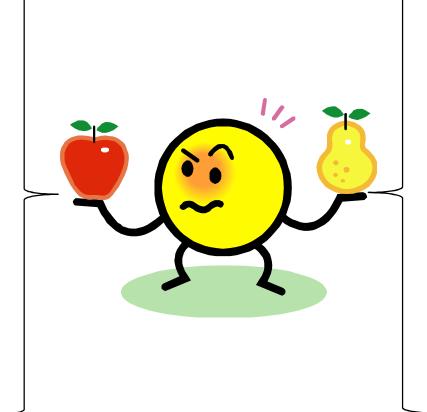
Products and processes with microalgae


F. Gabriel Acién Fernández (<u>facien@ual.es</u>) Dpt. Chemical Engineering, University of Almería, Spain

Malaga, September 26th, 2014

APPLICATIONS OF MICROALGAE

Pure chemicals: Carotenoids Fatty acids Phycobiliproteins Toxins

Biomass Functional foods Aquaculture Animal feeding

Biofuels/biofertilizers Biofertilizers Biodiesel Biogas Bioethanol

Bioremediation Flue gases Wastewater Soils

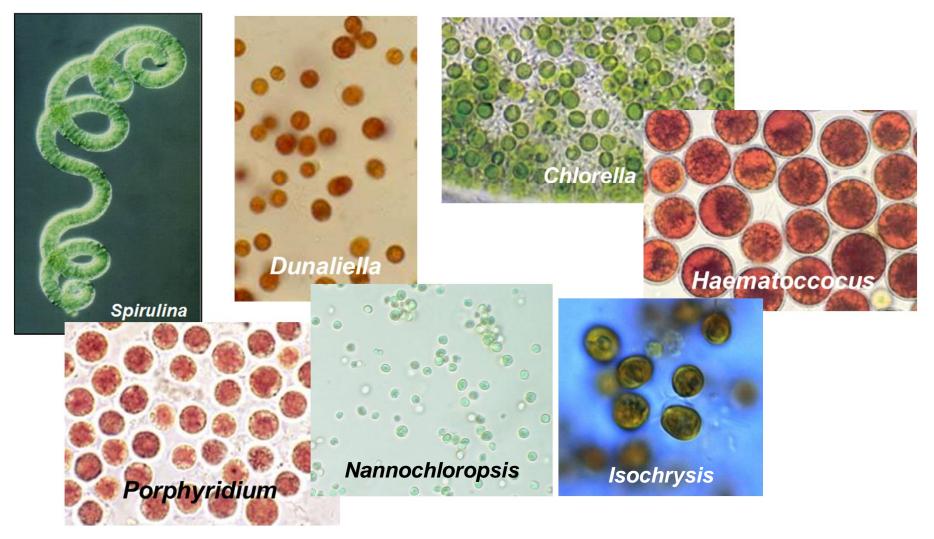
ONLY SOME OF THEM ARE PERFORMED AT REAL SCALE

STILL TECHNICAL AND ECONOMIC BOTTLENECKS EXIST

MARKETS

High value products

	Product	US\$ kg ⁻¹	Market Size US\$ 10
Biomass	health food	15-28	180-200
	functional food	25-52	growing
	feed additive	10-130	fast growing
	aquaculture	50-150	fast growing
	soil conditioners	>10	promising
Coloring substances	astaxanthin	> 3,000	>50
	phycocyanin	> 500	>10
	phycoerythrin	>10,000	> 2
Antioxidants	B-carotene	>750	>25
	superoxide dismutase	>1,000	promising
	tocopherol	30-40	stagnant
	AO-extracts	20-35	12-20
PUFA	ARA		20
	EPA		> 500
	DHA		30
	PUFA extracts	30-80	10
Special products	toxins		1-3
	isotopes		<5


Low value products

Biofuels, biofertilizers, wastewater treatment, etcÅ (Market size?)

INDEX

- 1. PRODUCED STRAINS (APPLICATIONS)
- 2. MICROALGAE BASED PROCESSES
- 3. ENERGY FROM MICROALGAE
- 4. WASTEWATER TREATMENT WITH MICROALGAE

Although thousands species are know, only a few are used commercially

Utilization of consortiums is usually disregarded

PRODUCTION OF Spirulina

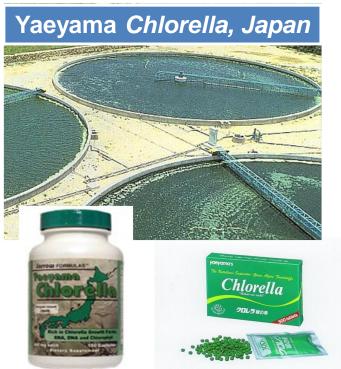
Uses: Foods and functional foods, -linolenic acid, phycocianin, cosmetic, suplement for feeds

Companies: Cyanotech (<u>www.cyanotech.com</u>) (U.S.A); Earthrise Nutritionals (<u>www.earthrise.com</u>) (U.S.A); Panmol/Madaus (<u>www.panmol.com</u>) (Austria); Parry Nutraceuticals (<u>www.murugappa.com</u>) (India); Spirulina Mexicana (Sosa Texcoco) SA (México); Siam Alga Co., Ltd. (Tailandia), Nippon Spirulina Co., Ltd. (Japan), Koor Foods Co., Ltd (Israel), Nan Pao Resins Chemicals Co., Ltd. (Taiwan); Myanmar Spirulina Factory (Myanmar), Blue Continent Co., Ltd (South Africa)

PRODUCTION OF Dunaliella

Uses: Foods and functional foods, - carotene, cosmetic, antioxidant, suplement for feeds

Companies: Nature Beta Technologies Cognis (<u>www.cognis.com</u>) (Australia); Cyanotech (<u>www.cyanotech.com</u>) (U.S.A.); Nikken Sohonsha Corp. (<u>www.chlostanin.co.jp</u>) (Japan); Earthrise Nutritionals (<u>www.earthrise.com</u>) (U.S.A.), Betatene (<u>www.betatene.com.au</u>) (Australia); Inner Mongolia Biological Eng. (China); Nature Beta Technologies (Israel); Parry agro Industries (<u>www.murugappa.com</u>) (India); ABC Biotech Ltd. (India); Tianjin Lantai Biotechnologyd, (China); Western Biotechnology Ltd.(Australia); Aqua Carotene Ltd.(Australia)



