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Abstract—Signatures have been proposed in transactional
memory systems to represent read and write sets and to decouple
transaction conflict detection from private caches or to accelerate
it. Generally, signatures are implemented as Bloom filters that
allow unbounded read/write sets to be summarized in bounded
space at the cost of false conflict detection. It is known that this
behavior has great impact in parallel performance.

In this work, a scalability study of state-of-the-art signa-
ture designs is presented, for different orthogonal transactional
characteristics, including contention, length, concurrency and
spatial locality. This study was accomplished using the Stanford
EigenBench benchmark. This benchmark was modified to sup-
port spatial locality analysis using a Zipf address distribution.
Experimental evaluation on a hardware transactional memory
simulator shows the impact of those parameters in the behavior
of state-of-the-art signatures.

Keywords—Hardware transactional memory, Bloom filter, sig-
natures, conflict detection, locality, multiset, asymmetric

I. INTRODUCTION

Transactional Memory (TM) [1] has emerged as an alterna-
tive to the conventional multithread programming to ease the
writing of concurrent programs. TM introduces the concept
of transaction that allows to separate atomicity and isolation
semantics from implementation. In order to implement the
transaction abstraction effectively, the TM system has to keep
track of the data read and written by the transactions running
in the system, for the system to accordingly detect and act on
a possible conflict between them.

Signatures have been proposed recently to store the ad-
dresses of such memory reads and writes to decouple trans-
action conflict detection from private caches or to accelerate
it. Basically, signatures are implemented as Bloom filters [2],
structures that use fixed space to summarize an unbounded
amount of read/write memory addresses. The price of this
implementation is that there is a possibility of detecting false
conflicts, that is, non-existing conflicts that can have a great
impact in parallel performance.

In this work, a scalability study of state-of-the-art signature
designs is presented, for different orthogonal transactional
characteristics, including contention, length, concurrency and
spatial locality. This study was accomplished using the Stan-
ford EigenBench benchmark, a microbenchmark that can emu-
late a set of orthogonal application characteristics. We modified
the benchmark to support spatial locality analysis using a Zipf
address distribution.

The experimental evaluation was carried out in a hard-
ware transactional memory (HTM) simulator where we im-
plemented the state-of-the-art enhanced signature schemes that
were tested with a fixed signature size throughout the different
application characteristics. Results show that enhanced sig-
natures improve the overall performance of the system and
can be thought of a way to reduce space requirements as
well. However, enhanced and conventional signatures converge
when transactions are very large or contention in the TM
system is too high. Conversely, enhanced signatures scale
better than conventional ones when we increase concurrency
in the system. Other factors like conflict detection granularity
and spatial locality improve the performance of signatures.

The remainder of the paper is organized as follows. Next
section discusses a background on signatures describing the
main signature schemes analyzed in this work. Section III
describes the EigenBench benchmark and the modifications we
have included. Section IV shows the experimental evaluation
and all the results obtained with the simulator. Finally, we draw
the conclusions in Section V.

II. BACKGROUND

Ceze et al. [3] proposed signatures as a compact way
of representing the read set (RS) and the write set (WS)
of transactions by means of Bloom filters [2], a time and
space-efficient hash structure. Since then, signatures have been
broadly adopted by several software and hardware TM systems
to detach conflict detection from caches or accelerate conflict
detection [4], [5].

Signatures solve certain constraints associated to caches
in HTM. Modifying caches to track transactional information
poses problems on virtualization, since transactions are limited
to cache sizes, scheduling time-slice (quantum), migration
problems,... Also, cache memories are critical fine-tuned struc-
tures that should not be modified by including additional
hardware.

Bloom filters, also known as true or regular Bloom filters,
are implemented as a k-ported SRAM, with k being the
number of hash functions and the SRAM implementing a bit
vector. Sanchez et al. [6] proposed the parallel Bloom filter
as an alternative hardware-efficient implementation to regular
Bloom filters. The parallel filter consists of k 1-ported SRAMs,
and it yields the similar false positive rate.

