Reasoning in Interval Temporal Logics New Frontiers

Guido Sciavicco
Murcia University, Spain

Write me: guido@um.es
Malaga
November, 2014

Representing Time

- A philosophical issue. Ever since Zeno and Aristotle, the nature of Time and the discussion whether time instants or time periods should be regarded as the primary objects has been an active discussion.

Representing Time

- A philosophical issue. Ever since Zeno and Aristotle, the nature of Time and the discussion whether time instants or time periods should be regarded as the primary objects has been an active discussion.
- A linguistic issue. Logical formalisms have always featured in the study of natural languages; they arise as suitable frameworks for modeling progressive tenses and expressing language constructions involving both time points and periods.

Representing Time

- A philosophical issue. Ever since Zeno and Aristotle, the nature of Time and the discussion whether time instants or time periods should be regarded as the primary objects has been an active discussion.
- A linguistic issue. Logical formalisms have always featured in the study of natural languages; they arise as suitable frameworks for modeling progressive tenses and expressing language constructions involving both time points and periods.
- An Artificial Intelligence/Computer Science issue. Temporal languages and logics have sprung up from expert systems, planning systems, theories of actions and change, natural language analysis and processing, formal verification systems, among others.

Representing Time: some Questions

- Should time (representation) be:
- Linear or branching?
- Discrete or dense?
- With or without beginning?

Representing Time: some Questions

- Should time (representation) be:
- Linear or branching?
- Discrete or dense?
- With or without beginning?
- If we choose to represent time as made of intervals, instead of points, then:
- Should intervals include their end-points or not?
- Can they be unbounded?
- Are point-intervals (i.e. with coinciding endpoints) admissible or not?
- How are points and intervals related?

Temporal logics: Points

- Over points, there are three distinct relations (before, after, and equal)
- Easy to deal with, low expressive power

Temporal logics: Points

- Over points, there are three distinct relations (before, after, and equal)
- Easy to deal with, low expressive power

set of worlds
primitive temporal entity time points/instants

accessibility relations
\longrightarrow : next
\longrightarrow *: finally

Temporal Logics: Intervals

- worlds are intervals (time period - pairs of points)

set of worlds primitive temporal entity time intervals/periods

accessibility relations all binary relations between pairs of intervals

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

(L)

〈A
<0)
(E)
(D)
(B)

Allen's relations: Algebra and Logic

There are 13 different binary relations between intervals:

together with their inverses.

Setting a Language: Halpern-Shoham's Modal Logic of Time Intervals

Every interval relation gives rise to a modal operator over interval structures.

Setting a Language: Halpern-Shoham's Modal Logic of Time Intervals

Every interval relation gives rise to a modal operator over interval structures. Thus, a multimodal logic arises:

Halpern and Shoham's logic modal logic of time intervals HS:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \psi|\langle\mathrm{B}\rangle \varphi|\langle\mathrm{E}\rangle \varphi|\langle\overline{\mathrm{B}}\rangle \varphi|\langle\overline{\mathrm{E}}\rangle \varphi|\langle\mathrm{A}\rangle \varphi|\langle\overline{\mathrm{A}}\rangle \varphi .
$$

Interpreted on Interval models

$$
\mathrm{M}=\langle\mathbb{I}(\mathbb{D}), V\rangle,
$$

where $V: \mathcal{A P} \mapsto 2^{\mathbb{I}(\mathbb{D})}$ is the valuation function.

Formal semantics of HS

$\langle B\rangle: M,\left[d_{0}, d_{1}\right] \Vdash\langle B\rangle \phi$ iff there exists d_{2} such that $d_{0} \leq d_{2}<d_{1}$ and $\mathrm{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\overline{\mathrm{B}}\rangle: \mathrm{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{B}}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathrm{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{B}\rangle \phi$:
$\langle\overline{\mathrm{B}}\rangle \phi$:

Formal semantics of HS

$\langle B\rangle: M,\left[d_{0}, d_{1}\right] \Vdash\langle B\rangle \phi$ iff there exists d_{2} such that $d_{0} \leq d_{2}<d_{1}$ and $\mathrm{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\overline{\mathrm{B}}\rangle: \mathrm{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{B}}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathrm{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\mathrm{E}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle E\rangle \phi$ iff there exists d_{2} such that $d_{0}<d_{2} \leq d_{1}$ and $\mathrm{M},\left[d_{2}, d_{1}\right] \Vdash \phi$.
$\langle\overline{\mathrm{E}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{E}}\rangle \phi$ iff there exists d_{2} such that $d_{2}<d_{0}$ and $\mathrm{M},\left[d_{2}, d_{1}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{E}\rangle \phi$:
$\langle\overline{\mathrm{E}}\rangle \phi$:

Formal semantics of HS

$\langle\mathrm{B}\rangle: \mathrm{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{B}\rangle \phi$ iff there exists d_{2} such that $d_{0} \leq d_{2}<d_{1}$ and M, $\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\bar{B}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{B}}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathbf{M},\left[d_{0}, d_{2}\right] \Vdash \phi$.
$\langle\mathrm{E}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{E}\rangle \phi$ iff there exists d_{2} such that $d_{0}<d_{2} \leq d_{1}$ and M, $\left[d_{2}, d_{1}\right] \Vdash \phi$.
$\langle\overline{\mathrm{E}}\rangle: \mathrm{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{E}}\rangle \phi$ iff there exists d_{2} such that $d_{2}<d_{0}$ and $\mathrm{M},\left[d_{2}, d_{1}\right] \Vdash \phi$.
$\langle\mathrm{A}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\mathrm{A}\rangle \phi$ iff there exists d_{2} such that $d_{1}<d_{2}$ and $\mathrm{M},\left[d_{1}, d_{2}\right] \Vdash \phi$.
$\langle\overline{\mathrm{A}}\rangle: \mathbf{M},\left[d_{0}, d_{1}\right] \Vdash\langle\overline{\mathrm{A}}\rangle \phi$ iff there exists d_{2} such that $d_{2}<d_{0}$ and M, $\left[d_{2}, d_{0}\right] \Vdash \phi$.
current interval:
$\langle\mathrm{A}\rangle \phi:$
$\langle\overline{\mathrm{A}}\rangle \phi:$

Properties

- properties intrinsically related to intervals (instead of points)
- points have no duration

Properties

- properties intrinsically related to intervals (instead of points)
- points have no duration

Example: "traveling from Reykjavik to Lucca":

- true over a precise interval of time
- not true over all other intervals (starting/ending intervals, inner intervals, ecc.)

Properties

- properties intrinsically related to intervals (instead of points)
- points have no duration

Example: "traveling from Reykjavik to Lucca":

- true over a precise interval of time
- not true over all other intervals (starting/ending intervals, inner intervals, ecc.)

Several philosophical and logical paradoxes disappear:

- Zeno's flying arrow paradox ("if at each instant the flying arrow stands still, how is movement possible?")

Properties

- properties intrinsically related to intervals (instead of points)
- points have no duration

Example: "traveling from Reykjavik to Lucca":

- true over a precise interval of time
- not true over all other intervals (starting/ending intervals, inner intervals, ecc.)

Several philosophical and logical paradoxes disappear:

- Zeno's flying arrow paradox ("if at each instant the flying arrow stands still, how is movement possible?")
- The dividing instant dilemma ("if the light is on and it is turned off, what is its state at the instant between the two events?")

Potential Applications

- Planning: given a set of task (plus, possibly) their duration, and given the precedence relations between them, find out if the plan is possible.

Potential Applications

- Planning: given a set of task (plus, possibly) their duration, and given the precedence relations between them, find out if the plan is possible. A plan should be finite; if the constraints are existential, then the computational models behind it could be algebraic;

Potential Applications

- Planning: given a set of task (plus, possibly) their duration, and given the precedence relations between them, find out if the plan is possible. A plan should be finite; if the constraints are existential, then the computational models behind it could be algebraic; if the constraints are also universal, then the computational models behind it must be logical.

Potential Applications

- Planning: given a set of task (plus, possibly) their duration, and given the precedence relations between them, find out if the plan is possible. A plan should be finite; if the constraints are existential, then the computational models behind it could be algebraic; if the constraints are also universal, then the computational models behind it must be logical.
- Linguistics: given a text, deduce the temporal logical structure underneath it. It could be a discrete or a dense framework. It could involve all temporal relations, or just some of them.

Potential Applications

- Planning: given a set of task (plus, possibly) their duration, and given the precedence relations between them, find out if the plan is possible. A plan should be finite; if the constraints are existential, then the computational models behind it could be algebraic; if the constraints are also universal, then the computational models behind it must be logical.
- Linguistics: given a text, deduce the temporal logical structure underneath it. It could be a discrete or a dense framework. It could involve all temporal relations, or just some of them.
- Temporal databases: offer a logical framework as a basis of a conceptual design.