PRODUCTION OF Chlorella

Uses: Foods and functional foods, cosmetic, suplement for feeds, aquaculture

Companies: Nikken Sohonsha Corp. (<u>www.chlostanin.co.jp</u>) (Japan), Earthrise Nutritionals (<u>www.earthrise.com</u>) (USA), Ocean Nutrition (<u>www.oceannutrition.com</u>) (Canada), Iqage vert^d (<u>www.agevert.com</u>) (France), Chlorella manufacturing and Co. (Taiwan), Roquette Klötze^d (Germany)

PRODUCTION OF Haematococcus

Uses: Astaxanthin, antioxidant, funtional foods, cosmetic, aquaculture

Companies: Mera Pharmaceuticals (<u>www.aquasearch.com</u>) (U.S.A.); Cyanotech (<u>www.cyanotech.com</u>)^{a,e} (U.S.A.); BioReal (<u>www.bioreal.se</u>) (U.S.A.); Algatech Algaltechnologies (<u>www.algatech.com</u>)(Israel); Fuji Health Science (<u>www.fujichemical.co.jp</u>); Dutch State Mines (<u>http://www.dsm.com</u>), Changsha Organic Herb Inc. (<u>http://www.organicherb.com</u>), Health Sources Industry Co., Ltd (<u>http://www.health-sources.com</u>) (China); Parry agro Industries (<u>www.murugappa.com</u>)(India)

Pigmentos Naturales, Pica, Chile Closed+Open raceway reactors

PRODUCTION OF Chrypthecodinium, Schizochytrium

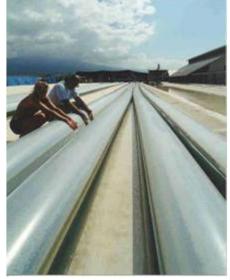
Uses: DHA source, funtional foods, infant formula, pharmacy

Companies: Martek (USA), DSM (Netherland), Csiro (Australia)

PRODUCTION OF Dinoflagellates

Uses: Toxins, pharmacy, standards

Companies: Cifga (Spain)


Specific processes according to the final product

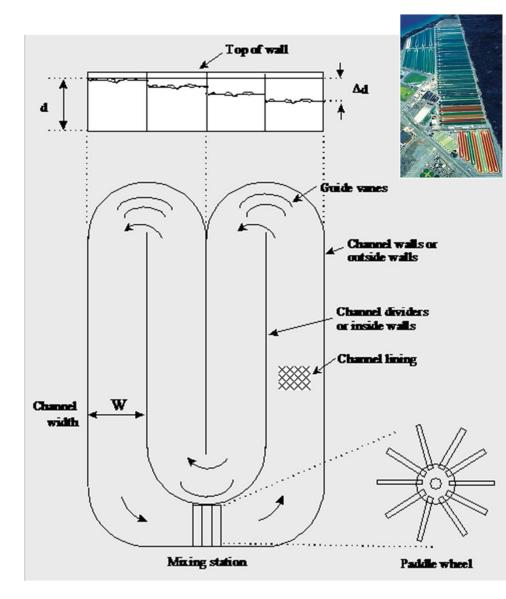
Closed photobioreactors: Bubble columns

Closed photobioreactors: Tubular photobioreactors

 $\frac{\text{Typical biomass productivity}}{0.050 \text{ kg m}^{-2} \text{ day}^{-1} (\sim 100 \text{ tons ha}^{-1} \text{ year}^{-1})}$ $\frac{\text{Maximum biomass concentration}}{3.0 \text{ kg m}^{-3} (1.5 \text{ kg m}^{-3} \text{ typical})}$ $\frac{\text{Volume to surface ratio}}{0.04\text{-}0.08 \text{ m}^3 \text{ m}^{-2}}$