Since the work of Sanchez et al., several works have
been proposed to deal with false positives and to enhance
signature performance. Locality-sensitive signatures (LS-Sig)
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are proposed in [7] to exploit memory reference locality and
reduce the probability of false conflicts. The proposal defines
new maps for hash functions to reduce the number of bits
inserted in the filter (occupancy) for those addresses with
spatial locality. That is, nearby memory locations share some
bits of the Bloom filter. They define several locality-sensitive
hash functions with special interest in those defined piecewise,
so-called (r, δP )-LS, where the subfilters in the parallel Bloom
filter harness locality at different granularity, with a maximum
value of r. Its implementation does not require extra hardware.

Multiset and reconfigurable asymmetric signatures [8] ad-
dress the fact that transactions frequently exhibit read and
write sets of uneven cardinality. Wheras conventional parallel
signatures devote same-sized filters to each set, multiset (MS)
ones comprise a single Bloom filter to track both RS and
WS. On the other hand, reconfigurable asymmetric (ASYM)
signatures can be configured to have a subfilters for the RS
and 2k−a subfilters for the WS. The multiset signature is also
combined with hash sharing, where s subfilters share the same
has function and k− s still have separate RS and WS hashes.

Choi and Draper propose Unified signatures [9], that are
the same as MS s = k signatures. However, they propose aug-
menting the signature with an extra register to filter out read-
read dependencies, since they share all hash functions, which
unables to distinguish between read and written locations. The
same helper register effect is achieve with multiset signatures
by setting s = k − 1. Both Unified and MS signatures can be
conbined with LS-Sig to glean more performance gain.

III. THE EIGENBENCH BENCHMARK

EigenBench is a simple algorithm to generate random
memory access patterns. The pseudocode of its core is shown
in Table I. There are two global arrays: a hot array which is
shared between all threads and accessed transactionally; and
a mild array, which is also accessed within a transaction, but
each thread works on its own array partition, so accesses will
not cause conflicts. Sizes of the arrays, N_HOT and N_MILD,
are configurable parameters of the application, as well as the
arguments of the test_core function.

The core transaction, lines 8–25, performs a set of read
and write memory accesses to the global arrays. Specifi-
cally, total is the number of accesses that are executed
per transaction. The total variable, in line 5, results of
the summation of R_HOT, W_HOT, R_MILD and W_MILD
application parameters, which hold the number of read and
write actions to be performed on the hot and mild arrays.
Function rand_action, lines 10 and 29, randomly chooses
between reading or writing the arrays, and decrements the
variable corresponding to the action chosen. Such variables
are previously instantiated with the application parameters (see
line 7). Then, depending on the action, the transaction reads
or writes a random location of one array (lines 11–22). The
rand_index function calculates the random location index
within the limits of the chosen array. If application parameter
lct is not zero, then an already accessed index is randomly
chosen from the history buffer, a local array that holds the last
accessed array location indexes, with lct probability. Finally,
once the transaction has committed, EigenBench performs
R_OUT + W_OUT operations outside the transaction before

executing the next transaction. A total of loops transactions
are executed per thread.

A. Modifications to EigenBench

We have modified EigenBench to adapt it to the simulation
environment described in Section IV-A, and to simulate spatial
locality of reference.

EigenBench is released to work with TL2 [10], an STM
system where transactional accesses must be explicitly an-
notated. The TM_READ and TM_WRITE instructions showed
in Table I are used to do so. Hence, other non-annotated
instructions are not tracked by the STM system. However, we
use an implicit HTM system where all instructions enclosed by
a transaction are implicitly taken as transactional. Then, calls to
random function inside rand_action and rand_index
functions are tracked by the transactional system provoking the
serialization of transactions. To solve it, we used a Mersenne
twister pseudorandom generator per thread which can be
found in the library of the STAMP bencharmk suite [11].
Furthermore, to keep the TM system from tracking those
implicit accesses we use escape actions [12].

