MIMO systems, the SNR per
parallel channel depends on the magnitude of the eigenvalues
of the matrix W , HHH; for this reason, the distribution of
these eigenvalues is a well-studied subject [2, 3].

However, wireless communication systems are in general
non-static and hence the stochastic process associated with H
exhibits a variation along different dimensions due to mobility
of users or objects in the propagation environment.

The random process associated with the largest eigenvalue
of W was recently studied in [4], and a similar result can be
obtained for the smallest eigenvalue. Since the expressions for
the joint cdfs obtained in [4] are analytically tractable, they
can be evaluated even for large numbers of BS antennas. Here,
we use this result to study whether the best and worst eigen-
channels have a similar behavior in non-static environments1.

II. SYSTEM MODEL

Let us consider a N × K MIMO system with N > K,
where H ∈ CK×N represents the Rayleigh fading channel
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1We must note that the results here derived correspond to a Gaussian
channel matrix with i.i.d. entries. Even though this assumption does not hold
when the number of transmit antennas is very large, it is usually considered as
a reference case and in some scenarios it is a reasonably good approximation
for the massive linear array case [5].

matrix with i.i.d. entries ∼ CN
(
0, σ2

)
. Then, W ∈ CK×K

follows a complex central Wishart distribution, i.e. W ∼
CW

(
t, σ2IK ,0K

)
, where IK and 0K are the identity and the

null K ×K matrices, respectively.
We consider two realizations of the random process W at

two different instants, i.e. W(t) , W1 and W(t+ τ) , W2.
The diagonal matrices formed by the ordered eigenvalues of
W1 and W2 are then given by Λ , diag{λ1, ..., λK} and
Φ , diag{ϕ1, ..., ϕK}, where λn and ϕn represent the nth

eigenvalue of the W1 and W2 matrices, respectively.
The correlation between the underlying Gaussian processes

H(t) , H1 and H(t + τ) , H2 corresponding to the two
realizations of the channel matrix can be modelled as

H2 = ρH1 +
√

1− ρ2Ξ, (1)

where ρ is the correlation coefficient between the {i, j} entries
of H1 and H2, and Ξ is an auxiliary K×N matrix with i.i.d
entries ∼ CN

(
0, σ2

)
, which is independent of H1.

In [4], the joint cdf Fλ1,ϕ1
(λ, ϕ) , Pr{λ1 < λ,ϕ1 < ϕ}

and the joint cdf FλK ,ϕK
(λ, ϕ) , Pr{λK < λ,ϕK < ϕ}

that characterize the random processes λ1(t) and λK(t) were
derived. Now, we use these results to study the dynamic
behavior of these parallel channels in terms of N and K.

III. PERFORMANCE METRIC

The joint distributions characterized in [4] incorporate the
dynamics of the CW random process through the correlation
coefficient ρ of the underlying Gaussian channel matrix,
according to (1). However, the relation between ρ and the cor-
relation coefficient ρi of each one of the ordered eigenvalues
of the CW matrix is not fully understood. Analytical results for
this correlation coefficient are hard to obtain, as they require
a two-fold numerical integration over the joint distribution of
the eigenvalue of interest [4, 6, 7].

Observing the influence of ρ in the joint distributions, we
see that if ρ = 1 then the two samples of the random process
are identical, i.e. Fλ,φ(γ, γ)|ρ=1 = Fλ(γ). On the contrary
if ρ = 0 then the two samples are independent and hence
Fλ,φ(γ, γ)|ρ=0 = Fλ(γ, γ)

2. Thus, when the joint distributions
are evaluated in γ, the bivariate cdf takes values in the range
[Fλ(γ)

2, Fλ(γ)].
Using some adequate normalization factors, we define the

outage correlation coefficient (OCC) ρo(γ, ρ) as

ρo(γ, ρ) ,
Fλ,φ(γ, γ)|ρ − Fλ(γ)2
Fλ(γ) (1− Fλ(γ))

. (2)

The OCC provides a similar information than the bivariate
cdf, while having some practical advantages that are easy
to show: It has dimensions of correlation coefficient, i.e.
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ρo(γ, ρ) ∈ [0, 1] ∀γ, ρ; it has the same zeros as ρ, i.e.
ρo(γ, 0) = 0 ∀γ, and if ρ = 1, then ρo(γ, 1) = 1,∀γ.

IV. NUMERICAL RESULTS AND DISCUSSION

We are interested in understanding how the dynamics of
MIMO parallel channels are affected by N and K. In Fig. 1,
we represent the outage correlation coefficient ρo(γ, T ) as a
function the product T = fd · τ for different numbers of BS
antennas N and considering K = 2, where fd is the Dopler
frequency. This case is very simple, as it considers only two
channels; however, it will prove to be very insightful to study
the impact of using more BS antennas in the dynamics of
MIMO parallel channels. We assume a value of γ that yields a
outage probability of 10−2, and a correlation profile according
to Clarke’s model, i.e. ρ = J0(2πfdτ).
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Fig. 1. OCC vs fd · τ for different numbers of BS antennas and K = 2.

We see how the OCC of the best eigenchannel is barely
affected by using more BS antennas; in fact, the value of T that
achieves a OCC ρo = 0.1 is in the range ≈ [0.14−0.16] for the
investigated configurations, which corresponds to |ρ|2 ≈ 0.5.
Conversely, we observe how the dynamic behavior of the worst
eigenchannel is dramatically affected by the number of BS
antennas. In this case, the value ρo = 0.1 is attained for a wider
set of values of T , i.e. T ≈ [0.05−0.15]. Hence, this indicates
that the worst channel decorrelates faster as N is reduced.
Indeed, the best eigenchannel takes longer to decorrelate as
N grows, but this difference is comparatively smaller.

Interestingly, the worst channel rapidly tends to exhibit a
similar dynamic behavior than the best eigenchannel as N/K
is increased. In fact, we observe how the best channel in the
2×2 case and the worst channel in the 8×2 case have similar
OCC. When 16 BS antennas are used, the gap between the
best and worst channels is small, and the assumption that both
channels present a similar dynamic behavior is reasonable.

Fig. 2 shows the OCC when considering K = 4, and the
same set of parameters as in the previous figure. Now, we
observe that the dynamics of the best channel are even more

stable, as the OCC is approximately constant with N . On the
other hand, we see how increasing the number of BS antennas
and users to 4 causes the worst channel to have a much faster
rate of change. As the number of BS antennas is increased,
we observe again how the worst channel tends to become
more stable. We have observed that when the number of BS
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Fig. 2. OCC vs fd · τ for different numbers of BS antennas and K = 4.

antennas and the number of users is similar, the worst channel
has a much faster variation than the best channel. While the
dynamics of the latter are barely affected by using more BS
antennas, we notice that the worst channel tends to have a
more stable behavior as N is increased. One of the conclusions
extracted in [5] stated that for N ∼ 10 · K, the spread
between the best and worst channels is reduced and a stable
performance can be ensured even in non favorable propagation
conditions. Here, our results suggest that this performance can
be also sustained in time with a similar behavior for all K
users, i.e. user channel variation in massive MIMO systems
seems similar for users with the same mobility.
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