Closed photobioreactors: Flat panel photobioreactors

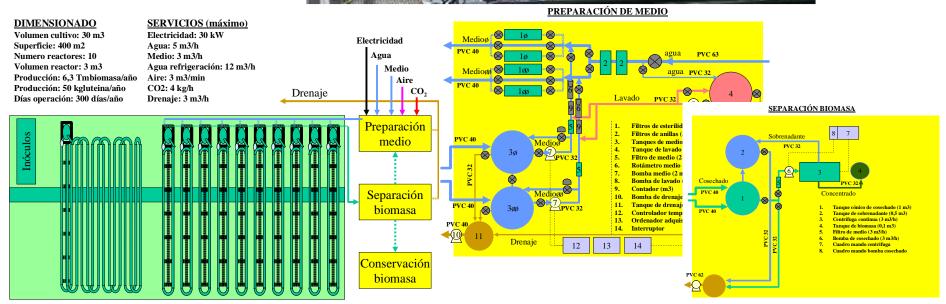
Typical biomass productivity

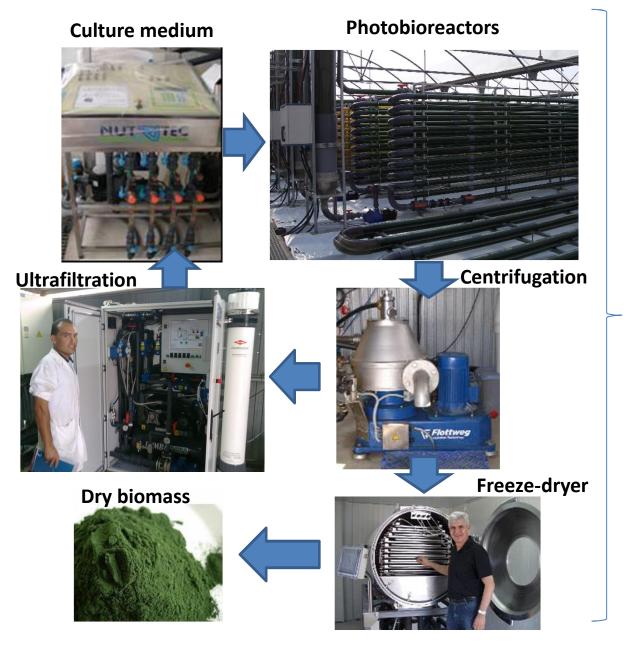

0.035 kg m⁻² day⁻¹ (~80 tons ha⁻¹ year⁻¹) <u>Maximum biomass concentration</u>

2.0 kg m⁻³ (1.0 kg m⁻³ typical) Volume to surface ratio

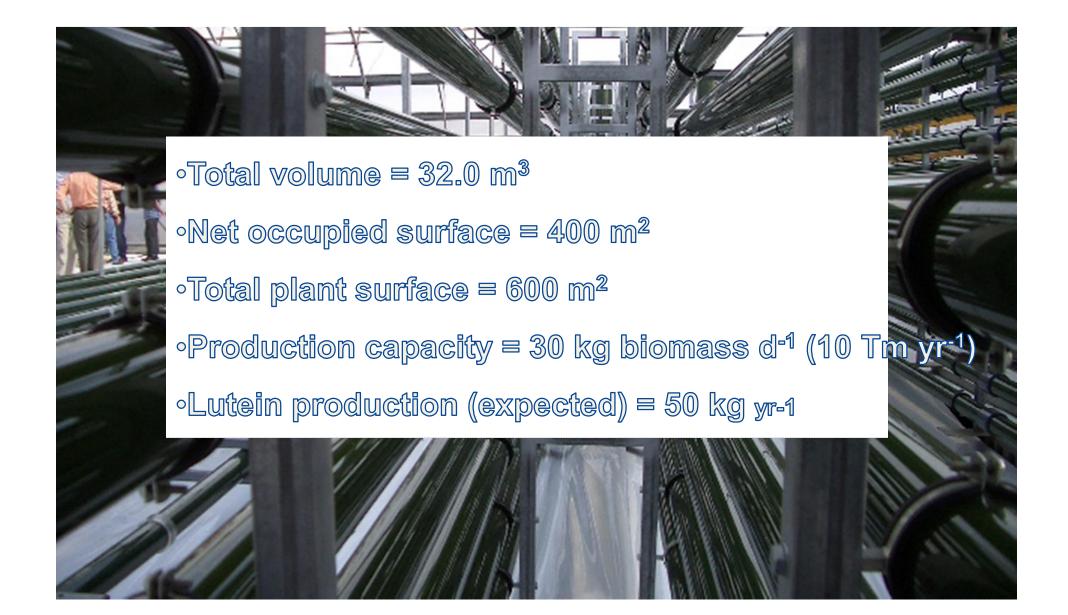
0.07-0.1 m³ m⁻²

Open photobioreactors: Raceways




 $\label{eq:spectral_system} \begin{array}{l} \hline \textbf{Typical biomass productivity} \\ 0.015 \ \text{kg} \ m^{-2} \ \text{day}^{-1} \ (\sim\!45 \ \text{tons ha}^{-1} \ \text{year}^{-1}) \\ \hline \textbf{Maximum biomass concentration} \\ 0.5 \ \text{kg} \ m^{-3} \ (0.25 \ \text{kg} \ m^{-3} \ \text{typical}) \\ \hline \textbf{Volume to surface ratio} \\ 0.2 \ -0.4 \ m^3 \ m^{-2} \end{array}$

Tubular industrial facility


DIAGRAMA GENERAL

Control unit

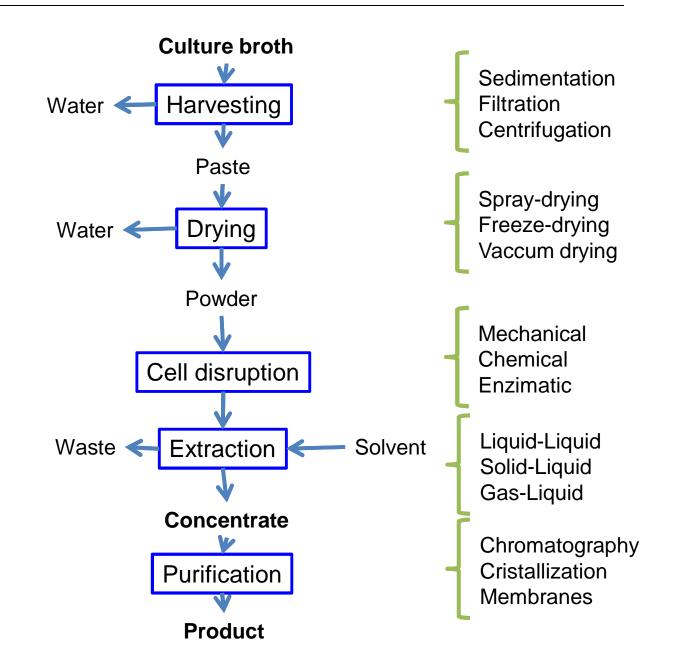
Characteristics of raw material

Complex biomass Many different compounds in small quantities Homogeneous: no mechanical separation High water content Protein rich Variable lipid content Variable lipid content Variable carbohydrate content Some high value products Minerals, nucleotides, etc...

 Table V. (A) Chemical composition of some food source microalgae compared with other human food sources (% of dry matter) (adapted from Miao and Wu [15]), (B) Some of microalgae products with applications in cosmetics (adapted from Derner *et al.* [38]) and (C) Chemical composition of biofuel source microalgae.

Source	Carbohydrates (%)	Proteins (%)	Lipids (%)		
(A)					
Anabaena cylindrica	25–30	43-56	4–7		
Chalmydomonas rheinhardii	17	48	21		
Chlorella vulgaris	12–17	51-58	14-22		
Dunaliella salina	32	57	6		
Porphyidium Cruentum	40–57	28-39	9–14		
Spirulina maxima	13–16	60-71	6–7		

Basic component classes:


Proteins Carbohydrates Lipids Ashes

Product-specific vs integrated processes

Product-specific

Strain selected for its high content/purity/productivity in the desired product

Extraction/recovery steps designed for maximum product yield/purity

By-products and waste disregarded

The main product is defined and a variety of strains are considered

By-products and waste recycling is considered for each.

Extraction/recovery step are designed to preserve by-products.

Main product yield is sacrificed for the overall performance including recycling.

For microalgal biofuel, integrated processing is a must, not an option.