EigenBench, as is, generates random memory traces that
can be biased by the lct parameter to introduce temporal
locality of reference with a given probability. We have mod-
ified the benchmark to include spatial locality of reference.
We have defined the parameter lcs as the probability that an
access is nearby located to a preceding access. For the spatial
locality distribution we have used the notion of random walk
introduced by Thiébaut et al. [13]. The sequential accesses of
the program to memory can be modeled as a random walk
through a one-dimensional integer array. This integer array
is main memory, the walker is EigenBench, and the jumps
correspond to the gaps between consecutive accesses. The
length of each jump is a sample value of the random variable
X with the following probability distribution:

Pr[X > u] =
(u0

u

)θ
,

where u > 0, and u0 and θ are constants. The parameter
θ describes the spatial locality of the random walk. As θ
increases, the walk gets more locally distributed. We have
chosen θ = u0 = 1, so that the random walk is governed
by the simplest form of the Zipf distribution [14], where the
first most common jump is of length u = 1, the second jump
(u = 2) occurs 1/2 as often as the first, the third most common
jump (u = 3) occurs 1/3 as often as the first and so on.

Table II shows the pseudocode of the modification to
include the locality random walk. We have limited the jumps to
a length of sixteen. Thus, jumps of length 1 have a probability
of 0.3, while the probability of jumps of length 2 is 0.15,
0.1 for length 3, and so forth. To get such a Zipf distribution
from a random distribution that equiprobably yields numbers
between 0 and 1023, we have defined an array, in lines 2–3,
with the boundaries of the intervals for each jump following
the probabilities above. If the random number, in line 8, is
lower than the first interval boundary, i.e. rand ∈ [0, 303),
then the jump is of length 1. If rand ∈ [303, 454), the jump
is of length 2, and so on. The length of the jump is calculated
in lines 10–11. At the end of the for loop, the variable jump
holds the length of the jump to be performed, so the following



TABLE I: Pseudocode of the EigenBench core function.

1 global long array_hot[N_HOT];
2 global long array_mild[N_MILD];
3 void test_core(tid, loops, lct, R_HOT, W_HOT, R_MILD, W_MILD, R_OUT, W_OUT) {
4 long val=0;
5 long total = W_HOT + W_MILD + R_HOT + R_MILD;
6 for (i=0; i<loops; i++) {
7 (r_hot, w_hot, r_mild, w_mild) = (R_HOT, W_HOT, R_HOT, W_MILD);
8 BEGIN_TM();
9 for (j=0; j<total ; j++) {
10 switch(rand_action(r_hot, w_hot, r_mild, w_mild)) {
11 case READ_HOT:
12 index = rand_index(tid, lct, array_hot);
13 val += TM_READ(array_hot[index]);
14 case WRITE_HOT:
15 index = rand_index(tid, lct, array_hot);
16 TM_WRITE(array_hot[index], val);
17 case READ_MILD:
18 index = rand_index(tid, lct, array_mild);
19 val += TM_READ(array_mild[index]);
20 case WRITE_MILD:
21 index = rand_index(tid, lct, array_mild);
22 TM_WRITE(array_mild[index], val);
23 }
24 }
25 END_TM();
26 val += local_ops(R_OUT, W_OUT, val, tid);
27 }
28 }
29 action rand_action(r_hot, w_hot, r_mild, w_mild) {
30 // With uniform random probability based on r_hot, w_hot, r_mild, w_mild
31 // randomly choose one among: READ_HOT, WRITE_HOT, READ_MILD, WRITE_MILD.
32 // Then, decrease corresponding variable (r_hot, r_mild,...) by one.
33 }
34 long rand_index(tid, lct, array) {
35 // With lct probability, choose a saved index from the history buffer, or
36 // randomly choose an index from range [0, N_HOT-1] or [tid*N_MILD,
37 // (tid+1)*N_MILD-1] and save it to the history buffer.
38 }
39 long local_ops(r_out, w_out, val, tid) {
40 // Perform r_out reads and w_out writes on a private array in random order.
41 }

TABLE II: Pseudocode of the function that generates the locality random walk.