Potential Applications (Cont.)

- Translate: "I solved the problem while I was running on the beach".

Potential Applications (Cont.)

- Translate: "I solved the problem while I was running on the beach".

$$
\langle\overline{\mathrm{A}}\rangle(\text { Running } \wedge\langle\overline{\mathrm{D}}\rangle(\text { Solved }))
$$

- Translate: "The task A must start during the execution of task B, but before its completion, and only under the condition that task C is not currently on".

Potential Applications (Cont.)

- Translate: "I solved the problem while I was running on the beach".

$$
\langle\overline{\mathrm{A}}\rangle(\text { Running } \wedge\langle\overline{\mathrm{D}}\rangle(\text { Solved }))
$$

- Translate: "The task A must start during the execution of task B, but before its completion, and only under the condition that task C is not currently on".

$$
[G](A \rightarrow(\langle\overline{\mathrm{O}}\rangle B \wedge[\overline{\mathrm{D}}] \neg C))
$$

The Satisfiability Problem

- The satisfiability problem is the most important and paradigmatic problem

The Satisfiability Problem

- The satisfiability problem is the most important and paradigmatic problem
- It is: given a (set of) formula(s), is there a model that satisfies it (them)?

The Satisfiability Problem

- The satisfiability problem is the most important and paradigmatic problem
- It is: given a (set of) formula(s), is there a model that satisfies it (them)?
- If we search for finite models: in case of positive answer, show it
- If we search for infinite models: in case of positive answer, show a finite pseudo-model that allows one to reconstruct the infinite one (not representable)

The Satisfiability Problem

- The satisfiability problem is the most important and paradigmatic problem
- It is: given a (set of) formula(s), is there a model that satisfies it (them)?
- If we search for finite models: in case of positive answer, show it
- If we search for infinite models: in case of positive answer, show a finite pseudo-model that allows one to reconstruct the infinite one (not representable)
- If satisfiability is decidable, then, for example, one can build a plan, or deduce the consequences of a set of assumptions, or answer a temporal query...

Computational Properties of Satisfiability

Its computational properties may depend on:

Computational Properties of Satisfiability

Its computational properties may depend on:

- Ontology: point intervals are admitted or not?
- Ontology: is the class of models finite, discrete, dense, based on the reals, based on $\mathbb{N}, \mathbb{Z}, \ldots$?
- Expressive power: which are the allowed modalities?
- Semantical choices: do we admit all intervals built on a linear order?
- Syntactical choices: do we admit propositionally complete formulas?
- Syntactical choices: do we admit every combination of existential and universal modalities?

The Satisfiability Zoo

HS

The Satisfiability Zoo

The Satisfiability Zoo

$$
\mathcal{F} \subset \mathrm{HS}
$$

The Satisfiability Zoo

The Satisfiability Zoo

$\mathrm{HS}_{B S}$

The Satisfiability Zoo

Limiting the modalities

Example: The complete picture (for finite orders)

Complexity Class

Limiting the modalities

Example: The complete picture (for \mathbb{N})

Complexity Class

Limiting the modalities

Example: The complete picture (for Dis)

Complexity Class

Clausal fragments of HS

Basics

Clausal fragments of HS

Basics

	not allowed formulas	allowed formulas	rule
Horn	$p \vee q$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow p$	definite clauses
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	

Clausal fragments of HS

Basics

	not allowed formulas	allowed formulas	rule
Horn	$p \vee q$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow p$	definite clauses
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	
Horn ${ }^{\square}$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \diamond p$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \square p$	+ no positive diamonds
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	

Clausal fragments of HS

Basics

	not allowed formulas	allowed formulas	rule
Horn	$p \vee q$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow p$	definite clauses
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	
Horn $^{\square}$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \diamond p$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \square p$	+ no positive diamonds
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	
Krom	$p_{1} \vee \ldots \vee p_{n}$	$p_{1} \vee p_{2}$	at most binary disjunctions

Clausal fragments of HS

Basics

	not allowed formulas	allowed formulas	rule
Horn	$p \vee q$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow p$	definite clauses
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	
Horn $^{\square}$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \diamond p$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \square p$	+ no positive diamonds
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	
Krom	$p_{1} \vee \ldots \vee p_{n}$	$p_{1} \vee p_{2}$	at most binary disjunctions
core	$p_{1} \wedge p_{2} \rightarrow p$	$p_{1} \rightarrow p$	Horn + Krom
	$p_{1} \wedge p_{2} \rightarrow \diamond p$	$p_{1} \rightarrow \diamond p$	