Integrated

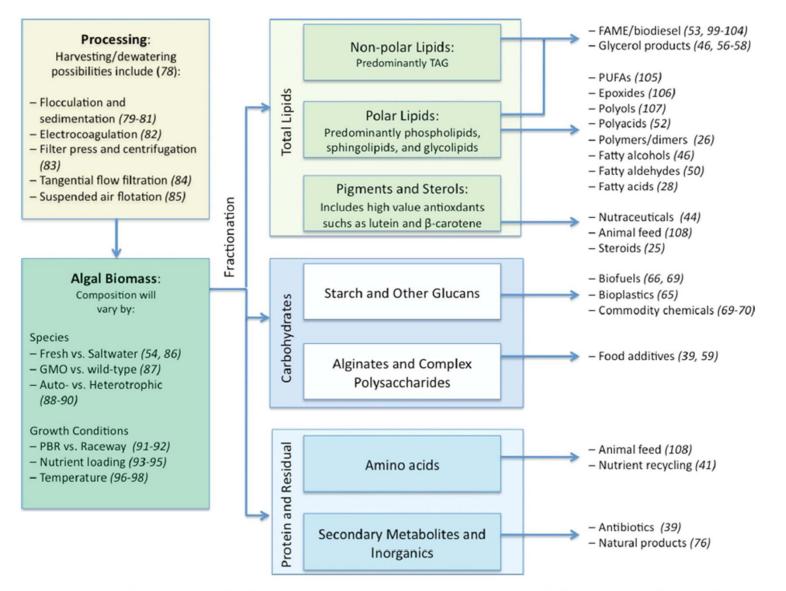
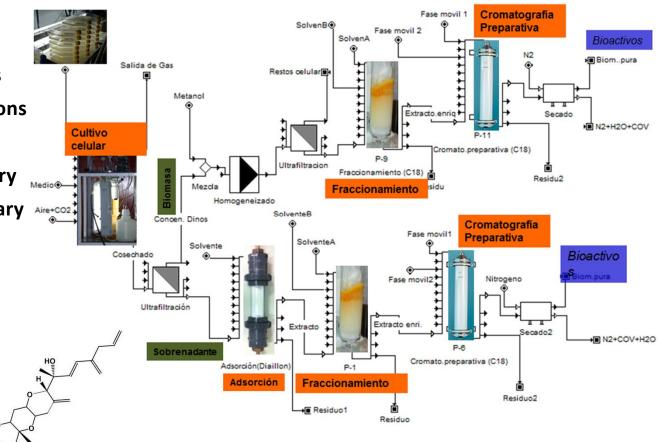
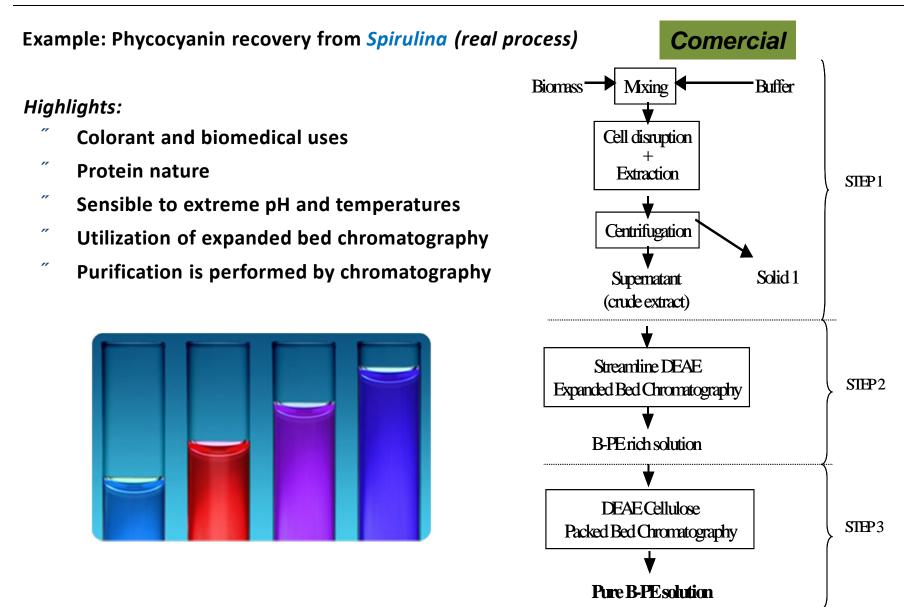



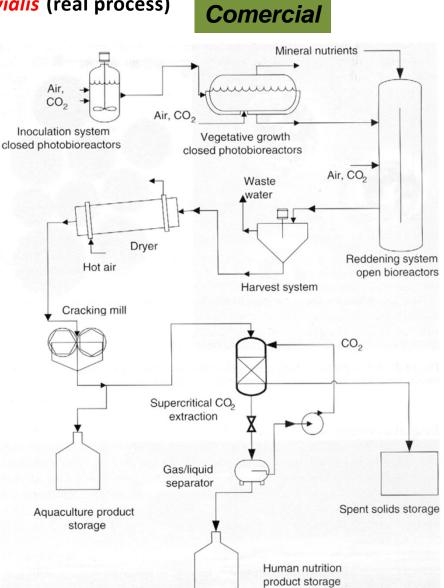
Fig. 2 General schematic for algal biomass fractionation and co-product generation. References are provided in italics.


Example: Yesotoxins from *Dinoflagellates*

Highlights:

- Sensible microorganisms
- Low shear stress conditions
- ["] Simple cell disruption
- Complex product recovery
- Chromatography necessary Aire+co2

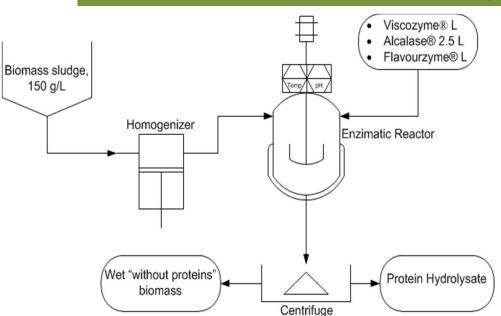
Comercial



Example: Astaxanthin recovery from *H. pluvialis* (real process)

Highlights:

- "Hot drying: temperature sensitive?"
- Cell-breakage step: strong cell wall?
- ["] Separation: SCF CO₂ extraction.
- **Over 95% d.wt. waste.**
- Absence of other carotenoids allows obtaining pure astaxanthin



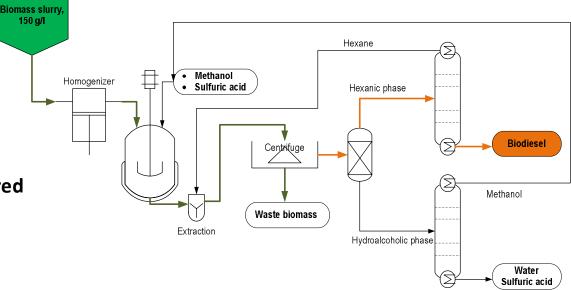
Example: Aminoacids concentrates from Spirulina

Comercial Real production with local company


Highlights:

- **No dry biomass is required**
- Process at soft conditions
- No purification required
- Simply and easy to carry out
- ["] Low quality biomass accepted

Enzymatic process with commercial enzymes Centrifugation/filtration Hydrolysis degree=60-70% Free amino-acids concentration=40 g/L