1 long history_buffer[N_HB];
2 int zipf = {303, 454, 555, 631, 692, 742, 785, 823, 857, 887, 915, 940, 963,
3 985, 1005, 1024};
4 long rand_index(tid, lct, lcs, array) {
5 ... // Original code
6 if(// generate a locality random walk with probability lct) {
7 int sign = random([-1, 1]); // The jump can be positive or negative
8 int rand = random([0 1023]); // A random number between 0 and 1023
9 // If rand is in [0, 303) the jump is 1. If in [303, 454) the jump is 2, ...
10 for(jump=1; jump<=16; jump++)
11 if(rand < zipf[jump-1]) break;
12 addr = top(history_buffer); // Get the last accessed location
13 x = (addr+sign*jump); // Perform the jump
14 push(hist, x); // Insert the new accessed location in the history buffer
15 return x;
16 } }

lines get the last accessed location from the history buffer,
and the jump is added to it, thus forming the new location to
be accessed, which is inserted in the history buffer and then
returned. Note that the jump can be randomly added to or
subtracted from the last address accessed (lines 7 and 13).

B. Orthogonal TM Characteristics

EigenBench can be used to simulate a given execution
pattern that exhibits a series of orthogonal TM characteristics.
Hong et al. [15] define a set of eigen-characteristics that are or-
thogonal each other, but they can be used combined to express

more conventional characteristics. The eigen-characteristics
are the following: concurrency, transaction length, contention,
working-set size, pollution, temporal locality, predominance
and density. We have evaluated three of them:

• Concurrency: It defines the number of concurrently
running threads of the application.

• Transaction Length: Defined as the number of reads
and writes inside a transaction, it can be worked out
by adding R_HOT, W_HOT, R_MILD and W_MILD.

• Contention: The probability of conflict of a transac-



tion. See Section IV-B.

Spatial locality is added to the eigen-characteristics above, and
its effect is also discussed.

IV. SCALABILITY ANALYSIS

A. Methodology

We use Simics [16], a full system execution-driven simula-
tor, to make the scalability analysis. Simics simulates the Sun
Fire server brand and the SPARC architecture and it is able to
run an unmodified copy of a Solaris operating system. Solaris
10 was installed in the simulated machine.

A 16-core CMP system was considered for simulation.
Each in-order single-issue core has a 32KB, 4-way, 64B block
private L1 I and D cache. L2 cache is unified and shared, with
a capacity of 8MB organized in 16 banks, 8 ways and 64B
blocks. Cache coherence is based on the MESI protocol with
an on-chip directory holding a bit vector of sharers per block.

As regards the TM system, we use the GEMS module [17],
which is provided by the Wisconsin Multifacet Project as
an open-source module for Simics. GEMS’s Ruby module
implements the LogTM-SE HTM [5] and also includes a
detailed timing model for the memory system. Ruby was
modified to include all enhanced signature schemes analyzed
in this work: (3, δP )-LS-Sig, (5, δP )-LS-Sig, MS s = 3 L2
Sig, ASYM a = 6 and a = 5 signatures. We compare their
performance with that of conventional parallel signatures, and
perfect signatures. The latter do not yield false positives. We
set the signature size to 8Kbit, 4Kbit for the read set and 4Kbit
for the write set1. All filters used 4 hash functions of the H3
family and the same H3 matrices of Ruby. We used 15 out of
16 cores in the simulated system. The remaining processor is
left to the OS so that it does not interrupt simulations.

Finally, Ruby adds pseudorandom delays to the latency
of memory accesses to deal with variability in simulation
experiments. Therefore, multiple runs of each experiment were
done to obtain confident error bars [18].