Clausal fragments of HS

Basics

	not allowed formulas	allowed formulas	rule
Horn	$p \vee q$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow p$	definite clauses
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	
Horn $^{\square}$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \diamond p$	$p_{1} \wedge \ldots \wedge p_{n} \rightarrow \square p$	+ no positive diamonds
	$\neg \diamond p \rightarrow \square q$	$\diamond p \rightarrow \square q$	
Krom	$p_{1} \vee \ldots \vee p_{n}$	$p_{1} \vee p_{2}$	at most binary disjunctions
core	$p_{1} \wedge p_{2} \rightarrow p$	$p_{1} \rightarrow p$	Horn + Krom
	$p_{1} \wedge p_{2} \rightarrow \diamond p$	$p_{1} \rightarrow \diamond p$	
core $^{\square}$	$p_{1} \wedge p_{2} \rightarrow \diamond p$	$p_{1} \rightarrow \square p$	Horn $^{\square}+$ Krom

Clausal fragments of HS

Relative expressive power: all classes

Clausal fragments of HS

Relative expressive power: all classes

Mixing Fragments with Clausal fragments of HS
Relative expressive power: Fin

Mixing Fragments with Clausal fragments of HS
Relative expressive power: Fin

Mixing Fragments with Clausal fragments of HS (Cont.)
Relative expressive power: Fin

Mixing Fragments with Clausal fragments of HS (Cont.)
Relative expressive power: Fin

A Minimalist Bibliography

J. F. Allen

Maintaining knowledge about temporal intervals
Communications of the ACM, volume 26(11), pages 832-843, 1983

國 J.Y. Halpern and Y. Shoham
A Propositional Modal Logic of Time Intervals
Journal of the ACM, volume 38, pages 279-292, 1991
(D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco The Dark Side of Interval Temporal Logic: Marking the Undecidability Border
Annals of Mathematics and Artificial Intelligence, volume 71, pages 41-83, 2014

A Minimalist Bibliography

J. F. Allen

Maintaining knowledge about temporal intervals
Communications of the ACM, volume 26(11), pages 832-843, 1983
Interval algebra: only existential requirements
B
J.Y. Halpern and Y. Shoham

A Propositional Modal Logic of Time Intervals
Journal of the ACM, volume 38, pages 279-292, 1991
Basic HS definitions and undecidability
國 D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco The Dark Side of Interval Temporal Logic: Marking the Undecidability Border
Annals of Mathematics and Artificial Intelligence, volume 71, pages 41-83, 2014
Undecidable fragments

A Minimalist Bibliography (Cont.)

囦 D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco Interval Temporal Logics over Strongly Discrete Linear Orders:
Expressiveness and Complexity
Theoretical Computer Science, in publication, 2014
L. Aceto, D. Della Monica, V. Goranko, A. IngÃșlfsdÃsttir, A. Montanari, and G. Sciavicco
A Complete Classification of the Expressiveness of Interval Logics of Allen's Relations: the Dense and the General Case
Acta Informaticae, in publication, 2015

A Minimalist Bibliography (Cont.)

围
D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco Interval Temporal Logics over Strongly Discrete Linear Orders:
Expressiveness and Complexity
Theoretical Computer Science, in publication, 2014
Fragments on Fin, Dis, \mathbb{N}, \mathbb{Z}
圊
L. Aceto, D. Della Monica, V. Goranko, A. IngÃșlfsdÃșttir, A. Montanari, and G. Sciavicco
A Complete Classification of the Expressiveness of Interval Logics of Allen's Relations: the Dense and the General Case
Acta Informaticae, in publication, 2015
Expressive power

A Minimalist Bibliography (Cont.)

D. Bresolin, E. Muñoz-Velasco, and G. SciaviccoSub-Propositional Fragments of the Interval Temporal Logic of Allen's Relations

Lecture Notes in Computer Science 8761, 122 - 136, 2014

A Minimalist Bibliography (Cont.)

D. Bresolin, E. Muñoz-Velasco, and G. SciaviccoSub-Propositional Fragments of the Interval Temporal Logic of Allen's Relations

Lecture Notes in Computer Science 8761, 122 - 136, 2014
Horn, core, Krom