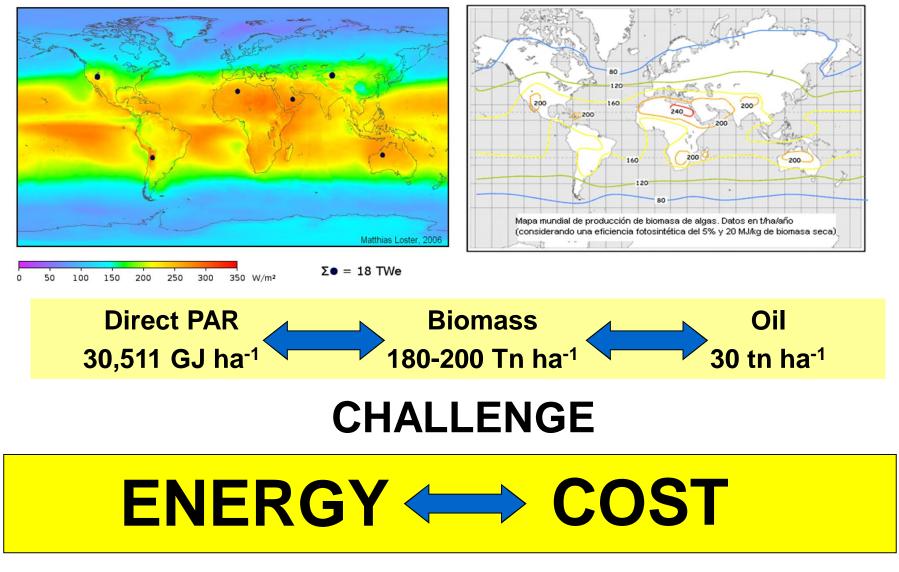
Example: Biodiesel from Nannochloropsis

Non comercial

Highlights:

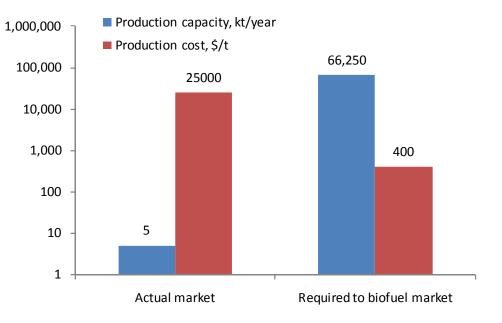
- No dry biomass is required
- Process at hard conditions
- **Utilization of solvents**
- Only fatty acids are used
- "High fatty acids content required

Direct transesterification + extraction: Overall 50% of lipids are saponificable Sulfuric acid 5%d.wt., Methanol 3 v/v, 80°C, 1 h Hexane 3 v/v Transesterification yield =85% Fatty acid recovery=80%


Biodiesel production

United States biodiesel needs = 0.53 billion m^3 (to replace all transport fuel)

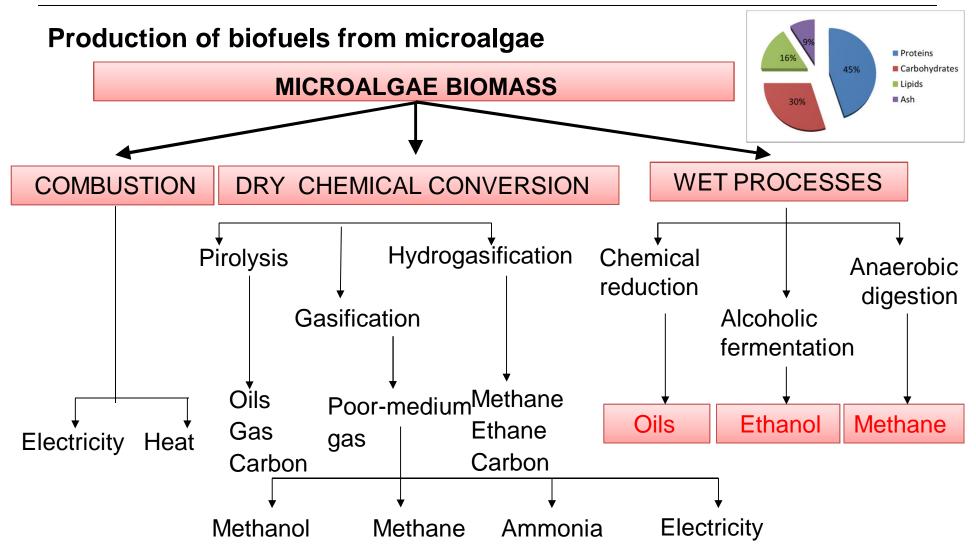
Oil yield (L/ha)	Land area needed (M ha)	Percent of existing US	
	•	,	
-	,		Not
,	446	244	
1,892	280	154	feasible
2,689	198	108	
5,950	90	48	
35,202	15.2	8	Optimistic
70,405	7.6	4	values
18,750	28.2	15.0	Proved
17,330	30.6	16.3	values
23,500	20.9	11	Proved
35,300	15.2	8	Estimated
	(L/ha) Biotechnol. Adv.) 172 446 1,190 1,892 2,689 5,950 35,202 70,405 18,750 18,750 18,750 17,330 23,500 35,300	(L/ha) Biotechnol. Adv.)needed (M ha)1723,0804461,1881,1904461,8922802,6891985,9509035,20215.270,4057.618,75028.217,33030.623,50020.9	(L/ha) Biotechnol. Adv.)needed (M ha)existing US cropping area1723,0801,6924461,1886521,1904462441,8922801542,6891981085,950904835,20215.2870,4057.6418,75028.215.017,33030.616.323,50020.91135,30015.28


a, 20% w/w oil in biomass (Y. Chisty, 2007. Biotechnol. Adv.) b, 40% w/w oil in biomass (Y. Chisty, 2007. Biotechnol. Adv.) c, *Phaeodactylum tricornutum* 20% oil in biomass, 5g_{lipids}/m²·day. Acién Fernández et al., (1998) d, *Scenedesmus almeriensis*, 16% oil in biomass. Fernández Sevilla et al., (2008) e, *Nannochloropsis* sp. Two-step process 200 mg_{oil}/L·day, 9.5 g_{biomass}/m²·day, Rodolfi et al., (2009) f, *Nannochloropsis* sp. Two-step process tropical area, Rodolfi et al (2009)