B. Contention Results

Contention is defined in [15] as the probability of conflict
of a transaction, and an expected value is proposed:

Pconf = 1−
(
1−min

{
1,

(NTH − 1)W ′
HOT

NHOT

})W ′
HOT+R′

HOT

.

(1)
Expression 1 is deduced as follows. Let W ′

HOT and R′
HOT be

the number of accesses to different addresses in the hot array.
R′

HOT can be defined as

R′
HOT =

{
1 if lct = 1
d(1− lct)RHOT e otherwise ,

and W ′
HOT is defined likewise. If we have NTH threads

and the hot array length is NHOT , then the probability that
an access in a transaction causes a conflict is (NTH −
1)W ′

HOT /NHOT , which stands for the number of writes
performed by the other transactions divided by the size of the

1Sanchez et al. [6] perform a study of signatures in real systems, where
they use such sizing values.

array. It is supposed that NHOT � W ′
HOT . Then, 1−((NTH−

1)W ′
HOT /NHOT ) is the probability that an access does not

cause a conflict, which happens W ′
HOT + R′

HOT times. Its
complement is the conflict probability of Expression 1.

Table III shows the parameters of EigenBench for the
analysis of contention. Contention ranges from 0.03 to 0.97
by varying the size of the hot array, NHOT , from 1K to
128K long elements. We test two configurations. One with
short transactions and another with long transactions, which
in turn is tested with different values of spatial locality, lcs ∈
{0, 0.25, 0.5, 0.75}. Predominance of transactional code is kept
at 80% with the given ROUT and WOUT values. Each thread of
the parallel version executes loops = 128 transactions, while
the serial version executes 128 ∗ 15 transactions.

Figure 1 shows the results obtained from the simulator for
the contention experiments. The first graph depicts the results
of the parameter configuration that defines short transactions.
We can see that the unprotected version of the code do not
achieve the maximum speedup available, which is 15. Instead,
it is 11× as fast as the serial version. The problem lies in the
implementation of EigenBench, as the mild array is of size
NMILD∗NTH , so the serial version works with a mild array of
size NMILD, whereas in the concurrent version, the mild array
is 15 times larger. Then, the cache hierarchy makes the serial
version goes faster than the parallel one. Also, the network
traffic increases since the hot array is shared between 15 cores,
and this gets worse as contention is higher. The graph also
shows that all signature variants perform the same as perfect
signatures when transactions are short and signature size is
large enough (8Kbit). Notice that enhanced schemes do not
harm the performance of short transactions.

Next experiments use long transactions, and signature
length is kept at 4Kbit per data set. Table III shows the parame-
ters we used. RMILD and WMILD changed to 200. The rest of
parameters are the same except for ROUT and WOUT that were
modified to maintain 80% of predominance. The second graph
in Figure 1 shows the results obtained without spatial locality.
The speedup now drops significantly due to the aforementioned
issues. However, enhanced signatures perform better than the
parallel signature version since, although the accesses are
randomly distributed, some of them are arbitrarily nearby
enough to take advantage of locality-sensitive signatures. The
remaining plots in Figure 1 show results in which spatial
locality is set to 25%, 50% and 75% respectively. The speedup
of all versions improves as locality increases, as the cache
hierarchy is better harnessed. Also, the system works at 64B
block granularity, so certain accesses nearby each other will be
in the same cache memory block as the arrays comprise long
elements of 4B each. Thereby, spatial locality implies some
amount of temporal locality which improves the performance.
In any case, enhanced signature proposals perform similar to
or better than the parallel signature in the explored cases, and
they practically match the performance of perfect signatures
when locality is 75% in the last graph of Figure 1. Finally,
note that too much contention can lead the HTM system to
perform worse than the serial version.

C. Concurrency Results

In this section we study the scalability of signatures in
terms of concurrency. The parameters in the “Concurrency”



TABLE III: Parameters of EigenBench for the experiments.

