The XX ISEK Conference - Rome, Italy 15th - 18th July 2014

RELIABILITY AND PARAMETERIZATION OF ROMBERG TEST IN PEOPLE WHO HAVE SUFFERED A STROKE.

Perez-Cruzado D¹, González-Sánchez M¹, Cuesta-Vargas AI^{1,2}

¹Department of Physiotherapy, University of Malaga, Spain ² School of Clinical Science, Faculty of Health Science, Queensland University Technology, Australia

E-mail: acuesta@uma.es

AIM: To analyze the reliability and describe the parameterization with sensors, of Romberg test in people who have had a stroke.

METHODS: Romberg's Test was performed during 20 seconds in four setting, depending from supporting leg and position of the eyes (opened dominant leg; closed eyes / dominant leg; opened eyes / non-dominant eyes / non-dominant leg) in people who have suffered a stroke over a Two inertial sensors (sampling frequency 180Hz) were placed in lumbar in the trunk (T_7) . The test was performed three times for the four settings. The outcome variables were extracted in each of the axes (X, Y,

different eyes leg; X: Roll year Y: Pitch Z: Yaw Figure 1: Axis (figure Z)

1). We considered as the maximum, minimum and mean velocity and the magnitude of the angular

displacement for each of the sensors (Figure 2 shows an example of direct extraction of variables). Statistical Analysis: descriptive analysis of all outcome variables for each axis and sensor. Further analysis of the internal consistency of the measure was performed by analysis interclass correlation (ICC) with a confidence interval of 95%.

RESULTS: Values obtained after statistical analysis show levels f of reliability ranging from 0.61 (Z axis speed - eyes closed / nondominant leg) and 0.92 (Y axis offset - opened eyes / dominant leg).

The descriptive results of all outcome variables are shown in Table 1. CONCLUSION: Making inertial sensors in trunk and / or lumbar, inertial sensors are reliable tools for parameterizing Romberg test in different settings in people who have suffered stroke over a year ago.

		L1	T1	L2	T2	L3	T3	L4	T4
Displacement (°)	MAX_x	4,88	5,92	11,54	7,52	24,7	12,56	22,66	25,19
	Min_x	-5,64	-2,36	-12,25	-13,24	1,07	-2,75	-24,39	-18,55
	Mean_x	7.02	3,05	5,49	-2,08	13,61	9,89	-2,71	3,58
	Max_y	2,46	2,06	3,72	5,65	10,21	11,56	6,36	12,56
	Min_y	0,07	-3,14	-3,96	-1,85	1,73	0,58	-6,38	-5,47
	Mean_y	2.06	-1,28	-0,49	0,06	4,32	5,29	1,1	2,87
	Max_z	4,84	8,12	14,92	8,46	3,42	1,98	19,28	15,73
	Min_z	-6,62	-2,25	-3,86	-0,45	-13,52	-10,36	-18,22	-22,63
	Mean_z	-0,71	1,67	7,02	2,17	-5,01	-7,19	3,55	-4,96
Velocity(°/s)	MAX_x	44,17	37,25	41,65	38,22	45,57	50,93	49,42	48,19
	Min_x	-44,46	-36,06	-45,81	-41,13	-34,8	-36,69	-41,78	-55,82
	Max_y	30,85	32,56	30,69	41,72	23,89	40,81	23,5	32,19
	Min_y	-31,78	-36,72	-21,86	-34,74	-40,49	-43,52	-37,32	-62,29
	Max_z	37,75	36,52	25.07	41,06	41,01	50,44	24,26	20,91
	Min_z	-30,2	-27,43	-41,62	-61,69	-23,61	-29,42	-47,28	-30,81
	R_pos	66.37	63,13	60,21	77,77	51,92	111,04	60,84	62,15
T1 T 1	R_neg	62,28	61,71	69,67	88,76	61,13	66.63	76,66	93,22

L1: Lumbar inertial sensor (opened eyes / dominant leg); T1: trunk inertial sensor (opened eyes / dominant leg); L2: Lumbar inertial sensor (opened eyes / nondominant leg); T2: trunk inertial sensor (opened eyes / non-dominant leg); L3: Lumbar inertial sensor (closed eyes / dominant leg); T3: trunk inertial sensor (closed eves / dominant leg); L4: Lumbar inertial sensor (closed eves / non-dominant leg); T4: trunk inertial sensor (closed eves / non-dominant leg); R pos: positive resulting vector; R neg: negative resulting vector

inertial

closed ago. (L_5-S_1) and different