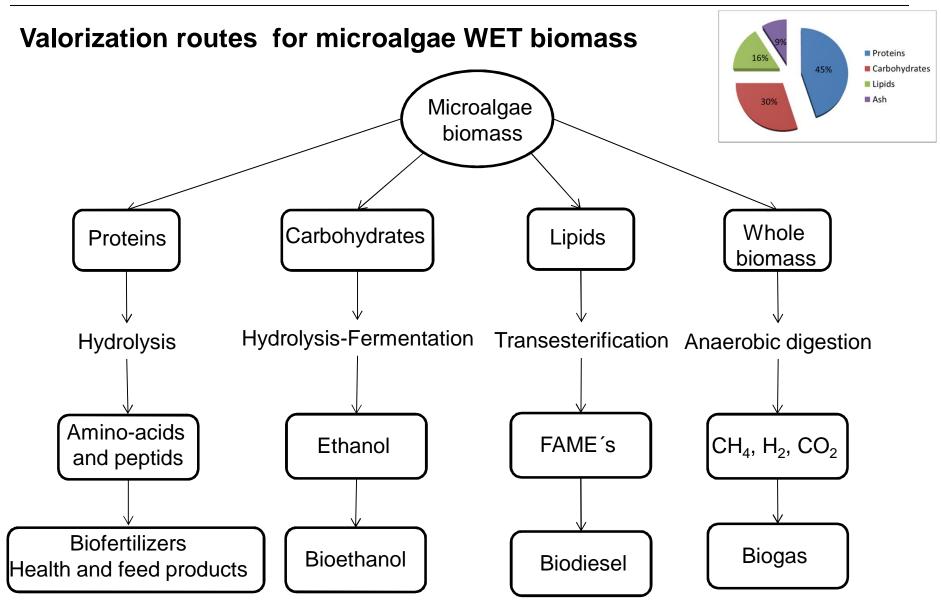
Maximum energy conversion achievable

Actual and biofuel markets

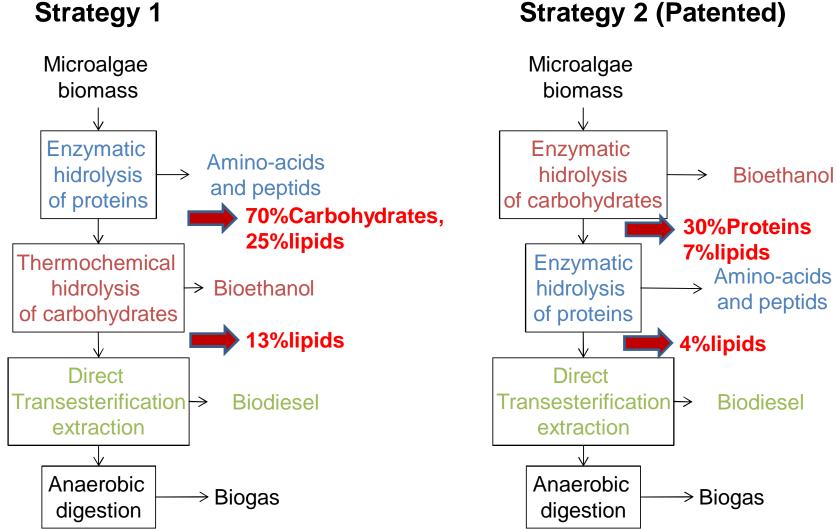
The microalgal biomass market produces about
5 kt of dry matter/year at production costs of
25000 \$/t (Pulz and Gross, 2004)
To meet the biofuel market requirements it is
necessary to increase the production capacity
by four orders of magnitude and to reduce the
production cost by two orders of magnitude.



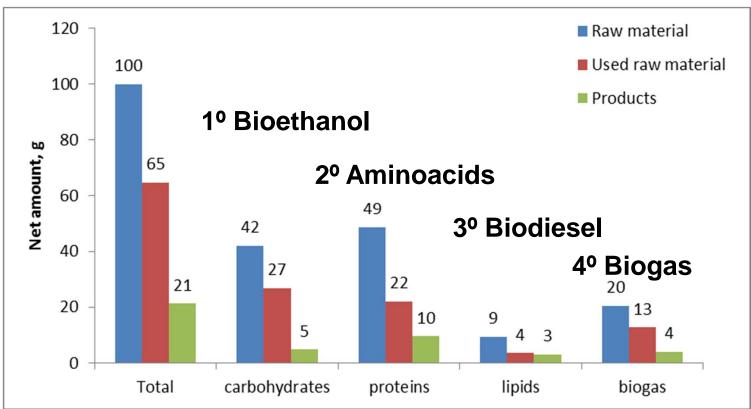
International initiatives for microalgae production


- Europe: MBD (PBR), Algae.Tec (PBR) at power plants, Ecoduna (PBR, also had project with Vattenfall), Proviron (PBR, at landfill), Vattenfall, RWE, E.ON (PBRs, all inactive now), Eni (ponds, at their Gela oil refinery, Sicily), A4F (PBR, at a cement plant), BioFuel Systems; Abengoa; Endesa (PBRs), EnAlgae Plymouth Univ. (PBRs at power plant), Seambiotics (ponds, coal-fired plant)
- 2. Asia: ENN (PBRs) and Hearol (ponds) at power plants
- 3. North America: **Pond Biofuels** (PBR, at Cement Plant), **Touchstone** (ponds), **Bioprocess Algae** (PBRs), kuehnle Agro systems (PBRs), Joule (PBRs), Solix (PBR), GreenFuels (PBRs, broke in 2009)
- 4. SouthAmerica: DesertBioenergy (flat panels).
- 5. Australia: Muradeel Pty Ltd. (PBR), Crucibe (PBR)

Different technologies for microalgae production



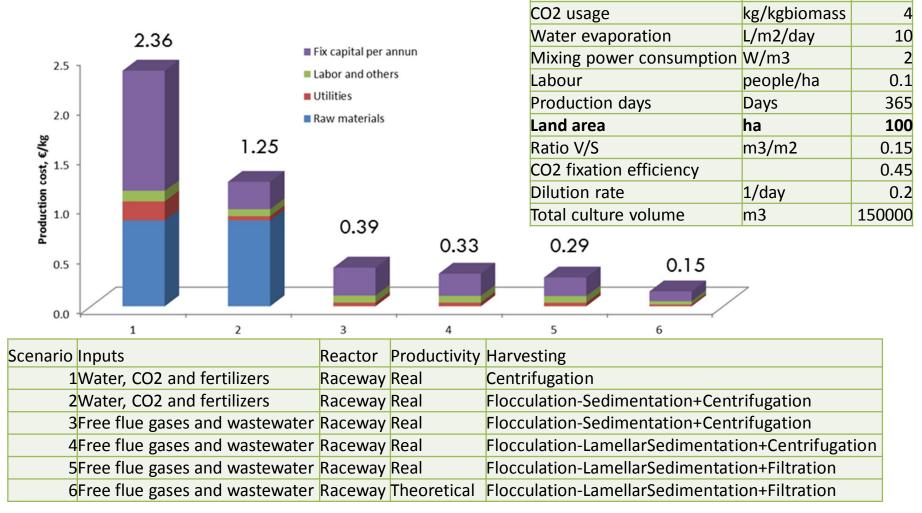
On this way only the CARBON fraction is used, nitrogen fraction is disregarded