Contention Concurrency Xact Length

Param Xact Length: Xact Length: Non-local Local Sym Asym Transactional Unprotected
Short Long Parallel Input Serial Input

NTH 15 15 [1, 15] [1, 15] 15 15 15 1
loops 128 128 [1920, 128] [1920, 128] 128 128 128 1920
NHOT [1K, 128K] [1K, 128K] 128K 128K 128K 128K 0 0
NMILD 1M 1M 1M 1M 1M 1M 8M 120M
RHOT 45 45 45 45 0 0 0 0
WHOT 5 5 5 5 0 0 0 0
RMILD 45 200 200 200 [20, 320] [30, 480] [10, 100] [10, 100]
WMILD 5 200 200 200 [20, 320] [10, 160] [10, 100] [10, 100]
ROUT 18 49 49 49 0 0 0 0
WOUT 2 41 41 41 0 0 0 0
lct 0 0 0 0 0 0 0 0
lcs 0 0, 0.25, 0.5, 0.75 0 0.5 0.25 0.25 0, 0.25, 0.5, 0.75 0, 0.25, 0.5, 0.75
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Fig. 1: Contention results for 15 threads.

columns of Table III were used to perform the experiments,
and they define large transactions of 550 accesses spread
out between reads and writes, with a small fraction over the
hot array. These parameters yield a 3% of real contention,
and the expected contention due to signature false positives
should be lower, since we are dealing with 8Kbit signatures
and transactions of 550 accesses. From the equation of false
positive probability for a Bloom filter [19]:

pFP(M,n, k) =

(
1−

(
1− 1

M

)nk
)k

(2)

where M is the signature size, n the number of insertions
and k the number of hash functions, we get about 0.2% false
positives per filter.

Left graph in Figure 2 shows the results obtained in the
absence of spatial locality. The speedup of Unprotected do not

get to 15 because the mild array is of size NMILD ∗NTH , so
the serial version works with a mild array of size NMILD that
is better managed by the cache hierarchy. We have measured
an increasing speedup of (5, δP )-LS-Sig with respect to the
conventional parallel signature of 1, 1.02, 1.08, 1.23 and 1.33,
for 1, 2, 4, 8 and 15 threads respectively. As for the false
positive percentage, we have measured the following values
for 1 to 15 threads: (0.04, 0.02), (0.6, 0.6), (2.0, 1.7), (3.6,
2.8) and (5.1, 3.5). These values are pairs (RS filter, WS
filter) for the percentage of false positives of the conventional
parallel signature. We can see that percentages are low when
concurrency is low, because there are few checks to the
signatures. However, as concurrency increases, the percentage
of false positives rises promptly. For (5, δP )-LS-Sig the false
positive percentages are lower: (0.06, 0.04), (0.5, 0.4), (1.6,
1.2), (3.0, 2.0) and (4.3, 2.7).

The results depicted in the right graph of Figure 2 include
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Fig. 2: Concurrency results for 15 threads.

the locality parameter set to 50%. Now, we obtain better re-
sults when comparing (5, δP )-LS-Sig to parallel conventional
signatures. In this case, we get a relative speedup of 1, 1.02,
1.08, 1.23 and 1.41. We can see that the enhanced signature
proposals scale better than conventional parallel signatures.
However, the more cores are available, the worse the effect
of false conflicts with imperfect signatures, as there are more
signature checks and the probability of getting a false positive
increases. So, even with enhanced signatures, we have to keep
the rate of false positives low.

D. Transaction Length Results

To study the effect of transaction length we used the
parameters showed in Table III. We have two configurations.
In the first one, which we have called symmetric, transactions
read the same number of locations than they write, while
in the second one, asymmetric, there are three times more
reads than writes. We have set RHOT and WHOT to zero
in order to have no contention. Also, predominance is 100%
as ROUT = WOUT = 0. Locality has been set to 25%.