Integrated valorization of microalgae biomass

Strategy 2 (Patented)

Results by integrated valorization of microalgae biomass

Ash-free biomass basis


Using the proposed integrated process a maximum amount of 65% of raw material is used, although due to the conversion yield to final products a 21% of end-product is obtained

Biomass productivity

g/m2/day

20

Technological alternatives to produce biomass

Utilization of wastewater is the best option to reduce the microalgae production cost

To produce biofuels from microalga it is necessary to achieve biomass production cost lower than 0.5 Ökg

- At 1 ha scale 10 Ökg
- At 100 ha scale 4 Ökg
- What will be possible 0.40 Ökg

Norsker et al., (2011) Microalgal production-a close look at economics, Biotechnology Advances 29:24-27

- $^{\prime\prime}$ Using CO₂ and fertilizers 1.25 \ddot{O} kg
- **Using flue gases and wastewater 0.39Ökg**
- Maximal theoretical (ideal conditions) 0.15 Ökg

Acién et al., (2013) Economics of microalgae biomass production, *Biofuels from Algae*, Elsevier

Although it is possible to achieve this production cost, it is only feasible using effluents from other industries

Necessity of coupling with wastewater to produce biofuels

Biofuels market requires large productions, and thus large amounts of resources. To replace petrodiesel consumed in Spain not enough resources are available

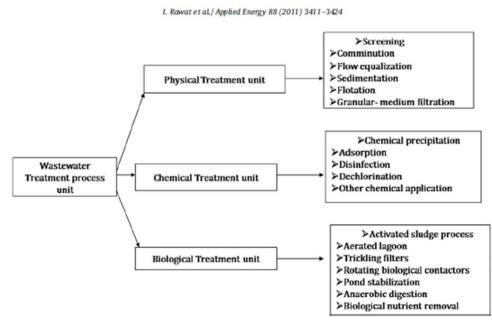
	Diesel consumption, Spain 2009	31.10	Million tonnes	
	To replace 10% consumption	3.1	Million tonnes	
Biodiesel yield 90%	Microalgae oil required	3.4	Million tonnes	Equivalent to:
	Microalgae biomass required	17.3	Million tonnes	➡ 0.8 Million Ha (100 Tn/Ha)
1.8 kgCO ₂ /kg 🛛 🛋	Carbon dioxide required	35.2	Million tonnes	➡5.5 GWe (6300 Tn/GW)
	Nitrate required	5.6	Million tonnes	>4 times produced
	Phosphate required	0.6	Million tonnes	>10 times produced

Large amounts of water, carbon dioxide, nitrate and phosphate are available in wastewater treatment field

Population	150,000.00	people
Water flow	50,000.00	m³/day
Nitrate/amonia content	21.00	mgN/L
Phosphate content	4.00	mgP/L
nitrate/amonia amount	4.65	Tn/day
Phosphate amount	0.61	Tn/day

Biomass by nitrate/amonia	15.82	Tn/day
Biomass by phosphate	20.00	Tn/day
Land required	57.73	На
Microalgae biomass	5,772.96	Tn/year
Microalgae oil	1,154.59	Tn/year
Biodiesel	1,039.13	Tn/year

Wastewater treatment by activated sludge imposes a high cost and energy consumption, nutrients being lost


Aqualia (250 Wastewater treatment plants=500 Mm3/yr)

- Water treatment cost=0.2 Öm3
- Energy consumption= 0.5 kWh/m3
- " Nitrogen removal/losses=25.000 t/yr
- " Phosphorous removal/losses =5.000 t/yr

"Microalgae=0.5 Mt/yrÎ

Wastewater treatment is designed to remove nutrients and not to produce biomass, employing a large amount of energy to do it

Depuration of wastewater by recicling nutrients and producing biomass to biofuels

Advantages:

- Lower power consumption
- ″ Nutrients recovery
- Water recovery

Disavantages?

- ["] Large areas required
- " High light and moderate temperature required

Review

R

Algal-bacterial processes for the treatment of hazardous contaminants: A review

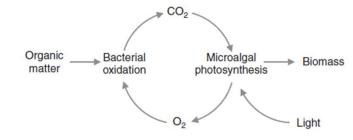
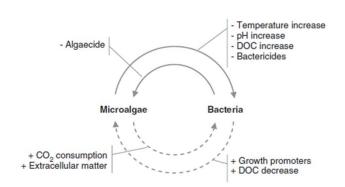
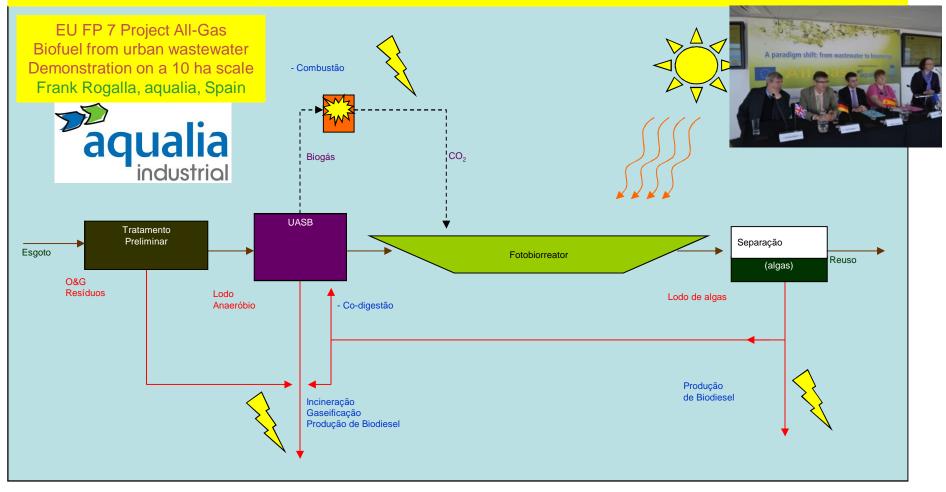
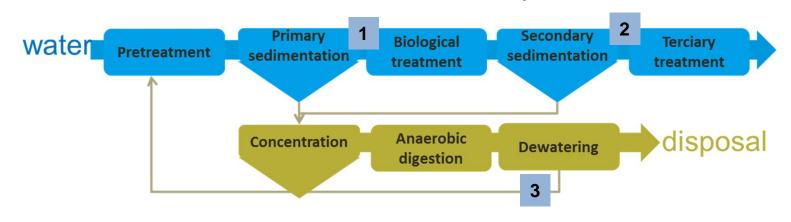


Fig. 1 – Principle of photosynthetic oxygenation in BOD removal processes.

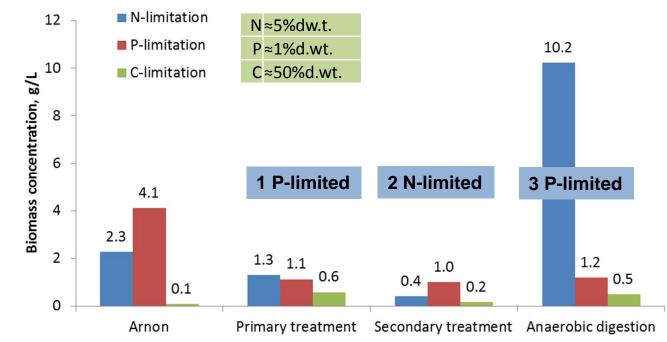




Fig. 2 – Positive (dashed line) and negative (plain line) interactions between microalgae and bacteria.

Nutrients: recovery of nutrients from efluents

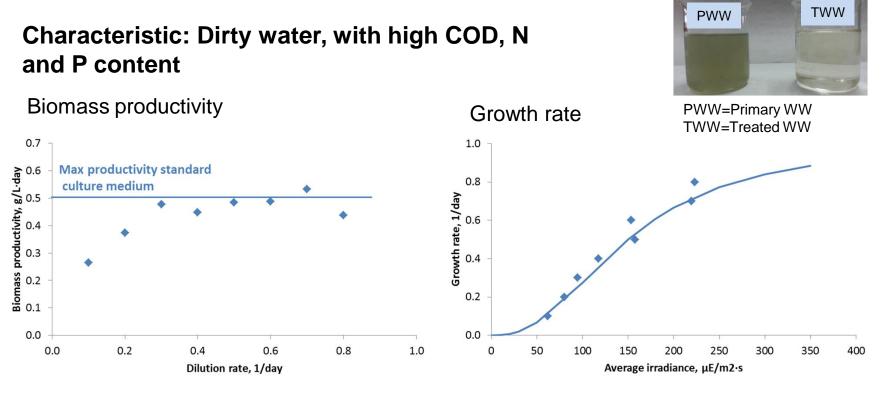
New Wastewater Treatment Flowsheet ? Value Creation instead of Waste Production ...

Types of wastewater


Different wastewaters are available at industrial plants

Conc.,		1 Primary	2 Secondary	3 Anaerobic		Conc.,		1 Primary	2 Secondary	3 Anaerobic
mg/L	Arnon	treatment	treatment	digestion		mg/L	Arnon	treatment	treatment	digestion
COD	-	500.0	110.0	300.0		TKN	114		20	U
N-NO3	114.0	2.4	0.0	5.3						
N-NH4	0.0	62.6	20.8	506.5	7	ТР	41	11	10	12
P-PO4	41.0	11.3				ТС	47	296	82	247

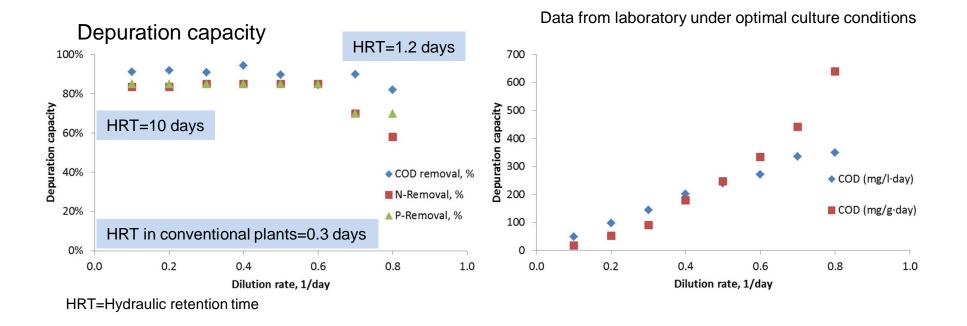
Composition of each wastewater is largely different, thus them must be managed differently


Limiting factors

Wastewater composition limits the biomass productivity

Using wastewater the cultures are ever carbon limited , but also N and P limitation exist versus the use of standard culture mediums

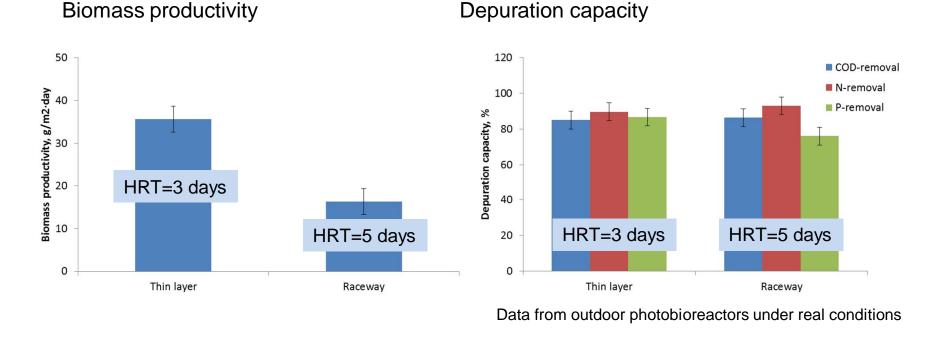
Wastewater from primary treatment



Data from laboratory under optimal culture conditions

Using wastewater as culture medium the cultures performed as light-limited cultures, no other limitation being observed indoor

Wastewater from primary treatment


Removal capacity per reactor volume basis must be maximized increasing the water flow rate

N and P are efficiently removed till 0.7 1/day, but the COD depuration capacity is not saturated, then COD removal is much higher than N-P

Nutrients: recovery of nutrients from efluents

Outdoor the performance of the system has been verified in continuous mode

Biomass productivity is much higher in the thin layer reactor than in raceway reactor although the depuration capacity is high in both systems

ACKNOWLEDGEMENTS

Dpt. Chemical Engineering University of Almería, SPAIN

Southampton **MALGAENERGY** aqualia industrial Universidad Desert de Antofagasta INSTITUTO DE ECOLOGIA, A.C Bioenera E endesa FUNDACIÓN 3iorizon cajamar cciona Pioneros en desarrollo y sostenibilidad MINISTERIO DE EDUCACIÓN Y CIENCIA JUNTA DE ANDALUCIA SEVENTH FRAMEWORK CONSEJERÍA DE INNOVACIÓN, CIENCIA Y EMPRESA PROGRAMME

THANKS

QUESTIONS?

Products and processes with microalgae

F. Gabriel Acién Fernández (<u>facien@ual.es</u>) Dpt. Chemical Engineering, University of Almería, Spain

Madrid, May 6th, 2014