Figure 3, on the left, shows the results for the symmetric
configuration parameters in Table III. Maximum speedup is
about 11× the serial for the shortest transaction length of 40
elements. As we discussed in the last section, this is due to
the working set effect. Perfect signatures perform similar to
the unprotected version in this case, as contention is set to
0. However, a small performance drop can be appreciated as
transaction length increases, due to a small fraction of aborts
that are caused by false sharing. The results for imperfect
signatures, the parallel and the enhanced ones, get affected by
false conflicts due to false positives in the filters. The perfor-
mance with parallel signatures drops quickly from transaction
length 160 onwards. Parallel signatures of 4Kbit per set match
the performance of the serial version for transaction length
640. However, the enhanced signature schemes perform better
than parallel signatures, although they exhibit a considerable
performance degradation with respect to perfect signatures
from transaction length 480 onwards.

The right graph in Figure 3 depicts the results obtained for
different transaction lengths and asymmetric data sets. Now,
the read set is three times as large as the write set, as seen
in Table III. We can see that the best results using imperfect
signatures are yielded by MS s = 3 L2 signatures, that can
cope with the data set asymmetry. Reconfigurable asymmetric
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TABLE IV: RS and WS lengths measured by the HTM system
compared to that of EigenBench input parameters. Transaction
length |RS|+ |WS| = |DS|, and RS to WS ratio |RS|

|WS| .

Parameters Measured
|DS| |RS| |WS| |RS|

|WS| |DS| |RS| |WS| |RS|
|WS|

40 30 10 3 79.2 55.2 24.0 2.3
80 60 20 3 138.6 94.8 43.8 2.2
160 120 40 3 243.2 161.3 81.9 2.0
320 240 80 3 391.2 265.0 126.2 2.1
480 360 120 3 531.5 367.4 164.1 2.2
640 480 160 3 671.6 469.5 202.0 2.3

signatures have been also tested, so that the configuration
parameter a is 5 and 6. With a RS to WS ratio of 3, ASYM
a = 6 should achieve the best results. However, performance
is very poor for such a configuration, and ASYM a = 5 gets
better results. This is because of the HTM system, which is
an implicit HTM system where every memory access enclosed
by a transaction is implicitly tracked by the TM system. Reads
and writes to the hot and mild arrays, which are the accesses
that we use to get the transaction length, are not the only
memory accesses within transactions since rand_index,
rand_action, and other control code perform memory
accesses that are tracked by the TM system. Therefore, we
show in Table IV the real RS and WS lengths measured by
the HTM simulator, and the corresponding transaction length
taken from the input parameters of EigenBench. Note that
the transaction length is longer when using an implicit HTM
system. Now, the RS to WS ratio is not three as inferred by
the input parameters. Instead, the ratio is about two, which is
closer to 5

3 , the ratio of ASYM a = 5 filters, than to 6
2 , which

is the ratio of ASYM a = 6 filters. Thus, ASYM a = 5 yields
better results for reconfigurable asymmetric signatures.

Next, we conduct a batch of experiments to see the
relationship between transaction length and signature size, and
we show their iso-speedup curves. We modified EigenBench
to escape implicit accesses that should not be tracked by the
HTM system, as said in Section III-A. Table III summarizes the
input parameters used for the experiments. Every transactional
parallel workload is compared to its corresponding unprotected
serial version, whose input parameters are shown in the column
“Unprotected Serial Input”. Notice that the size of the mild
array, NMILD, is 8M as each of the 15 threads has its private
subarray. Also, the number of loops is divided by 15. Read
and write sets are symmetric and range from 10 to 100 step



TABLE V: Number of transactional accesses issued by Eigen-
Bench versus number of blocks where they are mapped de-
pending on the amount of locality.

EigenBench TM avg |RS|+|WS| (blocks)
|RS|+|WS| lcs=0% lcs=25% lcs=50% lcs=75%

20 20 19 17 13
40 40 37 32 25
60 60 55 47 36
80 80 73 62 47

100 100 91 78 58
120 120 109 93 69
140 140 127 108 80
160 160 145 123 92
180 180 163 139 103
200 200 180 154 114

10. Locality varies from 0 to 0.75.

Figure 5 shows the speedup of conventional parallel sig-
natures as we vary signature size and transaction length. We
can see that using 8K signatures the speedup is maximum,
although Figure 3 shows that increasing transaction size will
end up degrading the performance of such a signature. The
variability introduced by the simulator is the cause for those
irregular iso-speedup curves for 14.5 and 14.8. On the other
hand, small signatures of 256 or 512 bits and large transactions,
greater than 70, can lead to such a degradation that the
transactional system is worse than executing the serial version
of the program. We can see speedups of 0.75 and below.

Spatial locality of reference varies from 0% to 75% and, as
locality increases curves shift to the left to such an extent that
we get an speedup of 14 with 256bit signatures, transactions of
length 20 and 75% of locality, instead of getting a speedup of
11 in the absence of locality. The reason behind this behavior
is that the simulator implements conflict detection at cache
block granularity, specifically, 64B blocks are used, whereas
EigenBench issues 4 byte variable accesses. Then, when there
is no locality, each 4 byte variable is mapped to one block only.
However, when locality is introduced by incrementing the lcs
parameter, several variables happen to be in the same block.
Table V shows the number of variables issued by EigenBench
and the actual measured number of blocks which are tracked
by signatures system. We can see that the greater the locality
the lesser number of blocks and, consequently, the occupancy
of the filters is reduced and so is the number of false positives.

As far as LS-Sig is concerned, Figure 6 shows iso-speedup
plots for (5, δP )-LS-Sig with lcs varying from 25% to 75%.
Now, besides the benefit from locality per se that can be
seen in Figure 5, the LS-Sig is able to extract even more
performance from such a feature. The more locality the more
speedup. Figure 4 shows the relative speedup of LS-Sig over
conventional parallel signatures. The graph corresponds to
lcs=75%, where the maximum speedup gets to 98%.

V. CONCLUSIONS

This work discusses the scalability of state-of-the-art sig-
natures for transactional memory systems. We study their be-
havior when stressing different application characteristics like
contention, concurrency, transaction length and spatial locality.
To that end, we modify and use the Stanford’s EigenBench
benchmark that allows the emulation of a set of orthogonal
application characteristics.
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Fig. 4: Speedup of (5, δP )-LS-Sig over conventional parallel
signatures with lcs equal 75%. Maximum speedup is shown.

Results show that block granularity conflict detection sig-
nificantly enhance performance of signatures in the absence
of real conflicts. However, experiments must be carried out
in order to determine if false conflicts due to block false
sharing can degrade performance to such an extent that the
benefit from block granularity conflict detection is lost. On the
other hand, enhanced signatures (LS, MS) improve the overall
execution and could be thought of a way of getting the same
performance than conventional signatures while either working
at word granularity or reducing hardware requirements.

Another implication that can be drawn from the experi-
ments is that large transactions or small signatures can lead
the TM system to perform worse than serial. For conven-
tional parallel signatures, such a degradation can happen
when transactions are about one fifth the signature size. With
enhanced signatures, the filter can reach higher occupancy
without degradation, but it depends on the amount of local-
ity. Unfortunately, both conventional and enhanced signatures
converge when transactions are very large. Not to mention
that increasing concurrency would increase signature checks
and the probability of false positive as well. A system to stop
insertions into filters that have gone beyond a given threshold
should be explored to try to avoid this situation.

Results also suggest that implicit transactional memory
systems, although easier to program, can harm the performance
of signatures since more transactional data have to be tracked.
Finally, having large filters could be a waste of power when
we have small transactions. A scalable Bloom filter is worth
exploring for these cases.
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